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The theory of numerical semigroups is important to commutative ring theory via their

associated semigroup ring as well as to the theory of algebraic curves via the Weierstrass

semigroup of a point on a compact Riemann surface. Among the numerical semigroups,

symmetric and almost symmetric semigroups play a central role. In this article, we are

mostly interested in almost symmetric semigroups generated by 4 elements.

Recently, Moscariello in [Mo] proposed the notion of \mathrm{R} $\Gamma$ (Row Factorization) matrix

and our mail tool is RF matrices and minimal free resolutions.

The main results are the following:

(1) Give a new proof of Komeda�s theorem on pseudo‐symmetric (= almost symmetric

of type 2) numerical semigroups.

(2) Characterize the minimal free resolution of the semigroup ring of an almost sym‐

metric numerical semigroup of type 3.

(3) Classify those numerical semigroups H , for which H+n is almost symmetric of

type 2 (resp. 3).

1. Basic concepts

In this section we fix notation and recall the basic definitions and concepts which will

be used in this paper.

Pseudo‐Frobenius numbers and Apery sets. A submonoid H\subset \mathbb{N} with 0\in H and \mathbb{N}\backslash H
is finite is called a numerical semigroup. Any numerical semigroup H induces a partial

order on \mathbb{Z}
, namely a\leq Hb if and only if b-a\in H.

There exist finitely many positive integers n_{1} ,
. . .

, n_{e} belonging to H such that each

h\in H can be written as h=\displaystyle \sum_{i=1}^{e}$\alpha$_{i}n_{i} with non‐negative integers $\alpha$_{i} . Such a presentation

of h is called a a factorization of h , and the set \{n_{1}, . . . , n_{e}\}\subset H is called a set of generators

of H . If \{n_{1}, . . . , n_{e}\} is a set of generators of H
, then we write H=\{n_{1} ,

. . . ,  n_{e}\rangle . The set
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of generators \{n_{1}, . . . , n_{e}\} is called a minimal set of generators of H , if none of the n_{i} can

be omitted to generate H . A minimal set of generators of H is uniquely determined.

Now let H = \langle n_{1} , . . .

, n_{\mathrm{e}} } be a numerical semigroup. We assume that n_{1} , . . . , n_{e} are

minimal generators of H
, that \mathrm{g}\mathrm{c}\mathrm{d}(n_{1}, \ldots, n_{e}) = 1 and that H \neq \mathrm{N} , unless otherwise

stated.

The assumptions imply that the set G(H) =\mathbb{N}\backslash H of gaps is a finite non‐empty set.

Its cardinality will be denoted by g(H) . The largest gap is called the Frobenius number

of H , and denoted  $\Gamma$(H) .

An element f \in \mathbb{Z}\backslash H is called a pseudo‐Frobenius number, if f+n_{i} \in  H for all i.

Of course, the Frobenius number is a pseudo‐Frobenius number as well and each pseudo‐
Frobenius number belongs to G(H) . The set of pseudo‐Frobenius numbers will be denoted

by \mathrm{P}\mathrm{F}(H) .

We also set \mathrm{P}\mathrm{F}'(H) =\mathrm{P}\mathrm{F}(H)\backslash \{ $\Gamma$(H)\} . The cardinality of \mathrm{P}\mathrm{F}(H) is called the type

of H
, denoted t(H) . Note that for any a \in \mathbb{Z}\backslash H , there exists f \in \mathrm{P} $\Gamma$(H) such that

f-a\in H.

Symmetric, pseudo‐symmetric and almost symmetric numerical semigroups. For each  h\in

 H , the element \mathrm{F}(H)-h does not belong to H . Thus the assignment h\mapsto $\Gamma$(H)-h maps

each element h\in H with h<\mathrm{F}(H) to a gap of H . If each gap of H is of the form  $\Gamma$(H)-h,
then H is called symmetric. This is the case if and only if for each a\in \mathbb{Z} one has: a\in H if

and only if \mathrm{F}(H)-a\not\in H . It follows that a numerical semigroup is symmetric if and only
if g(G)=|\{h\in Hh< $\Gamma$(H)\}| , equivalently if 2g(H)=F(H)+1 . A symmetric semigroup
is also characterized by the property that its type is 1. Thus we see that a symmetric

semigroup satisfies 2g(H) = \mathrm{F}(H)+t(H) , while in general 2g(H) \geq  $\Gamma$(H)+t(H) . If

equality holds, then H is called almost symmetric. The almost symmetric semigroups (AS

semigroups) of type 2 are called pseudo‐symmetric. It is quite obvious that a numerical

semigroup is pseudo‐symmetric if and only if \mathrm{P}\mathrm{F}(H) = \{\mathrm{F}(H)/2, \mathrm{F}(H)\} . From this one

easily deduces that if H is pseudo‐symmetric, then  a\in  H if and only if \mathrm{F}(H)-a\not\in H
and a\neq $\Gamma$(H)/2.

Less obvious is the following nice result of Nari [Na] which provides a certain symmetry

property of the pseudo‐Frobenius numbers of H.

Lemma 1.1 ([Na]). Let \mathrm{P} $\Gamma$(H) = \{f_{1}, f_{2}, . . . , f_{t-1}, \mathrm{F}(H)\} with f_{1} <f2. . . < f_{t-1} . Then

H is AS if and only if

f_{i}+f_{t-i}=\mathrm{F}(H) for i=1 ,
. . .

, t.
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Numerical semigroup rings. Many of the properties of a numerical semigroup ring are

reflected by algebraic properties of the associated semigroup ring. Let H be a numerical

semigroup, minimally generated by n_{1} , . . . , n_{e} . We fix a field K . The semigroup ring K[H]
attached to H is the K‐subalgebra of the polynomial ring K[t] which is generated by the

monomials t^{n_{i}} . In other words, K[H]=K[t^{n_{1}}, . . . , t^{n_{e}}] . Note that K[H] is a 1‐dimensional

Cohen‐Macaulay domain. The symmetry of H has a nice algebraic counterpart, as shown

by Kunz [Ku]. He has shown that H is symmetric if and only if and only if K[H] is a

Gorenstein ring. Recall that a positively graded Cohen‐Macaulay K‐algebra R of dimen‐

sion d with graded maximal ideal \mathfrak{n} is Gorenstein if and only if \dim K\mathrm{E}\mathrm{x}\mathrm{t}_{R}^{d}\langle R/\mathrm{m}, R) =1.

In general the K‐dimension of the finite dimensional K‐vector space is called the CM‐type

(Cohen‐Macaulay type) of R . Kunz�s theorem follows from the fact that the type of H

coincides with the CM‐type of K[H].

We are now going to define Apery sets. Let a\in H . Then we let

Ap (a, H)=\{h\in H|h-a\not\in H\}.

This set is called the Apery set of a in H . It is clear that |\mathrm{A}\mathrm{p}(a, H)|=a and that 0 and

all n_{i} belong to \mathrm{A}\mathrm{p}(a, H) . For every a the largest element in \mathrm{A}\mathrm{p}(a, H) is a+\mathrm{F}(H) .

If a \in  H , then K[H]/(t^{a}) is a 0‐dimensional K‐algebra with K‐basis t^{h}+(t^{a}) with

h\in \mathrm{A}\mathrm{p}(a, H) . The elements t^{f+a}+(t^{a}) with f\in PF(H) form a K‐basis of the socle of

K[H]/(t^{a}) . This shows that indeed the type of H coincides with the CM‐type of K[H].

The canonical module of $\omega$_{K[H]} of K[H] can be identified with the fractionary ideal of

K[H] generated by the elements t^{-f} \in  Q(K[H]) with f \in \mathrm{P}\mathrm{F}(H) . Consider the exact

sequence of graded K[H] ‐modules

0\rightarrow K[H]\rightarrow$\omega$_{K[H]}(-\mathrm{F}(H))\rightarrow C\rightarrow 0,

where K[H] \rightarrow $\omega$_{K[H]}(- $\Gamma$(H)) is the K[H] ‐module homomorphism which sends 1 to

t^{- $\Gamma$(H)} and where C is the cokcrnel of this map. One immediately verifies that H is AS

if and only if \mathfrak{m}C=0 , where \mathrm{m} denotes the graded maximal ideal of K[H] . Motivated

by this observation Goto et al [GTT] call a Cohen‐Macaulay local ring with canonical

module $\omega$_{R} almost Gorenstein, if there exists an exact sequence

0\rightarrow R\rightarrow$\omega$_{R}\rightarrow C\rightarrow 0.

with C an Ulrich module. If \dim C=0, C is a Ulrich module if and only if \dim C=0.

Thus it can be seen that H is AS if and only if K[H] is almost Gorenstein (in the graded

sense). Henceforth we will write AS for almost symmetric and AG for almost Gorenstein.
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In this paper we are interested in the defining relations of K[H] . Let S=K[x_{1}, . . . , x_{e}]
be the polynomial ring over K in the indeterminates x_{1} , . . . , x_{e} . Let  $\pi$ :  S\rightarrow K[H] be the

surjective K‐algebra homomorphism with  $\pi$(x_{i}) =t^{n_{i}} for i=1
,
.. .

,
n . We denote by I_{H}

the kernel of  $\pi$ . If we assign to each  x_{i} the degree n_{i} , then with respect to this grading,

I_{H} is a homogeneous ideal, generated by binomials. A binomial  $\phi$=\displaystyle \prod_{i=1}^{e}x_{i}^{$\alpha$_{i}}-\prod_{i=1}^{e}x_{i}^{\mathcal{S}_{i}}
belongs to I_{H} if and only if \displaystyle \sum_{i=1}^{e}$\alpha$_{i}n_{i}=\sum_{i=1}^{e}$\beta$_{i}n_{i} . With respect to this grading \deg $\phi$=

\displaystyle \sum_{i=1}^{e}$\alpha$_{i}n_{i}.
Now, we put H=\{n_{1} ,

. . . , n_{e}) and define the invariant $\alpha$_{i} for each n_{i}.

Definition 1.2. For every i, 1\leq i\leq e , we define $\alpha$_{i} to be the minimal positive integer such

that

$\alpha$_{i}n_{i}=\displaystyle \sum_{j=1,j\neq i}^{e}$\alpha$_{ij}n_{j}.
Note that the coefficients $\alpha$_{ij} may not be uniquely determined.

It is easy to see the following from the minimality of $\alpha$_{i}.

Lemma 1.3. For every 1\leq i, k\leq e, i\neq k, ($\alpha$_{i}-1)n_{i}\in \mathrm{A}\mathrm{p}(n_{k}, H) .

Combining these properties, we get the following, which will play an important role for

the structure of AS semigroups.

Corollary 1.4. If H is AS, then for every k and i\neq k , either \mathrm{F}(H)+n_{k}-($\alpha$_{i}-1)n_{i}\in H
or ($\alpha$_{i}-1)n_{i}=f+nk for some f\in \mathrm{P} $\Gamma$'(H) .

We give a short review on unique factorization of elements in H on the minimal gener‐

ators of I_{H}.

Definition 1.5. Let H be a numerical semigroup minimally generated by \{n_{1}, \cdots, n_{e}\}.

(1) We say that h=\displaystyle \sum_{i}a_{i}n_{i} has \mathrm{U} $\Gamma$ (Unique Factorization) if this expression is unique.

It is obvious that  h does not have UF if and only if h\geq H\deg( $\phi$) for some  $\phi$\in I_{H}.

(2) We put \mathrm{N}\mathrm{U}\mathrm{F}(H) = {h\in H| h does not have UF } =\{\deg( $\phi$)|  $\phi$\in I_{H}\} . This is

an ideal of H.

(3) We put \mathrm{m}\mathrm{N}\mathrm{U}\mathrm{F}(H) = {h \in \mathrm{N}\mathrm{U}\mathrm{F}(H) | h is minimal with respect to \leq H }. Note

that if  $\phi$\in I_{H} and \deg( $\phi$)\in \mathrm{m}\mathrm{N}\mathrm{U}\mathrm{F}(H) , then  $\phi$ is a minimal generator of  I_{H} . But

the converse is not true in general. Hence \#\mathrm{m}\mathrm{N}\mathrm{U}\mathrm{F}(H)\leq $\mu$(I_{H}) .

Lemma 1.6. Let  $\phi$=m1-m2 be a minimal generator of I_{H} , where m_{1}, m_{2} are monomials

on the Xís. Then the following holds:
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(1) Let i, j so that X_{i}|m_{1} and X_{j}|m_{2} . Then \deg $\phi$-n_{i}-n_{j} \not\in H and hence for some

f\in \mathrm{P}\mathrm{F}(H) , \deg( $\phi$)\leq Hf+n_{i}+n_{j}.
(2) \deg( $\phi$)=f+n_{i}+n_{j} for some f\in \mathrm{P}\mathrm{F}'(H) if and only if \mathrm{F}(H)+n_{i}+n_{j}-\deg( $\phi$)\not\in H.

2. The Moscariello matrix \mathrm{R}\mathrm{F}(f) for f\in \mathrm{P}\mathrm{F}(H)

A. Moscariello introduced the notion of RF (row factorization) matrices in his paper

and we think this notion is very useful to describe the classification of AS semigroups.

Definition 2.1. ([Mo]) Let f \in \mathrm{P}\mathrm{F}(H) . Then an e\times e matrix A= (a_{ij}) is an RF‐matrix

for f , (short for row‐factorization matrix) if a_{ii}=-1 for every i, a_{ij} \in \mathrm{N} if i\neq j and

for every i=1
,

. . .

, e,

\displaystyle \sum_{j=1}^{e}a_{ij}n_{j}=f.
The matrix A is denoted by \mathrm{R}\mathrm{F}(f) . Note that \mathrm{R} $\Gamma$(f) need not be determined uniquely.

The most important property of the RF‐matrix \mathrm{R}\mathrm{F}(f) is the following.

Lemma 2.2. ([Mo], Lemma 4) Let f, f'\in \mathrm{P}\mathrm{F}(H) with f+f'= $\Gamma$(H) . If we put \mathrm{R}\mathrm{F}(f)=
A= (a_{ij}) and \mathrm{R}\mathrm{F}(f') =B= (b_{ij}) , then either a_{ij} =0 or b_{ji}=0 for every pair i\neq j . In

particular, if F(H) is even, and we put \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2)=(a_{ij}) , then either a_{ij}=0 or a_{ji}=0
for every i\neq j.

Proof. By our assumption, f+n_{i}=\displaystyle \sum_{k\neq i}a_{ik^{n}k} and f'+n_{j}=\displaystyle \sum_{l\neq j}b_{jl^{n}l} . If  a_{ij}\geq  1 and

b_{ji}\geq 1 , then summing up these equations, we get

\displaystyle \mathrm{F}(H)=f+f'=(b_{ji}-1)n_{i}+(a_{ij}-1)n_{J}'+\sum_{s\neq i,j}\langle a_{is}+b_{js})n_{s}\in H,
a contradiction! \square 

Example 2.3. A nice property of \mathrm{R}\mathrm{F}(f) is that we can get generators of I_{H} from the set

of matrices \{\mathrm{R}\mathrm{F}(f) | f \in \mathrm{P}\mathrm{F}(H)\} by 1.6. Namely, take any 2 rows a_{i}, a_{j} of \mathrm{R}\mathrm{F}(f) and

write a_{i}-a_{j} as b+-b_{-} ,
which corresponds to an element of I_{H} . We will explain this by

2 examples. In the following, we use variables x, y, z, w instead of X_{1} , . . . , X_{4}.

(1) Let H=\{12 , 17, 31, 40 \} with \mathrm{P}\mathrm{F}(H)=\{45 , 90 \} . Since 90=2\cdot 45 , we know that H

is pseudo‐symmetric. We compute

\mathrm{R}\mathrm{F}(45)= \left(\begin{array}{llll}
-\mathrm{l} & 1 & 0 & \mathrm{l}\\
0 & -1 & 2 & 0\\
3 & 0 & -1 & 1\\
0 & 5 & 0 & -1
\end{array}\right) ,
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and iri this case I_{H}=(z^{5}-x^{3}yw, y^{6}-z^{2}w, xz^{2}-y^{2}w, w^{2}-xy^{4}, x^{4}-yz) . The generators

of I_{H} corresponds to a_{1}-a_{3}, a_{4}-a_{2}, a_{2}-a_{1} , a_{1}-a_{4}, a_{3}-a_{1} , respectively.

(2) Let H = \{18 , 21, 23,  26\rangle with \mathrm{P} $\Gamma$(H) = \{31 , 66, 97 \} and I_{H} = (xw —yz, y^{5} -

x^{2}z^{3}, xz^{4}-y^{4}w, z^{5} -y^{3}w^{2}, x^{2}y^{2}-w^{3}, x^{3}y- zw^{2}, x^{4}-z^{2}w) . We can check that H is

AS of type 3 since 31+66=97 and we compute

\mathrm{R}\mathrm{F}(31)= \left(\begin{array}{llll}
-1 & 0 & \mathrm{l} & 1\\
0 & -1 & 0 & 2\\
3 & 0 & -\mathrm{l} & 0\\
2 & 1 & 0 & -1
\end{array}\right), \mathrm{R}\mathrm{F}(66)= \left(\begin{array}{llll}
-1 & 4 & 0 & 0\\
1 & -\mathrm{l} & 3 & 0\\
0 & 3 & -1 & \mathrm{l}\\
0 & 0 & 4 & -\mathrm{l}
\end{array}\right)
We see that the equations x^{2}y^{2}-w^{3}, x^{3}y-zw^{2}, x^{4}-z^{2}w are obtained from \mathrm{R} $\Gamma$(31) ,

y^{5}-x^{2}z^{3}, xz^{4}-y^{4}w, z^{5}-y^{3}w^{2} from RF(66) and xw—yz from both matrices.

Moscariello proves that if for some j one has that a_{ij} = 0 for every i \neq j , thenf =

 $\Gamma$(H)/2 . But his result can be improved a little more.

Lemma 2.4. Assume e=4 . Assume f\in \mathrm{P}\mathrm{F}(H) , f\neq $\Gamma$(H) and put A= (a_{ij})=\mathrm{R}\mathrm{F}(f) .

Then for every j , there exists i such that a_{ij}>0 . Namely, any column of A should contain

some positive component.

Combining Lemma 2.2 and Lemma 2.4, we get the following Corollary.

Corollary 2.5. Assume H is AS and let f\in \mathrm{P}\mathrm{F}'(H) . Then every row or column of \mathrm{R}\mathrm{F}(f)
has at least one positive (resp. 0 ) entry.

We can restate the structure theorem of Komeda by using \mathrm{R} $\Gamma$(\mathrm{F}(H)/2) .

Theorem 2.6. ([Ko]) Let H=\langle n_{1}, n_{2} , n3, n_{4} } be pseudo‐symmetric.
1

(1) For a suitable permutation of {1, 2, 3, 4},  $\Gamma$(H)/2+n_{k} has UF for every k (that is,

\mathrm{R}\mathrm{F}( $\Gamma$(H)/2) is uniquely determined) and \mathrm{R} $\Gamma$(\mathrm{F}(H)/2) is in the following form

\mathrm{R}\mathrm{F}( $\Gamma$(H)/2)= \left(\begin{array}{llllll}
-\mathrm{l} &  & $\alpha$_{2}-1 &  & 0 & 0\\
 & 0 & -1 &  & $\alpha$_{3}-1 & 0\\
$\alpha$_{1} & -\mathrm{l} & 0 &  & -1 & $\alpha$_{4}-1\\
$\alpha$_{1}-1 &  & $\alpha$_{2}-1- & $\alpha$_{12} & 0 & -1
\end{array}\right)
(2)  $\Gamma$(H)+n2 has UF and we have n_{2}=$\alpha$_{1}$\alpha$_{4} (  $\alpha$3—1) + 1.

(3) Every generator of I_{H} is obtained from \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2) as in the Example 2.3.

Namely, I_{H}=(x_{2}^{ $\alpha$ 2}-x_{1}x_{3^{3}}^{ $\alpha$-1}, x_{1^{1}}^{ $\alpha$}-x_{2^{12}}^{CX}x_{4}, x_{3^{3}}^{ $\alpha$}-x_{1^{1-1}}^{ $\alpha$}x_{2}x_{4^{4-1}}^{ $\alpha$}, x_{3^{3-1}}^{ $\alpha$}x_{4}-x_{1^{1-1}}^{ $\alpha$}x_{2^{2- $\alpha$ 12}}^{ $\alpha$}, x_{4^{4}}^{ $\alpha$}-
x_{2^{212}}^{ $\alpha$-1- $\alpha$}x_{3}) . (The difference of the 1st and the 3rd rows does not give a minimal

generator of I_{H}. )
lKomeda uses the terminology �almost symmetric� for pseudo‐symmetric
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Remark 2.7. The generators of I_{H} in [Ko] or [BFS] are obtained after the permutation

( 1, 2, 3, 4)\rightarrow(3,1,4,2) . Namely, if we put

\mathrm{R}\mathrm{F}(\mathrm{F}(H)/2)= \left(\begin{array}{llll}
-1 & 0 & 0 & $\alpha$_{4}-1\\
$\alpha$_{2\mathrm{l}} & -1 &  $\alpha$ 3-1 & 0\\
$\alpha$_{1}-1 & 0 & -1 & 0\\
0 & $\alpha$_{2}-1 & $\alpha$_{3}-1 & -1
\end{array}\right) ,

then we get their equations.

Using \mathrm{R} $\Gamma$(f) , we can have a different proof of MIoscariello�s Theorem.

Theorem 2.8. [Mo] If H=\{n_{1}, . . . , n_{4}\} is AG, then type (H)\leq 3.

We will not present the proof here but we list the lemma which we use to prove this

theorem 2.

Lemma 2.9. We denote by e_{i} the i‐th unit vector of \mathbb{Z}^{4} . Assume e=4 and H is AS.

(1) There are 2 rows in \mathrm{R}\mathrm{F}( $\Gamma$(H)/2) of the form ($\alpha$_{i}-1)e_{i}-e_{k}.
(2) If f\neq f'\in \mathrm{P} $\Gamma$(H) with f+f'=\mathrm{F}(H) , then there are 4 rows in \mathrm{R}\mathrm{F}(f) and \mathrm{R}\mathrm{F}(f')

of the form ($\alpha$_{i}-1)e_{i}-e_{k}.
(3) Assume type (H) =3 and \mathrm{P} $\Gamma$(H) = \{f, f', \mathrm{F}(H)\} with f+f'= $\Gamma$(H) . Then for

every i , there is k\neq i such that either f+nk=($\alpha$_{i}-1)n_{i} or f'+n_{k}=($\alpha$_{i}-1)n_{i}.

The following question is asked in [Mo].

Question 2.10. Is type(H) bounded for a given e if H is AS? If this is the case, what is

the upper bound?

3. On the free resolution of K[H].

Let as before H= \{n_{1}, . . . , n_{e}\} be a numerical semigroup and K[H] =S/I_{H} its semi‐

group ring over K.

We are interested in the minimal graded free S‐resolution (\mathcal{F}, d) of K[H] . For each i,

we have F_{i}=\oplus_{j}S(-$\beta$_{ij}) , where the $\beta$_{i_{\hat{J}}} are the graded Betti numbers of K[H] . Moreover,

\displaystyle \mathcal{B}_{i}=\sum_{j}$\beta$_{ij}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(F_{i}) is the ith Betti number of K[H] . Note that proj \dim_{S}K[H]=e-1
and that F_{e-1}\cong\oplus_{f\in \mathrm{P} $\Gamma$(H)}S(-f-N) , where we put N=\displaystyle \sum_{i=1}^{\mathrm{e}}n_{i}

Recall from Section 1 that R is almost symmetric if the cokernel of a natural morphism

R\rightarrow $\omega$ R(- $\Gamma$(H))

2_{\mathrm{I}\mathrm{n}} our previous article [HW], Lemma 4.11 was not true. Hence our proof needs some more lemma.
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is annihilated by the graded maximal ideal of K[H] . In other words, there is an exact

sequence of graded S‐modules

0\rightarrow R\rightarrow $\omega$ R(-\mathrm{F}(H))\rightarrow \oplus K(-f)\rightarrow 0.
f\in \mathrm{P}$\Gamma$'(H)

Note that, we used the symmetry of \mathrm{P}\mathrm{F}(H) given in Lemma 1.1 when H is almost sym‐

metric.

Since  $\omega$ s \cong  S(-N) , the minimal free resolution of  $\omega$ R is given by the S‐dual \mathcal{F}^{\vee} of

\mathcal{F} with respect to S(-N)). Now, the injection R \rightarrow  $\omega$ R(-\mathrm{F}(H)) lifts to a morphism

 $\varphi$ : \mathcal{F}\rightarrow \mathcal{F}^{\vee}(-\mathrm{F}(H)) , and the resolution of the cokernel of R\rightarrow K_{R}(- $\Gamma$(H)) is given by
the mapping cone \mathrm{M}\mathrm{C}( $\varphi$) of  $\varphi$.

On the other hand, the free resolution of the residue field K is given by the Koszul

complex \mathrm{K}=\mathrm{K} (x_{1}, \ldots , x_{\mathrm{e}};K) . Hence we get

Lemma 3.1. The mapping cone \mathrm{M}\mathrm{C}( $\varphi$) gives \mathrm{a} (non‐minimal) free S‐resolution of

\oplus_{f\in \mathrm{P}\mathrm{F}'(H)}K(-f) . Hence, the minimal free resolution obtained from MC (  $\varphi$ ) is isomorphic

to \oplus_{f\in \mathrm{P}$\Gamma$'(H)}K(-f)

Let us discuss the case e=4 in more details. For K[H] with t=\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}(K[H]) we have

the graded minimal free resolution

0\displaystyle \rightarrow \oplus S(-f-N)\rightarrow\bigoplus_{i=1}^{m+t-1}S(-b_{i})\rightarrow\bigoplus_{i=1}^{m}S(-a_{i})\rightarrow S\rightarrow K[H]\rightarrow 0f\in \mathrm{P}\mathrm{F}(H)

of K[H] . The dual with respect to  $\omega$ s=S(-N) shifted by -F(H) gives the exact sequence

0\rightarrow S(- $\Gamma$(H)-N) \rightarrow \displaystyle \bigoplus_{i=1}^{m}S(a_{i}-F(H)-N)\rightarrow\bigoplus_{i=1}^{m+t-1}S(b_{i}-F(H)-N)
\rightarrow \oplus S(f-\mathrm{F}(H))\rightarrow$\omega$_{K[H]}(- $\Gamma$(H))\rightarrow 0.

f\in \mathrm{P} $\Gamma$(H)

Considering the fact that for the map  $\varphi$ : \mathcal{F}\rightarrow \mathcal{F}^{\vee} the component

 $\varphi$ 0:S\rightarrow \oplus S(f-F(H))
f\in \mathrm{P} $\Gamma$(H)

maps S isomorphically to S(\mathrm{F}(H)- $\Gamma$(H))=S , these two terms can be canceled against

each others in the mapping cone. Similarly, via

$\varphi$_{4} : \oplus  S(-f-N)\rightarrow S(- $\Gamma$(H)-N)
f\in \mathrm{P}\mathrm{F}(H)
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the summands S(-\mathrm{F}(H)-N) can be canceled. Observing then that \mathrm{P}$\Gamma$'(H)=\{ $\Gamma$(H)-f :

f\in \mathrm{P}\mathrm{F}'(H)\} , we obtain the reduced mapping cone

0 \rightarrow \oplus  S(-f-N)\displaystyle \rightarrow\bigoplus_{i=1}^{m+t-1}3(-b_{i})\rightarrow\bigoplus_{i=1}^{m}S(-a_{i})\oplus\bigoplus_{i=1}^{m}S(a_{i}-F(H)-N)f\in \mathrm{P}$\Gamma$'(H)

\displaystyle \rightarrow \bigoplus_{i=1}^{m+t-1}S(b_{i}-F(H)-N)\rightarrow \oplus S(-f)\rightarrow \oplus K(-f)\rightarrow 0,f\in \mathrm{P}$\Gamma$'(H) f\in \mathrm{P}$\Gamma$'(H)

which provides a graded free resolution of \oplus_{f\in \mathrm{P}$\Gamma$'(H)}K(-f) . Comparing this resolution

with the minimal graded free resolution of \oplus_{f\in \mathrm{P}$\Gamma$'(H)}K(-f) , which is

0 \rightarrow

\displaystyle \bigoplus_{f\in \mathrm{P}$\Gamma$'(H)}S(-f-N)\rightarrow f\in \mathrm{P}\mathrm{P}'(H)\bigoplus_{1\leq i\leq 4}S(-f-N+n_{$\iota$'})\rightarrow  f\displaystyle \in \mathrm{P}$\Gamma$'(H)\bigoplus_{1\leq i<j\leq 4}S(-f-n_{i}-n_{j})
\rightarrow

 f\displaystyle \in \mathrm{P}$\Gamma$'(H)\bigoplus_{1\leq i\leq 4}S(-f-n_{i})\rightarrow \bigoplus_{f\in \mathrm{P}\mathrm{F}'(H)}S(-f)\rightarrow\bigoplus_{f\in \mathrm{P}$\Gamma$'(H)}K(-f)\rightarrow 0,
we notice that m\geq 3(t-1) . If m=3(t-1) , then the reduced mapping cone provides a

graded minimal free resolution of \oplus_{f\in \mathrm{P} $\Gamma$(H)}K(-f) .

A comparison of the mapping cone with the graded minimal free resolution of

\oplus_{f\in \mathrm{P}\mathrm{F}'(H)}K(-f) yields the following numerical result.

Proposition 3.2. Let H be a 4‐‐generated almost symmetric numerical semigroup of type t

for which I_{H} is generated by m=3(t-1) elements. Then, with the notation introduced,

one has the following equalities of multisets:

\{a_{1}, . . . , a_{m}\}\cup\{\mathrm{F}(H)+N-a_{1}, \cdots , \mathrm{F}(H)+N-a_{m}\}

=\{f+n_{i}+n_{j} f\in \mathrm{P} $\Gamma$'(H), 1\leq i<j\leq 4\},

and

\{b_{1}, \cdots, b_{m+t-1}\}=\{f+N-n_{i} f\in \mathrm{P}\mathrm{F}'(H), 1\leq i\leq 4\}.

Theorem 3.3. Let H be a 4‐generated almost symmetric numerical semigroup of type t for

which I_{H} is generated by m=3(t-1) elements. Then I_{H} is generated by RF‐relations.

Conjecture 3.4. Assume that H is AS with \langle n_{1}, n_{2} , n3,  n_{4}\rangle and type(H)=3 with \mathrm{P}\mathrm{F}(H)=

\{f, f',  $\Gamma$(H)\} with f+f' =  $\Gamma$(H) . Then I_{H} is minimally generated by 6 or 7 elements

and 6 of the minimal generators are obtained with no cancellation from \mathrm{R}\mathrm{F}(f) or \mathrm{R} $\Gamma$(f')
as in Example 2.3. If  $\mu$(I_{H})=7 , then X_{1}X_{4}-X_{2}X_{3}\in I_{H}.
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4. When is H+m almost symmetric for infinitely many m?

Definition 4.1. For H=\{n1 ,
. . . ,  n_{e}\rangle , we put  H+m=\{n1+m , . . . ,  n_{e}+m\rangle . When we write

 H+m , we assume that H+m is a numerical semigroup, that is, GCD (n_{1}+m, \ldots, n_{e}+m)=
1 . In this section, we always assume that n_{1} <n_{2} <. . . <n_{e} . We put s=n_{e}-n_{1} and

d= GCD (n2-n_{1}, \ldots, n_{e}-n_{1}) .

First, we will give a lower bound of Frobenius number of H+m.

Proposition 4.2. For m\gg 1, \mathrm{F}(H+m) \geq m^{2}/s.

The following fact is trivial but very important in our argument.

Lemma 4.3. If  $\phi$ = \displaystyle \prod_{i=1}^{e}X_{i}^{a_{i}} - $\Gamma$ 1_{i=1}^{e}X_{i}^{b_{i}} \in  I_{H} is homogeneous, namely, if \displaystyle \sum_{i=1}^{e}a_{i} =

\displaystyle \sum_{i=1}^{e}b_{i} , then  $\phi$\in I_{H+m} for every m.

We define $\alpha$_{i}(m) to be the minimal positive integer such that

$\alpha$_{i}(m)(n_{i}+m)=\displaystyle \sum_{j=1,j\neq i}^{e}$\alpha$_{ij}(m)(n_{\hat{f}}+m) ,

as in Definition 4.5.

Lemma 4.4. Let H+m be as in Definition 4.1. Then, if m is sufficiently big compared
with n_{1} , . . .

, n_{e} , then $\alpha$_{2}(m) , . . . , $\alpha$_{e-1}(m) is constant, $\alpha$_{1}(m) \geq (m+n_{1})/s and $\alpha$_{4}(m) \geq

(m+n_{1})/s-1 . Moreover, if we put d=\mathrm{G}\mathrm{C}\mathrm{D}\{n_{e}-n_{j} |j=1, . .., e-1\} and s'=s/d,
there is a constant C depending only on H such that $\alpha$_{1}(m)- (m+n_{1})/s'\leq  C and

$\alpha$_{4}(m)-(m+n_{1})/s'\leq C.

Remark 4.5. By Lemma 4.4 $\alpha$_{i}(m) does not depend on m for m\gg 0 . Therefore we simply
write  $\alpha$ i=$\alpha$_{i}(m) for m\gg 0 and i=1 , . . . , e.

Question 4.6. If we assume H= \{n_{1}, n_{2} , n3, n_{4} ) is almost symmetric of type 3, we have

some examples of d>1 and odd, like H=\{20 , 23, 44,  47\rangle with  d=3 or H=\{19 , 24, 49,  54\rangle
with  d=5 . Uut in all examples we know, at least one of the minimal generators is even.

What does it mean is even? Is this true in general? Note that we have examples of 4

generated symmetric semigroup all of whose minimal generators are odd. What does it

mean is odd?

H+m is almost symmetric of type 2 for only finitely many m . We show

Theorem 4.7. Assume H+m=\langle n_{1}+m , . .. , n_{4}+m}. Then for large enough m, H+m

is not almost symmetric of type 2.
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We then give the classification of the numerical semigroups H such that H+m is almost

symmetric of type 3 for infinitely many m . Unlike the case of type 2, there are infinite

series of H+m ,
which are almost symmetric of type 3 for infinitely many m . The first

one of the following examples was given by T. Numata and the most basic one.

Example 4.8. For the following H, H+m is almost symmetric with type 3 if

(1) H=\langle 10 , 11, 13, 14\rangle, m is a multiple of 4.

(2) H=\langle 10 , 13, 15, 18\rangle, m is a multiple of 8.

(3) H=\{14 , 19, 21, 26\rangle, m is a multiple of 12.

(4) H=\{18 , 25, 27, 34\rangle, m is a multiple of 16.

From now on, we assume that H+m is almost symmetric of type 3 arid assume that

m is sufficiently bigger than n_{1}, n_{2}, n_{3}, n_{4} . We say some invariant  $\sigma$(m) (e.g.  $\Gamma$(H+

m) , f(m) , f'(m)) of H+m is O(m^{2}) (resp. O(m) ) if there is some positive constants

c<d such that cm^{2}< $\sigma$(m)\leq dm^{2} (resp. cm\leq $\sigma$(m)\leq c'm) for all m.

Lemma 4.9. The invariants  $\Gamma$(H+m) and f'(m) are O(m^{2}) and f(m) is O(m) .

We assume that H+m is almost symmetric of type 3 for infinitely many m and we will

write \mathrm{P}\mathrm{F}(H+m) = \{f(m), f'(m), \mathrm{F}(H+m)\} with f(m) < f'(m) and f(m)+f'(m) =

 $\Gamma$(H+m) .

If H+m is AS of type 3 for infinitely many m , we get the following Proposition. We

also assume that H is AS of type 3, too.

Proposition 4.10. Assume H+m is almost symmetric of type 3 for infinitely many m . We

use notation as above and we put d=\mathrm{G}\mathrm{C}\mathrm{D}(n_{2}-n_{1}, n_{3}-n_{2}, n4-n3) . If H+m is almost

symmetric of type 3 for sufficiently big m , then the following statements hold:

(1) We have \mathrm{a}_{2}=$\alpha$_{3} and \mathrm{a}_{1}(m)=$\alpha$_{4}(m)+1 . If we put a= $\alpha$ 2= $\alpha$ 3 , then

\mathrm{R} $\Gamma$(f(m))= \left(\begin{array}{lllll}
-\mathrm{l} & a & -\mathrm{l} & 0 & 0\\
1 &  & -1 & a-2 & 0\\
0 &  & a-2 & -1 & 1\\
0 &  & 0 & a-1 & -1
\end{array}\right) ,

(2) If we put b=$\alpha$_{1}(m) , then $\alpha$_{4}(m)=b-d and

\mathrm{R}\mathrm{F}(f'(m))= \left(\begin{array}{lllll}
 & -1 & 0 & \mathrm{l} & b-d-2\\
 & 0 & -\mathrm{l} & 0 & b-d-1\\
b-1 &  & 0 & -\mathrm{l} & 0\\
b & -2 & 1 & 0 & -1
\end{array}\right)
(3) The integer a= $\alpha$ 2=$\alpha$_{3} is odd and we have n_{2}=n_{1}+(a-2)d, n_{3}=n_{1}+ad, n_{4}=

n_{1}+(2a-2)d.
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Theorem 4.11. Assume that H= \{n_{1}, n_{2}, n3, n_{4}\} with n_{1} <n2 <n3 <n_{4} and we assume

that H and H+m are almost symmetric of type 3 for infinitely many m . Then putting

d=\mathrm{G}\mathrm{C}\mathrm{D} (n_{2}-n_{1}, n_{3}-n2, n_{4}-n_{3}) , a=$\alpha$_{2}, b=$\alpha$_{1} and \mathrm{P}\mathrm{F}(H) = \{f, f', \mathrm{F}(H)\}, H has

the following characterization.

(1) a and d are odd, \mathrm{G}\mathrm{C}\mathrm{D}(a, d)=1 and b\geq d+2.

(2) \mathrm{R} $\Gamma$(f) and \mathrm{R}\mathrm{F}(f') have the following form.

RF(f)= \left(\begin{array}{llllll}
-1 & a-1 &  &  & 0 & 0\\
1 &  & -1 & a & -2 & 0\\
 & a & -2 &  & -\mathrm{l} & 1\\
 &  & 0 & a-1 &  & -1
\end{array}\right) , RF(f')= \left(\begin{array}{llll}
-1 & 0 & \mathrm{l} & b-d-2\\
0 & -\mathrm{l} & 0 & b-d-\mathrm{l}\\
b-1 & 0 & -1 & 0\\
b-2 & 1 & 0 & -1
\end{array}\right)
(1) n_{1}=2a+(b-d-2)(2a-2) , n_{2}=n_{1}+(a-2)d, n3=n_{1}+ad, n_{4}=2a+(b-2)(2a-2) .

(3) If we put H(a, b;d) = \{n_{1}, n_{2} , n3,  n_{4}\rangle , then  H(a, b+1;d) =H(a, b;d)+(2a-2) .

Since H(a, b;d) is almost symmetric of type 3 for every a, d odd, \mathrm{G}\mathrm{C}\mathrm{D}(a, d) = 1

and b \geq  d+2 , it follows that H(a, b;d)+m is almost symmetric of type 3 for

infinitely many m.

(4) I_{H} = (xw—yz, y^{a}-x^{2}z^{a-2}, z^{a}-y^{a-2}w^{2}, xz^{a-1}-y^{a-1}w, x^{b}-z^{2}w^{b-d-2}, w^{b-d}-

x^{b-2}y^{2}, x^{b-1}y-zw^{b-d-1})) .
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