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1 Introduction

The talk presented was based on an on-going joint work with Y.Hirano (Naruto) and B.Solie

(ERAU). More detailed and completed version of this manuscript will be submited elsewhere.

Let R be a ring, and let.S be a semigroup. The semigroup ring R[S]simultaneously encodes the

semigroup structure of S and the ring structure resulting in an object of great utility in various
areas of both ring theory and group theory. The interplay between the structures of R, .S, and

R[S]is a topic with a long mathematical history full of fascinating results. For instance, much is
already known about the structure of R[G], where G is not just a semigroup but a group. Here, we
find that the structure of R[G] is exactly characterized by the structure of R and various finiteness

properties of G . Maschke’s famous theorem states that if G is a finite group and X is a field

whose characteristic does not divide| G |, then K[G]is semisimple [3]. Further variations include
the result that R[G]is prime if and only if R is a prime ring and G has no nontrivial finite normal
subgroup [1]. More generally, R[G]is semiprime if and only if R is semiprime and the order of

every normal finite subgroup of G is a non-zero-divisor in R [5].

Consequently, one may ask whether the primeness or semiprimeness of R[S]can be characterized

in the case where S is an arbitrary semigroup. This is a much more difficult question on which
some progress has been made in recent years. For highly structured classes of semigroups, it is

again possible to determine the structure of R[.S]. For example, when S is a cancellative

semigroup, then R[S]is semiprime whenever R is semiprime [4]. When F is a field and S is finite,
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a version of Maschke’s theorem shows that the semisimplicity of R[S]is characterized by the

nonsingularity of the structure matrix for S when viewed as a matrix over F [2].

We consider semigroup rings over a particular class of semigroups: those semigroups which

arise as the multiplicative semigroup of a ring.

2 Main Results and Examples

Let K be a field and let.S be a semigroup. Recall that the semigroup ring K[S]consists of
the set of all sums Zss Sks§ with &, = 0 for all but finitely many s €.S'. We equip K[S]with the

usual addition and multiplication, where st= st for alls,ze S.

Given a ring (R,+,") , we may forget addition and thereby obtain a semigroup (R,-) having both 0
and 1. We denote by K[R]the semigroup ring K[(R,-)]. Note that as K[R] = K[0]® 4nn(K[0]),
K[R]is not a prime ring. It is easy to observe that K[R] is a direct sum of two simple rings if and
only if every proper nonzero ideal of K{R] is prime. Every prime ideal of K[R] except
Ann(K[0])contains K[0], and every ideal of K[R] contained in Ann(K[0])does not contain K[0].

Theorem 1 Let R be a ring and K be a field of characteristic zero. IfK[R] is semiprime, then R
is semiprime. The converse holds if R is a commutative ring or a domain.

Theorem 2 Let R be a ring and let K be a field of characteristic zero. Then K[R]is a
semisimple Artinian ring if and only if R is a finite semisimple ring.

For aring R, we shall denote the Jacobson radical of R by J(R).

Theorem 3 Let R be a local ring with finitely many units, let R* denote the group of units in R
and let K be a field of characteristic zero. Then J(K[R]) = Zr K(r—0)and

€J(R)
K[RVJ(K[R]) = K[0]® K[R'].

Let K be an algebraically closed field of characteristic zero, and letZ , denote the ring of integers
modulo#. It is immediate that Z , is semiprime if and only if» is squarefree, and thus we have the
following proposition as a corollary of Theorem 1.
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Proposition LetK be an algebraically closed field of characteristic zero, and letZ., denote the
ring of integers modulon. Then K[Z,is semiprime if and only ifn is squarefree.

We now present a few examples of the structure of K[ R] for some finite ring R .

Example 1 [t is clear that K[Z,]=K®K .

LetV be a vector space over K . We define a multiplication on the K -linear space K @V by the
formula(a,v)- (b, w) =(ab,aw+bv)for anya,be K,v, we V. Then K ®V becomes a K -algebra,

which we denote by Knd” .

Example 2 Consider the ring K[Z,]and let g, = i-0 fori=1,2,3. Then K[Z,]is the direct sum of
two sided ideals K[0]and S = Kg, + Kg, + Kg, . The identity of the ring S is g,. Let us set

€= %—(gl -g), &= %(g, +g;). Thene, e,are orthogonal central primitive idempotents of S

and g, = e, +e,. We can easily see thatK[Z,]= K’ ® (K»K).

Example 3 Consider the ring K[Z ] and let g, = i-0 fori=1,2,---,5. Then K[Z] is the direct
sum of K[0]and S = Kg, + Kg, +---+ Kg,. Sete, = %(gl +g)ande, = %(gI —g5). We again have

orthogonal central primitive idempotents ¢, ande,in S and g, = e, +e,, and moreovere,S = K’
ande,S = K*. Thus we have thatK[Z,]= K°.

Example 4 Consider the ring K[Zy] andlet g, = i-0 for i=12,---,7. ThenK[Z,] is the
direct sum of two sided ideals K| [0]and S = Kg, +Kg, +---+ Kg,. The identity of the ring S is g, .

Let us set

1
€ :Z(gx_gz -gs+87)

1
& =Z(g1 +8-85—87)

1
€ :Z(gl —g+85—8)

1
€= Z(gl +83+85+8;)
Then e, e,,e;, e, are orthogonal central primitive idempotents of S and g, =e +e,+e; +e,.
We can easily see ¢S=K, ¢,5=K, e,S=KxK, and e,5 = Kx(K @ K) .Therefore we have
that K[Z,]= K’ ® (KrK)® (KX(K D K)).
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a b c
Example 5 Consider thering R={|0 a d ||a,b,c,deGF(2)} oforder |R|=2"=16.
0 0 a
a b ¢
Then R"=3|0 a d|la#0,b,c deGF(2)}.We can easily see that R" is the dihedral group
0 0 «a

D, of order 8 and so K[R'1zK‘®M ,(K) . Therefore, by Theorem 3, we have that
K[RYJ(K[R) =K’ @ M,(K).

Example 6 Let M,(GF(2))denote the ring of 2x2 matrices over the field GF(2). Then we
can prove that Z[M,(GF(2))]is a semiprime ring. Let us set H = M,(GF(2))—GL,(GF(2)).
Then we can see that Q[H]=Q® M,(Q). In fact, let

00 10 0 0 01
0= , e = , €= , e = ,
00 00 01 00
(00y  (10y (01 (11
“7l1 o) 1o/ “{o1) “ o of
00y (11
“7 1) %)

Then the elements E=0, F,=¢,-0, F,=¢, -0,
F=@-00+@-0)+@-0)+¢-0)-(-0)
~(6,=0)-(6,-0)-(6,-0)+(5,-0)
are primitive orthogonal idempotents, and Q[H]=QE® Q[H|(F,+F,+F,)=0® M,(Q).
Since GL,(GF(2)) = S, , we have O[M,(GFQ2)VO[H]=O[S;].
It is easily see that O[S, 1= Q@ Q0 ® M,(Q). Hence O M, (GF (2))]is isomorphic to the
semisimple Artinian ring Q® Q0@ Q® M,(Q)® M,(Q).

o
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