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1 Introduction

The talk presented was based on an on‐goingjoint work with Y.Hirano (Naruto) and B.Solie

(ERAU). More detailed and completed version ofthis manuscript will be submited elsewhere.

LetR be a ring, and let S be a semigroup. The semigroup ring R[S] simultaneously encodes the

semigroup structure \mathrm{o}\mathrm{f}S and the ring structure resulting in an object of great utility in various

areas of both ring theory and group theory. The interplay between the structures \mathrm{o}\mathrm{f}R,S , and

R[S] is a topic with a long mathematical history full of fascinating results. For instance, much is

already known about the structure \mathrm{o}\mathrm{f}R[G] ,
where G is notjust a semigroup but a group. Here, we

find that the structure \mathrm{o}\mathrm{f}R[G] is exactly characterized by the structure \mathrm{o}\mathrm{f}R and various finiteness

properties \mathrm{o}\mathrm{f}G . Maschke�s famous theorem states that \mathrm{i}\mathrm{f}G is a finite group and K is a field

whose characteristic does not divide | G| , then K[G] is semisimple [3]. Furlher variations include

the result that R[G] is prime if and only \mathrm{i}\mathrm{f}R is a prime ring and G has li0 nontrivial finite normal

subgroup [1]. More generally, R[G] is semiprime ifand only \mathrm{i}\mathrm{f}R is semiprime and the order of

every normal finite subgroup \mathrm{o}\mathrm{f}G is a non‐zero‐divisor in R[5].

Consequently, one may ask whether the primeness or semiprimeness \mathrm{o}\mathrm{f}R[S] can be characterized

in the case where S is an arbitrary semigroup. This is a much more difficult question on which

some progress has been made in recent years. For highly structured classes of semigroups, it is

again possible to determine the structure \mathrm{o}\mathrm{f}R[S] . For example, when S is a cancellative

semigroup, then R[\mathrm{S}] is semiprime whenever R is semiprime [4]. When F is a field and S is finite,
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a version of Maschke�s theorem shows that the semisimplicity \mathrm{o}\mathrm{f}R[S] is characterized by the

nonsingularity of the structure matrix for S when viewed as a matrix over F[2].

We consider semigroup rings over a particular class of semigroups: those semigroups which

arise as the multiplicative semigroup of a ring.

2 Main Results and Examples

Let K be a field and letS be a semigroup. Recall that the semigroup ringK[S] consists of

the set of all sums \displaystyle \sum_{s\in \mathcal{S}}k_{s}\hat{s}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}k_{s}=0 for all but finitely many s\in S . We equip K[S] with the

usual addition and multiplication, where s\hat{t}\wedge= \hat{st} for all s,t\in S.

Given a ring (R,+,\cdot) , we may forget addition and thereby obtain a semigroup (R,\cdot) having both 0

and ]. We denote \mathrm{b}\mathrm{y}K[R]\mathrm{t}\mathrm{h}\mathrm{e} semigroup \mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}K[(R,\cdot)] . Note that \mathrm{a}\mathrm{s}K[R]=K[0]\oplus Ann(K[0]) ,

K[R] is not a prime ring. It is easy to observe \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}K[R] is a direct sum oftwo simple rings if and

only if every proper nonzero ideal \mathrm{o}\mathrm{f}K[R] is prime. Every prime ideal \mathrm{o}\mathrm{f}K[R] except

Ann(K[0])contains K[0] , and every ideal \mathrm{o}\mathrm{f}K[R] contained in \mathrm{A}nn(K[0]) does not containK[0].

Theorem 1 LetR be a ring and K be a f $\iota$ eld ofcharacteristic zero. IfK[R] is semiprime, then R

is semiprime. The converse holds ifR is a commutative ring or a domain.

Theorem 2 LetR be a ring and letK be afield ofcharacteristic zero. Then K[R] is a

semisimple Artinian ring ifand only ifR is a finite semisimple ring.

