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Abstract

This is a survey paper. It will report some progress towards various Volume Conjectures
including the original one for the colored Jones polynomials of links, the Chen‐Yang style
ones for the Reshetikhin‐Turaev invariants and the Turaev‐Viro invariants of hyperbolic 3‐

manifolds as well as a new vision on the relation between the Habiro type cyclotomic expansion
and Volume Conjectures inspired by the large \mathrm{N} duality.

1 Introduction

In late 1970' \mathrm{s} ,
the area of low dimensional topology especially the geometry and topology

of 3‐manifolds was revolutionized by Thurston. In 1980' \mathrm{s} , Jones constructed his famous

polynomial for knots/links. Later, Witten explained Jones polynomial as an invariant

coming from a quantum SU(2) Chern‐Simons theory with fundamental representation,
and also predicted new invariants of knots/links as well as 3‐manifolds. Then Reshetikhin‐

Turaev constructed these invariants by using quantum groups. Chern‐Simons gauge the‐

ory and corresponding quantum invariants of knots/links as well as 3‐manifolds forms a

hot topic in mathematics since early 1990' \mathrm{s} . The following Volume conjecture formu‐

lated by Kashaev [28] in 1997 and Murakami‐Murakami [45] in 2001 surprisingly connects

two quite different area, namely TQFT and low dimensional topology, which has attracted

many talented mathematicians and physicists.

Conjecture 1.1 (Volume Conjecture for colored Jones polynomial, Kashaev‐Murakami‐

Murakami [28, 45 For any link \mathcal{K} in S^{3}
,

let J_{N}(\mathcal{K};q) be its (N+1) ‐th colored Jones

polynomial. Then

\displaystyle \lim_{N\rightarrow+\infty}\frac{2 $\pi$}{N}\log|J_{N}(\mathcal{K};e^{\frac{ $\pi$\sqrt{-1}}{N+1}})| =v_{3}||S^{3}\backslash \mathcal{K}||,
where ||S^{3}\backslash \mathcal{K}|| is the Gromov norm of the complement of K in S^{3} and v_{3}\approx 1.0145 is the

volume of the regular hyperbolic tetrahedron.

Remark 1.1. When link \mathcal{K} is a hyperbolic link, then the right hand side of the above

conjecture can be stated as hyperbolic volume \mathrm{V}\mathrm{o}\mathrm{l}(S^{3}\backslash \mathcal{K}) , Since Vol(S^{3}\backslash \mathcal{K})=v_{3}||S^{3}\backslash \mathcal{K}||.
Murakami‐Murakami‐Okamoto‐Takata‐Yokota [46] complexified the volume conjecture,
including the Chern‐Simons invariant in the right‐hand side as the imaginary part.

For a very long time, this conjecture has been only proved for very few cases including
the figure‐eight knot (by Ekholm, cf. [44]), 5_{2} by Kashaev‐Yokota [30], torus knots [29],
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(2, 2m) ‐torus links [26], Borromean rings [21], twisted Whitehead links [60] and Whitehead

chains [58]. Actually progress towards hyperbolic knots except the figure‐eight knot 4_{1}
and knot 5_{2} were relatively less. Recently T. Ohtsuki [48] obtained the whole asymptotic

expansion of Kashaev�s invariants (colored Jones polynomial J_{n} evaluated at e^{\frac{ $\pi$\sqrt{-1}}{N}} ) of

knot 5_{2} . By a similar fashion procedure, Ohtsuki‐Yokota [52], T. Ohtsuki [49] and T.

Takata [57] obtained asymptotic expansion of Kashaev�s invariants of hyperbolic knots

with 6, 7 and 8 crossings ( 8_{6} and 8_{12} ) respectively.
Some of my recent work on Volume Conjectures and related topics can be roughly

divided to two research directions. In this survey, we will discuss some recent developments
in these two directions.

The author appreciates comments from Renaud Detcherry, Giovanni Felder, Efstra‐

tia Kalfagianni, Kefeng Liu, Jun Murakami, Tomotada Ohtsuki, Tian Yang and Sheng‐
mao Zhu. The author is supported by the National Center of Competence in Research

SwissMAP of the Swiss National Science Foundation.

2 Volume Conjectures for Reshetikhin‐Turaev and Turaev‐Viro invariants

of 3‐manifolds

2.1 Volume Conjectures for Reshetikhin‐Turaev and Turaev‐Viro invariants

of 3‐manifolds evaluated at roots of unity q(2)=\displaystyle \exp(\frac{2 $\pi$\sqrt{-1}}{r})
In [11], Chen‐Yang first extended the Turaev‐Viro invariant from closed 3‐manifolds to

3‐manifolds with cusps (orientable case by Benedetti‐Petronio [2]) or even with totally
geodesic boundary. Recall that Turaev‐Viro�s original construction gives rise to real valued

invariants for closed 3‐manifolds and 2 + 1 TQFT�s for 3‐cobordisms containing a link

inside. In all of their constructions, they use the usual triangulations, meaning the vertices

of the triangulations are inside the manifolds and the cobordisms, and in the case of

cobordisms, the edges on the boundary are from the edges of the triangulations. The

difference in our construction [11] is that, instead of using the usual triangulations, we

use ideal triangulation of a 3‐manifold with non‐empty boundary.
Let q(s) denotes the roots of unity e\displaystyle \frac{ $\epsilon \pi$\sqrt{-1}}{r} for an integer s

,
where (r, s)=1 . Recall that

the Reshetikhin‐Turaev invariants \{$\tau$_{r}(M;q)\} are complex‐valued invariants of oriented

closed 3‐manifolds with q = q(odd) . This provided a mathematical construction of the

3‐manifold invariants (evaluated at q(1) only) introduced by Witten using Chern‐Simons

action. Using skein theory, Lickorish [38, 39] redefined the Reshetikhin‐Turaev invariants

with q = q(odd) ,
and Blanchet‐Habegger‐Masbaum‐Vogel [3] extended them to q(2) =

e^{\frac{2 $\pi$\sqrt{-1}}{r}} for odd r . In [11], Chen‐Yang proposed the following Volume Conjecture.

Conjecture 2.1 (Volume Conjectures for Reshetikhin‐Turaev and Turaev‐Viro invari‐

ants, Chen‐Yang [11]). Let M_{1} be a closed oriented hyperbolic 3‐manifold and let $\tau$_{r}(M_{1};q)
be its Reshetikhin‐Turaev invariants. Let M_{2} be a compact 3‐manifold (cusped or with to‐

tally geodesic boundary). Then for r running over all odd integers and q=q(2)=e^{\frac{2 $\pi$\sqrt{-1}}{r}}
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under the convention [n]=\displaystyle \frac{q^{n}-q^{-n}}{q-q-1} ,
and with a suitable choice of the arguments, we have

\displaystyle \lim_{r\rightarrow+\infty}\frac{4 $\pi$}{r-2}\log($\tau$_{r}(M_{1};q)) \equiv Vol (M_{1})+\sqrt{-1}CS(M_{1}) (mod \sqrt{-1}$\pi$^{2} ),

where CS(M_{1}) is the usual Chern‐Simons invariant of M_{1} multiplied by 2$\pi$^{2}
,

and

\displaystyle \lim_{r\rightarrow+\infty}\frac{2 $\pi$}{r-2}\log(TV_{r}(M_{2};e^{\frac{2 $\pi$\sqrt{-1}}{r}})) = Vol(M2).

In fact, Witten�s Asymptotic Expansion Conjecture (WAE) considers Reshetikhin‐

Turaev (also Turaev‐Viro) invariants evaluated at usual root of unity q(1)=e\displaystyle \frac{ $\pi$\sqrt{-1}}{r} This

turns out to be of only polynomial growth w.r. \mathrm{t}. r . For past 25 years, people have thought
Reshetikhin‐Turaev and Turaev‐Viro invariants evaluated at other roots of unity should

have similar asymptotic behavior which is also polynomial growth w.r. \mathrm{t}. r.

Thus Chen‐Yang�s conjecture not only corrects a long existing wrong feeling about

Reshetikhin‐Turaev and Turaev‐Viro invariants but also largely extends the original Vol‐

ume Conjecture (Kashaev‐Murakami‐Murakami) from knot complements in S^{3} to all kinds

of hyperbolic 3‐manifolds, no matter they are closed, cusped or even with totally geodesic
boundaries.

Some further developments of Chen‐Yang�s Volume Conjectures have been announced

by various mathematicians in several recent international conferences or on arXiv. These

results are listed as follows

\bullet T. Ohtsuki[50] first generalize our Volume Conjecture for Reshetikhin‐Turaev in‐

variants at  q(2) =e\displaystyle \frac{2 $\pi$\sqrt{-1}}{r} to a full asymptotic expansion conjecture (physics flavour

conjecture by D. Gang‐M. Romo‐M. Yamazaki[20]) and then he proved our Volume

Conjecture for a series cases, the closed hyperbolic 3‐manifolds M_{K} obtained by
integer Dehn surgery in S^{3} along the figure‐eight knot 4_{1}.

\bullet T. Ohtsuki‐T. Takata[51] recognized the Reidemeister torsion term appearing in the

above full asymptotic expansion.

\bullet R. Detcherry‐E. Kalfagianni‐T. Yang[14] proved our Turaev‐Viro Volume Conjecture
for cases of hyperbolic cusped 3‐manifolds  S^{3}\backslash 4_{1}, S^{3}\backslash Borromean rings via establish‐

ing a relation involving Turaev‐Viro invariants of link complements in S^{3} and certain

sum of colored Jones polynomials of that link.

\bullet R. Detcherry‐E. Kalfagianni[13] first established a relation between the asymptotics
of the Turaev‐Viro invariants at  q(2)=e\displaystyle \frac{2 $\pi$\sqrt{-1}}{r} that Chen‐Yang considered in [11] and

the Gromov norm of 3‐manifolds. Furthermore, they obtained a lower bound for the

Gromov norm of any compact, oriented 3‐manifold with empty or toroidal boundary,
in terms of the Turaev‐Viro invariants. They also proved Turaev‐Viro Volume Con‐

jecture for Gromov norm zero links (knots proved by Detcherry‐Kalfagianni‐Yang[14],
several torus knots/ links such as Trefoil knot, Hopf link, link T(2,4) proved in Chen‐

Yang�s original paper [11]). Finally they constructed infinitely families of 3‐manifolds

for Turaev‐Viro invariants with exponential growth predicted by Chen‐Yang�s Vol‐

ume conjecture
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Usual (compact) tetrahedron

Figure 1: Edges of a tetrahedron

\bullet A. Kolpakov‐J. Murakami[34] formulated the corresponding Volume Conjecture for

Kirillov‐Reshetikhin invariants at  q(2)=e\displaystyle \frac{2 $\pi$\sqrt{-1}}{r} that Chen‐Yang considered in [11]
\bullet Q. Chen‐J. Murakami[10] proposed a Conjecture for dominant term (Volume) and

secondary term (Gram matrix of the tetrahedra) in asymptotics of the quantum

 6j symbol at q(2) =e^{\frac{2 $\pi$\sqrt{-1}}{r}} that Chen‐Yang considered in [11] and proved majority
cases (at least one of the vertex of the tetrahedra is ideal or Ultra‐ideal. Furthermore,
Q. Chen‐J. Murakami [10] also proposed a Conjecture for a symmetric property of

asymptotics of quantum 6j symbol at q(2)=e^{\frac{2 $\pi$\sqrt{-1}}{r}} observed from big cancellations.

Conjecture 2.2 (Symmetry of asymptotics of quantum 6j symbols, Chen‐Murakami

[10]). Let T be a hyperbolic tetrahedron and $\theta$_{a}, $\theta$_{b}, $\theta$_{c}, $\theta$_{d}, $\theta$_{e}, $\theta$_{f} be dihedral angles at

edges a, \cdots, f in above Figure. Let a_{k}, b_{k}, \cdots, f_{k} be sequences of non‐negative half
integers satisfying

\displaystyle \lim_{k\rightarrow\infty}\frac{4 $\pi$}{k}a_{k}= $\pi-\theta$_{a}, \lim_{k\rightarrow\infty}\frac{4 $\pi$}{k}b_{k}= $\pi-\theta$_{b}, \cdots , \lim_{k\rightarrow\infty}\frac{4 $\pi$}{k}f_{k}= $\pi-\theta$_{f}
so that the triplets (a_{r}, b_{r}, e_{r}) , (a_{r}, d_{r}, f_{r}) , (b_{r}, d_{r}, f_{r}) , (c_{r}, d_{r}, e_{r}) are all r ‐admissible for
odd r\geq 3 . Let a_{r}' be a sequence of non‐negative half integers satisfying

\displaystyle \lim_{k\rightarrow\infty}\frac{4 $\pi$}{k}a_{k}'= $\pi$+$\theta$_{a}
so that the triplets (a_{r}', b_{r}, e_{r}) , (a_{r}', d_{r}, f_{r}) are r ‐admissible. Then the asymptotic expansions

of \left\{\begin{array}{lll}
a_{r} & b_{r} & e_{r}\\
d_{r} & c_{r} & f_{r}
\end{array}\right\} and \left\{\begin{array}{lll}
a_{r}' & b_{r} & e_{r}\\
d_{r} & c_{r} & f_{r}
\end{array}\right\} with respect to r are equal.

Remark 2.1. Since the volume function and the gram matrix of a tetrahedron are not

changed by switching the sign of a dihedral angle, the above conjecture is true up to the

second leading term (by main theorem in [10]). We also checked that the coincidence of

the third term for some cases by numerical computation.

2.2 Volume Conjectures for Reshetikhin‐Turaev and Turaev‐Viro invariants

of 3‐manifolds evaluated at roots of unity q(odd)

Now we have new Volume Conjectures for Reshetikhin‐Turaev and Turaev‐Viro invari‐

ants at q(2) . So it is natural to ask whether there also exists Volume Conjectures for
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Reshetikhin‐Turaev and Turaev‐Viro invariants at q(odd) .

In fact, the example of Turaev‐Viro invariant of non‐orientable 3‐manifold N_{2_{1}} (Callahan‐
Hildebrand‐Weeks census) vanishes at roots of unity q(s) ,

where r and s are both odd

numbers and (r, s)=1 (required by a condition from the definition of the Turaev‐Viro in‐

variant). Numerical evidence shows that it is nonzero at q(s) and also goes exponentially
large as  r\rightarrow\infty

,
when  s is an odd number other than 1 but r is an even number.

Take into account the above example it is natural to propose the following Volume

Conjecture,

Conjecture 2.3. For any 3‐manifold M with boundary (orientable or non‐orientable,
or even with totally geodesic boundary), for a fixed odd number s other than 1 and such

integer r that condition (*) TV_{r}(M, q(s))\neq 0 is satisfied, then we have

\displaystyle \lim \underline{s $\pi$}_{\log}|TV_{r}(M, q(s))|=Vol_{cpx}(M) .

r\rightarrow\infty s)=1rsatiisfy ( *)
r

Remark 2.2. If TV_{r}(M, q(s)) \neq  0 for all any even integer \mathrm{r} and any 3‐manifold M with

boundary, we could change condition r satisfy (*)
�

to r is even�

Remark 2.3. When M has cusps, as in [10], we consider ideal tetrahedral decomposition
of M

,
and consider Turaev‐Viro invariant of this tetrahedral decomposition. When M has

totally geodesic boundary, we consider the singular 3‐manifold obtained from M by col‐

lapsing each boundary component, and consider Turaev‐Viro invariant of a triangulation
of this singular 3‐manifold.

Similar phenomenon also happens to the Reshetikhin‐Turaev invariants. The Reshetikhin‐

Turaev invariants of closed 3‐manifold M obtained from a 4k+2‐surgery along a knot

K, RT_{r}(M, q(s)) ,
vanishes at roots of unity q(s) ,

where r and s are both odd numbers

and (r, s) = 1 and (See Kirby‐Melvin and see also Chen‐Liu‐Peng‐Zhu [7]). Numerical

evidence shows that Reshetikhin‐Turaev of certain examples we tested are nonzero at q(s)
and also goes exponentially large as  r\rightarrow\infty

,
when  s is an odd number other than 1 but

r is an even number.

Take into account the above example it is natural to propose the following Volume

Conjecture,

Conjecture 2.4. For any closed 3‐manifold M (orientable or non‐orientable, or even

with totally geodesic boundary), for a fixed odd number s other than 1 and such integer r

that condition (**) RT_{r}(M, q(s))\neq 0 is satisfied, then we have

\displaystyle \lim \underline{2s $\pi$}_{\log}(RT_{r}(M, q(s))) =Vol_{cpx}(M) (mod \sqrt{-1}$\pi$^{2}\mathbb{Z}).
r\rightarrow\infty'(r,s)=1rsatisfy ( **)

r

Remark 2.4. If RT_{r}(M, q(s)) \neq  0 for all any even integer \mathrm{r} and any 3‐manifold closed

manifold M
,

we could change condition r satisfy (**)
�

to r is even�
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Here is a summary of various results.

Volume Conjectures for 3‐manifolds with or without boundaries and

quantum 6\mathrm{j} symbols

2.3 New Volume Conjectures in mathematics may indicate new physics

By many numerical checks and proofs of several non‐trivial examples of our Volume

Conjecture, it is clear that Reshetikhin‐Turaev/Turaev‐Viro invariants evaluated at root

of unity q(2) display a much deeper hidden relation to the hyperbolic geometry than those

evaluated at usual roots of unity q(1) .

Connections of the original Volume Conjecture with physics were explored by Gukov

[23], Dijkgraaf‐Fuji‐Manabe [15] and Witten [59] and the physics meaning of Reshetikhin‐

Turaev invariants evaluated at root of unity q(1) was the original quantum Chern‐Simons

theory studied by Witten.

So it is very natural to ask the physical meaning of the Reshetikhin‐Turaev /
Turaev‐Viro invariants evaluated at the root of unity q(2) . Due to the nega‐
tive quantum integer involved, their nature should be a non‐unitary physics
theory, which looks a bit crazy, but it is confirmed by many top mathematical

physicists such as G. Felder, R. Kashaev, N. Reshetikhin and E. Witten etc.

�Drastic cancellation�� appears in the computation of the Turaev‐Viro invariants of

hyperbolic 3‐manifolds evaluated at roots of unity q(2) ,
when T. Yang and the author
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numerically check those examples in [11]. This means that one still obtain exponentially
large identities of Turaev‐Viro invariants evaluated at roots of unity q(2) even after those

drastic cancellations. This never happens to the original Volume Conjecture, so we believe

our Volume Conjecture display a very unexpected/wild nature of quantum invariants,
which make its corresponding physics meaning more mysterious.

The above new discovery shed some new lights on postulating a new quantum Chern‐

Simons theory corresponding to the Reshetikhin‐Turaev invariants evaluated at non‐

conventional roots of unity such as q(2) etc. we expect that such a potential physics
explanation will have a very wide application just like Witten�s quantum Chern‐Simons

theory which corresponds to the Reshetikhin‐Turaev invariant evaluated at q(1) and will

shed some new lights on the current study of High Energy Physics.

3 A new vision on proposing Volume Conjectures

3.1 Some backgrounds of large \mathrm{N} duality and LMOV Conjectures

The physics background of the problem the author concerned can be traced back to the

seminal work of \mathrm{t} Hooft on large N expansion of U(N) gauge field theories in 1974. It

was discovered by Gopakumar and Vafa that the topological string theory on the resolved

conifold is dual to the U(N) Chern‐Simons theory on S^{3} . This striking duality means the

partition functions of two different theories exactly agree up to all orders. The former one

corresponds to the (open) Gromov‐Witten theory which is still in its infancy, while the

latter one corresponds to quantum invariants of links and 3‐manifolds. The open large \mathrm{N}

duality was established by Ooguri‐Vafa [53].
Quantum group invariants W_{V^{1},\cdots,V^{L}}^{\mathrm{g}}(\mathcal{L})(q) of link \mathcal{L} were determined by representa‐

tions V^{ $\alpha$} of U_{q}(\mathrm{g}) ,
the quantized universal enveloping algebra of \mathrm{g} . A partition A can

be labeled by the Young tableau which corresponds to an irreducible representation V_{A}
for a specific \mathfrak{g} = sl_{N} and there exists a two‐variable colored HOMFLY‐PT invariant

W_{A^{1},\cdots,A^{L}}^{\mathrm{g}}(\mathcal{L})(q, t) ,
s.t. W_{A^{1},\cdots,A^{L}}^{\mathfrak{g}}(\mathcal{L})(q, t)|_{t=q^{N}} =W_{V_{A^{1}},\cdots,V_{A^{L}}}^{\mathrm{g}}(\mathcal{L})(q) . Let \mathcal{P}^{L} denote all the

partition sets labeled by the Young tableau. For each link \mathcal{L} , the type-A Chern‐Simons

partition function of \mathcal{L} is defined by

Z^{SL}c(\displaystyle \mathcal{L};q, t)=\sum_{\not\supset_{\in \mathcal{P}^{L}}}W^{SL}(\mathcal{L};q, t)_{S}\not\supset(x)=\sum_{\mathrm{i}?\neq 0}F_{\mathrm{i}?}^{SL}p_{\mathrm{i}^{7}}
where s\not\supset(x) are the Schur polynomials of partition \vec{A} = (A^{1}, A^{L}) and p_{n} =

\displaystyle \sum_{i=1}^{+\infty}(x_{i})^{n}.
By using the plethystic exponential method (due to Getzler‐Kapranov), we can write

the free energy as follows

\displaystyle \log Z_{CS}^{SL}(\mathcal{K};q, t;x) = \sum_{A\in \mathcal{P}}\sum_{d=1}^{\infty} \frac{f_{A}(\mathcal{K};q^{d},t^{d})}{d}s_{A}(x^{d}) .
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Based on the large N duality, Labastida‐Marino‐Ooguri‐Vafa [36, 37, 53] conjectured
an amazing algebraic structure for the generating series (Chern‐Simons partition function)
of colored HOMFLY‐PT link invariants and the integrality of the infinite family of new

topological invariants.

Conjecture 3.1 (LMOV Conjecture, Labastida‐Marino‐Ooguri‐Vafa, 2000‐2002). There

exists a knot invariant P_{B}(\displaystyle \mathcal{K};q, t)\in\frac{1}{(q-q-1)^{2}}\mathbb{Z}[(q-q^{-1})^{2}, t^{\pm 1}] s.t.

f_{A}(\displaystyle \mathcal{K};q, t)=\sum_{|B|=|A|}P_{B}(\mathcal{K};q, t)M_{AB}(q) ,

where M_{AB}(q) = \displaystyle \sum_{| $\mu$|=|A|}\frac{$\chi$_{A}(C_{ $\mu$})$\chi$_{B}(C_{ $\mu$})}{3 $\mu$}\prod_{j=1}^{\ell( $\mu$)}(q^{$\mu$_{j}} - q^{-$\mu$_{j}}) , and $\chi$_{A}, C_{ $\mu$} and ồ  $\mu$
are character,

conjugacy class and multiplicity labelled by Young tableau respectively.

The original LMOV conjecture describes a very subtle structure of  Z_{CS}^{SL}(\mathcal{L};q, t) ,
which

was proved by Liu‐Peng [41]. Mathematically, the LMOV conjecture confirms that colored

HOMFLY‐PT invariants also have integrality, symmetry of q , pole order structure of

q-q^{-1} just like classical HOMFLY‐PT polynomials. Physically, these integer coefficients

correspond to the BPS states on Calabi‐Yau 3‐folds.

3.2 Orthogonal LMOV conjecture

L. