Numerical semigroups and triple cyclic covers of curves¹

神奈川工科大学・基礎 · 教養教育センター 米田 二良 Jiryo Komeda Center for Basic Education and Integrated Learning Kanagawa Institute of Technology

Abstract

We construct some triple cyclic covers of any curves and calculate the Weierstrass semigroups of ramification points on the triple covers.

1 Introduction

Let \mathbb{N}_0 be the additive monoid of non-negative integers. A submonoid H of \mathbb{N}_0 is called a *numerical semigroup* if the complement $\mathbb{N}_0 \setminus H$ is finite. The cardinality of $\mathbb{N}_0 \setminus H$ is called the *genus* of H, denoted by g(H). In this paper H always stands for a numerical semigroup. A *curve* means a complete non-singular irreducible algebraic curve over an algebraically closed field k of characteritic 0. For a pointed curve (C, P) we set

$$H(P) = \{ n \in \mathbb{N}_0 \mid \exists f \in k(C) \text{ such that } (f)_{\infty} = nP \},\$$

where k(C) is the field of rational functions on C. Then H(P) is a numerical semigroup, which is called the *Weierstrass semigroup* of P. Here g(H(P)) is equal to the genus g(C)of the curve C. For positive integers a_1, \ldots, a_s we denote by $\langle a_1, \ldots, a_s \rangle$ the monoid generated by a_1, \ldots, a_s . For any integer $t \geq 2$ we set $d_t(H) = \{h' \in \mathbb{N}_0 \mid th' \in H\}$, which is a numerical semigroup. We have the following.

Theorem 1.1 Let t be an integer which is larger than or equal to two. Let $\pi : C \longrightarrow C'$ be a cyclic covering of degree t with a totally ramification point P over P'. Then $d_t(H(P)) = H(P')$.

We are devoted to the case t = 3. A numerical semigroup H is said to be of triple covering type, which is abbreviated to TC if there exists a triple cyclic covering $\pi : C \longrightarrow C'$ with a ramification point P such that H = H(P). We are interested in numerical semigroups which are TC.

 $^{^{1}}$ This paper is an extended abstract and the details will appear elsewhere. This work is a collaboration with Akira Ohbuchi.

This work was supported by JSPS KAKENHI Grant Number15K04830.

Let $\pi : C \longrightarrow \mathbb{P}^1$ be a triple cyclic covering with a ramification point P. Since we have $d_3(H(P)) = \mathbb{N}_0$, the Weierstrass semigroup H(P) is either \mathbb{N}_0 or $\langle 2, 3 \rangle$ or a 3-semigroup, where for a positive integer m an m-semigroup H means a numerical semigroup whose minimum positive integer in H is m. The following is a well-known fact:

Remark 2.1 The converse holds, namely \mathbb{N}_0 , (2,3) and any 3-semigroup are TC.

3 Weierstrass semigroups on cyclic covers of \mathbb{P}^1 with degree 6

A 6-semigroup H is *cyclic* if it is the Weierstrass semigroup of a total ramification point on a cyclic cover of \mathbb{P}^1 with degree 6. We have the following:

Remark 3.1 A cyclic 6-semigroup is TC.

Let *H* be an *m*-semigroup. For $1 \leq i \leq m-1$ we set $s_i = \min\{h \in H \mid h \equiv i \mod m\}$. The set $S(H) = \{m, s_1, \ldots, s_{m-1}\}$ becomes a set of generators for *H*, which is called the *standard basis* for *H*.

Example $S(\langle 6,7 \rangle) = \{6,7,14,21,28,35\}.$

We have the following necessary and sufficient condition for a 6-semigroup to be cyclic.

Theorem 3.2 (Komeda-Ohbuchi [1]) Let H be a 6-semigroup with

 $S(H) = \{6\} \cup \{6m_i + i \mid 1 \le i \le 5\}.$

Then the following are equivalent:i) H is cyclic.ii) We have the three inequalities

 $m_2 + m_5 \ge m_3 + m_4$, $m_1 + m_5 \ge m_2 + m_4$ and $m_1 + m_4 \ge m_2 + m_3$.

Example Let $H = \langle 6, 9, 10 \rangle$. Then we have $S(H) = \{6, 9, 10, 19, 20, 29\}$. Hence,

$$m_1 = 3, m_2 = 3, m_3 = 1, m_4 = 1 \text{ and } m_5 = 4,$$

which implies that H is cyclic, hence TC.

4 Weierstrass semigroups on triple cyclic covers of any pointed curves

We have the following:

Lemma 4.1 Let H be an m-semigroup with $S(H) = \{m, s_1, \ldots, s_{m-1}\}$. Let n be an integer with $n \ge \max\{c(H) - m + 1, 3m\}$ and $n \ne 0 \mod 3$ where we set

$$c(H) = \min\{c \in \mathbb{N}_0 \mid c + \mathbb{N}_0 \subseteq H\}.$$

Then the following holds: i) We have

 $S(3H+n\mathbb{N}_0) = \{3m, 3s_1, \cdots, 3s_{m-1}, n, 2n\} \cup \{n+3s_1, 2n+3s_1, \cdots, n+3s_{m-1}, 2n+3s_{m-1}\}.$

ii) We obtain $g(3H + n\mathbb{N}_0) = 3g(H) + n - 1$.

Example We have

$$g(3\langle 3,4\rangle + 10\mathbb{N}_0) = g(\langle 9,12,10\rangle) = 3g(\langle 3,4\rangle) + 10 - 1 = 18.$$

Lemma 4.2 Let C be a curve and D a divisor on C such that 3D is linearly equivalent to a reduced divisor R. We give an \mathcal{O}_C -Algebra structure on

$$\mathcal{V}_2(D) = \mathcal{O}_C \oplus \mathcal{O}_C(-D) \oplus \mathcal{O}_C(-2D).$$

Then we get a triple cyclic covering

$$\pi: \tilde{C} = \operatorname{Spec}(\mathcal{V}_2(D)) \longrightarrow C$$

whose branch locus is R.

The above lemma follows from Miranda [2]. In the case t = 2, i.e., the case of double coverings the following result is known:

Theorem 4.3 (Komeda-Ohbuch [1]) Let (C, P) be a pointed curve and set H = H(P), which is an m-semigroiup. Let d be an integer with $2d - 1 \ge \max\{c(H) - m + 2, 2m\}$ Assume that $2d-1 \in H$. Then we get a double covering $\pi : \operatorname{Spec}(\mathcal{O}_C \oplus \mathcal{O}_C(-dP)) \longrightarrow C$, with a ramification point \tilde{P} over P satisfying $H(\tilde{P}) = 2H(P) + (2d-1)\mathbb{N}_0$.

In our case we get the following:

Theorem 4.4 Let (C, P) be a pointed curve and set H = H(P), which is an msemigroup. Let d be an integer with $3d - 1 \ge \max\{c(H) - m + 2, 3m\}$. Assume that $3d - 1 \in H$. Then we get a triple cyclic covering

$$\pi: \hat{C} = \operatorname{Spec}(\mathcal{O}_C \oplus \mathcal{O}_C(-dP) \oplus \mathcal{O}_C(-2dP)) \longrightarrow C$$

with a ramification point \tilde{P} over P satisfying $H(\tilde{P}) = 3H(P) + (3d-1)\mathbb{N}_0$.

Corollary 4.5 Let H be an m-semigroup such that H = H(P) for some pointed curve (C, P). Let n be an integer with $n \equiv 2 \mod 3$ and $n \ge \max\{c(H) - m + 2, 3m\}$. Assume that $n \in H$. Then the numerical semigroup $3H + n\mathbb{N}_0$ is TC.

Example Let a and b be integers with $2 \leq a < b$ and (a, b) = 1. Let d be an integer with $3d - 1 \geq \max\{(a - 1)(b - 2) + 1, 3a\}$. Assume that $3d - 1 \in \langle a, b \rangle$. Then the numerical semigroup $3\langle a, b \rangle + (3d - 1)\mathbb{N}_0$ is TC, because there is a pointed curve (C, P) such that $H(P) = \langle a, b \rangle$.

References

- [1] J. Komeda and A. Ohbuchi, On double coverings of a pointed non-singular curve with any Weierstrass semigroup, Tsukuba J. Math. Soc. **31** (2007) 205–215.
- [2] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math. 107 (1985) 1123-1158.