For a ring R ,
we shall denote the Jacobson radical \mathrm{o}\mathrm{f}R by J(R) .

Theorem 3 LetR be a local ring withfimitely many units, letR^{*} denote the group ofunits in R

and letK be a field ofcharacteristic zero. Then J(K[R])=\displaystyle \sum_{r\in/(R)}K( \hat{r} ‐Ô) and

K[R]lJ(K[R])\equiv K[0]\oplus K[R^{*}].

LetK be an algebraically closed field of characteristic zero, and 1\mathrm{e}\mathrm{t}\mathbb{Z}_{n} denote the ring of integers
modulo n . It is immediate that \mathbb{Z}_{n} is semiprime if and only ifn is squarefree, and thus we have the

following proposition as a corollary of Theorem 1.
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Proposition LetK be an algebraically closedfield ofcharacteristic zero, and let\mathbb{Z}
.
denote the

ring ofintegers modulo n . Then K[\mathbb{Z}_{n}] is semiprime ifand only ifn is squarefree.

We now present a few examples of the structure \mathrm{o}\mathrm{f}K[R] for some finite ring R.

Example 1 It is clear that K[\mathbb{Z}_{2}]\cong K\oplus K.

Let V be a vector space over K . We define a multiplication on the K ‐linear space K\oplus V by the

formula (a,v)\cdot(b,w)=(ab,aw+bv) for any a, b\in K, v, w\in V . Then K\oplus V becomes a K ‐algebra,
which we denote byKW.

Example 2 Consider the ringK[\mathbb{Z}_{4}] and let g_{i}= î−Ôfori =1,2,3 . Then K[\mathbb{Z}_{4}] is the direct sum of
two sided idealsK[0] andS=Kg_{1}+Kg_{2}+Kg_{3} . The identity ofthe ringS is g_{1} . Let us set

e_{1}=\displaystyle \frac{1}{2}(g_{1}-g_{3}) , e_{2}=\displaystyle \frac{1}{2}(g_{1}+g_{3}) . Then e_{1}, e_{2}are orthogonal centralprimitive idempotents of S

andgl =e_{1}+e_{2} . We can easily see \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}K[\mathbb{Z}_{4}]\equiv K^{2}\oplus(K\mathfrak{B}\mathrm{i}) .

Example 3 Consider the ringK[\mathbb{Z}_{6}] and let g_{i}= î‐Ôfori =1,2,\cdots,5 . Then K[\mathbb{Z}_{6}] is the direct

sum ofK[0] andS=K\mathrm{g}_{1}+Kg_{2}+\cdots+Kg_{5} . Setel =\displaystyle \frac{1}{2}(g_{1}+g_{5}) ande2=\displaystyle \frac{1}{2}(g_{1}-g_{S}) . We again have

orthogonal centralprimitive idempotents e_{1} ande2 in S andgl =e_{1}+e_{2} , and moreoverelS \equiv K^{3}

ande2S\equiv K^{2} . Thus we have thatK[\mathbb{Z}_{6}]\cong K^{6}

Example 4 Consider the ring K[\mathbb{Z}_{8}] and let g_{i}=\^{i}-\^{O} for i=1,2,\cdots,7. ThenK[\mathbb{Z}_{8}] is the

direct sum oftwo sided ideals K[Ô] andS=Kg_{1}+Kg_{2}+\cdots+K\mathrm{g}_{7} . The identity ofthe ringS is g_{1}.

Let us set

e_{1}=\displaystyle \frac{1}{4}(g_{1}-g_{3}-g_{5}+g_{7})
e_{2}=\displaystyle \frac{1}{4}(g_{1}+g_{3}-g_{5}-g_{7})
e_{3}=\displaystyle \frac{1}{4}(g_{1}-g_{3}+g_{5}-g_{7})
e_{4}=\displaystyle \frac{1}{4}(g_{1}+g_{3}+g_{5}+g_{7}) .

Then e_{1}, e_{2}, e_{3}, e_{4} are orthogonal central primitive idempotents of S and g_{1}=e_{1}+e_{2}+e_{3}+e_{4}.

We can easily see e_{1}S\cong K , e_{2}S\cong K , e_{3}S\equiv K\triangleright K , and e_{4}S\cong K\ltimes(K\oplus K) .Therefore we have

that K[\mathbb{Z}_{8}]\equiv K^{3}\oplus(K\triangleright K)\oplus(K\ltimes(K\oplus K)) .
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Example 5 Consider the ring R=\{[_{0}^{a}0 ab0 dac)|a, b, c, d\in GF(2)\} oforder |R|=2^{4}=16.

Then R^{*}=\{\left\{\begin{array}{lll}
a & b & c\\
0 & a & d\\
0 & 0 & a
\end{array}\right\}|a\neq 0, b, c, d\in GF(2)\} . We can easily see \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}R^{*} is the dihedral group

D_{8} oforder 8 and so K[R^{*}]\cong K^{4}\oplus M_{2}(K) . Therefore, by Theorem 3, we have that

K[R]lJ(K[R])\equiv K^{5}\oplus M_{2}(K) .

Example ó LetM_{2}(GF(2)) denote the ring of 2\times 2 matrices over thefield GF(2) . Then we

canprove that Z[M_{2}(GF(2))] is a semiprime ring. Let us setH=M_{2}(GF(2))-GI_{2}(GF(2)) .

Then we can see that Q[H]\cong Q\oplus M_{3}(Q) . In fact, let

o=\left(\begin{array}{ll}
0 & 0\\
0 & 0
\end{array}\right), e_{1}=\left(\begin{array}{ll}
1 & 0\\
0 & 0
\end{array}\right), e_{2}=\left(\begin{array}{ll}
0 & 0\\
0 & 1
\end{array}\right), e_{3}=\left(\begin{array}{ll}
0 & \mathrm{l}\\
0 & 0
\end{array}\right),
e_{4}=\left(\begin{array}{ll}
0 & 0\\
\mathrm{l} & 0
\end{array}\right), e_{5}=\left(\begin{array}{ll}
\mathrm{l} & 0\\
1 & 0
\end{array}\right), e_{6}=\left(\begin{array}{ll}
0 & 1\\
0 & 1
\end{array}\right), e_{7}=\left(\begin{array}{ll}
1 & \mathrm{l}\\
0 & 0
\end{array}\right),
e_{8}=\left(\begin{array}{ll}
0 & 0\\
1 & 1
\end{array}\right), e_{9}=\left(\begin{array}{ll}
\mathrm{l} & \mathrm{l}\\
\mathrm{l} & 1
\end{array}\right).

Then the elements E = Ô, F_{1}=\hat{e}_{1} ‐Ô, F_{2}=\hat{e}_{2}-\hat{O},
F_{3}=(\hat{e}_{1}-\hat{O})+(\hat{e}_{2}-\hat{O})+(\hat{e}_{3}-\hat{O})+(\hat{e}_{4}-\hat{O})-(\hat{e}_{5}-\hat{O})

-(\hat{e}_{6}-\hat{O})-(\hat{e}_{7}-\hat{O})-(\hat{e}_{8}-\hat{O})+(\hat{e}_{9}-\hat{O})
are primitive orthogonal idempotents, and Q[H]=QE\oplus Q[H](F_{1}+F_{2}+F_{3})\equiv Q\oplus M_{3}(Q) .

Since GL_{2}(GF(2))\equiv S_{3} , we have Q[M_{2}(GF(2))]lQ[H]\equiv Q[S_{3}].
It is easily see that Q[S_{3}]\equiv Q\oplus Q\oplus M_{2}(Q) . Hence Q[M_{2}(GF(2))]\mathrm{i}\mathrm{s} isomorphic to the

semisimple Artinian ring Q\oplus Q\oplus Q\oplus M_{2}(Q)\oplus M_{3}(Q) .
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