Algorithmic problems of automata *

KUNITAKA SHOJI DEPARTMENT OF MATHEMATICS SHIMANE UNIVERSITY

In this paper, we shall introduce the concept "exteded automata" and reduce the decision problem whether a finite semigroup is an amalgamation base for all semigroups or not to an algorithmic problem of automata.

1 Automata

Definition. A finite automaton $\mathcal{A} = (\Sigma, X, E, I, T) : \Sigma$ is a finite set of states, $I \subseteq \Sigma$ is a set of initial states, $T \subseteq \Sigma$ is a set of terminal states, X is a set of finite letters, E is a subset of the product set $\Sigma \times X \times \Sigma$.

Each element of E is an edge of the form (σ, x, τ) and x is the label of the edge.

DefinitionA path P on A is a sequence of edges : $P = (\sigma_0, x_1, \sigma_1), (\sigma_1, x_2, \sigma_2), \dots, (\sigma_{t-1}, x_t, \sigma_t)$ (t is a length of the path P) The sigunature Sg(P) of P is a word $x_1x_2 \dots x_t$. $\sigma_0 \in I, \ \sigma_t \in T \Rightarrow Sg(P)$ is an acceptable word, which assigns a move from σ_0 to σ_t .

Definition. For a finite automaton $\mathcal{A} = (\Sigma, X, E, I, T)$, let $L(\subset X^*)$ be a set of all acceptable words. Simply, $L = \mathcal{L}(\mathcal{A})$ the language L is the accepted by $\mathcal{L}(\mathcal{A})$.

In general, L is called a regular language.

^{*}This is an absrtact and the paper will appear elsewhere.

 $\mathcal{L}(\mathcal{A}) = \{ \{abd, cd\}^* cc, abc \}$

Definition. Given a finite automaton $\mathcal{A} = (\Sigma, X, E, I, T)$. For a word $w \in X^*$, if there exist states $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ and paths P_1 from σ_0 to σ_1, P_2 from σ_2 to σ_1, P_3 from σ_2 to σ_3 with $w = Sg(P_1) = Sg(P_2) = Sg(P_3)$, then construct a new path with Sp(P) = w from σ_0 to σ_3 . An extended path P with Sg(P) = w' from σ to β is a path obtained by finitely many constructing new paths for subword w of w' in \mathcal{A} . i.e., if $w = w'w_1w_2w''$, $\sigma_0 \xrightarrow{w_1} \sigma_1 \xrightarrow{w_2} \sigma_2 \xleftarrow{w_2} \sigma_3 \xrightarrow{w_1} \sigma_4 \xleftarrow{w_1w_2} \sigma_5 \xrightarrow{w_1} \sigma_6 \xrightarrow{w_2} \sigma_7$ then $\sigma_0 \xrightarrow{w_1} \sigma_1 \xrightarrow{w_2} \sigma_4 \xleftarrow{w_1w_2} \sigma_5 \xrightarrow{w_1} \sigma_6 \xrightarrow{w_2} \sigma_7$ and $\sigma_0 \xrightarrow{w_1w_2} \sigma_7$

The extended regular language $\mathcal{L}^{e}(\mathcal{A})$ consists of all signatures of extended path from initial states to terminal states of \mathcal{A} .

Question. What a kind of language is an extended regular language of an automaton ?

We give a concrete description of extended automata.

Theorem. Given a finite automaton $\mathcal{A} = (\Sigma, X, E, I, T)$. For $\alpha, \beta \in \Sigma$, let $\mathcal{A}_{\sigma,\beta}$ be an automaton accepting all siguratures of paths from σ to β .

For $\alpha, \beta \in \Sigma$, let $\mathcal{B}(\mathcal{A})_{\alpha,\beta}$ with a unique initial state α and a unique terminal state β be an automaton accepting all words in $\bigcup_{\gamma \in \Sigma} \mathcal{L}(\mathcal{A}_{\alpha,\gamma}) \cap \mathcal{L}(\mathcal{A}_{\beta,\gamma}) \cap \mathcal{L}(\mathcal{A}_{\gamma,\beta}).$

 $n = 1, \mathcal{A}^{(1)}$ is an automaton obtained by pasting $\mathcal{B}(\mathcal{A})_{\sigma,\beta}$ to \mathcal{A} by identifying α, β of \mathcal{A} with α, β of $\mathcal{B}_{\alpha,\beta}$ for all $\alpha, \beta \in \Sigma$.

n = k + 1, $\mathcal{A}^{(n)}$ is an automaton obtained by pasting $\mathcal{B}(\mathcal{A}^{(k)})_{\sigma,\beta}$ to $\mathcal{A}^{(k)}$ by identifying α, β of \mathcal{A} with α, β of $\mathcal{B}_{\alpha,\beta}$ for all $\alpha, \beta \in \Sigma$. with $\mathcal{A}^{(k)}_{\alpha,\beta}$ pasted for all $\alpha, \beta \in \Sigma$.

 $\mathcal{A}^e = \bigcup_{n=1}^{\infty} \mathcal{A}^{(n)}$. (Possibly, an infinite automaton)

Then

the extended regular language $\mathcal{L}^{e}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{e}).$

2 Decision problems

Extended automata are applicable to decision problems of semigroup amalgamations.

Result 1[5,Theorem 2.1]. Let S be a finite semigroup and $\mathcal{I}(S^1)$ the injective hull of the left S-set S^1 .

Then S has the representation extension property if and only if for any right S-set X_S , the canonical map : $X \to X \otimes_S \mathcal{I}(S^1)$ ($x \mapsto x \otimes 1$) is injective.

Result 2[6.the main theorem]. The decision problem whether a finite semigroup has the epresentation extension property or not is decidable.

Lemma. Let X be a right S-set and Y a left S-set. Then $x \otimes y = x' \otimes y'$ in $X \otimes Y$ if and only if there exist $s_1, \dots, s_n, t_1, \dots, t_n \in S^1, x_1, \dots, x_n \in X$ and $y_2, \dots, y_n \in Y$ such that

$$\begin{array}{rclrcrcrcrcrc} x & = & x_{1}s_{1}, & s_{1}y & = & t_{1}y_{2} \\ x_{1}t_{1} & = & x_{2}s_{2}, & s_{2}y_{2} & = & t_{2}y_{3} \\ & \vdots & & \vdots & \\ x_{n-1}t_{n-1} & = & x_{n}s_{n}, & s_{n}y_{n} & = & t_{n}y' \\ & x_{n}t_{n} & = & x' \end{array}$$
(1)

Then we call the system of equations (1) a scheme of length n X and Y joining (x, y) to (x', y').

proposition. Let S be a finite regular semigroup. Then S is left absolutely flat if and only if for a \mathcal{R} -class of S, a right S-set X and a left S-set Y, $x \otimes y = x' \otimes y'$ in $(xS \cup x'S) \otimes_S Y$

for all $x, x' \in X$ and all $y, y' \in Y$ such that there exists $s_i, t_i \in S$ and $x_i \in X, y_i \in Y$ such that

$$\begin{array}{rclrcrcrcrcrcrcrcrc}
x &=& x_{1}s_{1}, & s_{1}y &=& t_{1}y_{2} \\
x_{1}t_{1} &=& x_{2}s_{2}, & s_{2}y_{2} &=& t_{2}y_{3} \\
& \vdots & & \vdots & \\
x_{n-1}t_{n-1} &=& x_{n}s_{n}, & s_{n}y_{n} &=& t_{n}y' \\
& x_{n}t_{n} &=& x'
\end{array}$$
(2)

and there exists some $1 \leq j \leq n$ such that

 $xS \subseteq x_1t_1S \subseteq \cdots \subseteq x_{j-1}t_{j-1}S \subseteq x_jt_jS^1 \supseteq x_{j+1}t_{j+1}S \supseteq \cdots \supseteq x_{n-1}t_{n-1}S \supseteq x'S.$

Hereafter we call such a set of equations (2) a upward-convex scheme joining from (x, y) to (x', y') over X and Y.

Problem 1. The decision problem whether a finite semigroup is left absolutely flat or not.

an idea for a positive solution of the problem: There are a correspondence between schemes on tensor products of S-sets and paths from initial states and terminal states on finite automata.

The problem is reduced to decision problem whether or not the language of an automaton \mathcal{A} are contained in the language of the extended automaton of a smaller automaton than \mathcal{A} (by deleting some states!).

Result 3. [5, Theorem 2.2] and [4, Theorem 6.11]. A semigroup S is an amalgamation base for all semigroups if and only if for each a right S-set X, a left S-set Y and a S-biset N which is the injective hull of the S-biset S^1 ,

the map : $X \otimes Y \longrightarrow X \otimes N \otimes Y$ $(x \otimes y \longrightarrow x \otimes 1 \otimes y)$ is injective.

Problem 2. The decision problem whether a finite semigroup is an amalgamation base for all semigroups or not.

an idea for a positive solution of the problem: There are a correspondence between schemes on tensor products of S-sets and paths from initial states and terminal states on finite automata.

The problem is reduced to decision problem whether or not the language of an automaton \mathcal{A} are contained properly in the language of the extended automaton of a smaller finite automaton than $\mathcal{A}(by deleting some states!)$.

References

- S. Bulman-Fleming and K. McDowell. Absolutely flat semigroups. Pacific J. Math. 107(1983), 319-333.
- S. Bulman-Fleming and K. McDowell. Flatness and amalgamation in semigroups. Semigroup Forum 29(1984), 337-342.
- [3] T. E. Hall. Representation extension and amalgamation for semigroups. Quart. J. Math. Oxford (2) 29(1978), 309-334.
- [4] J. Renshaw. Extension and amalgamation in monoids and semigroups. Proc. London Math. Soc. (3) 52(1986), 309-334.
- [5] K. Shoji. Amalgamation bases for semigroups, Math. Japonica, 26(1990), 43-53.
- [6] K. Shoji. Decidability of representation entension property, Proc. Amer. Math. Soc., 128(2000), 1313-1317.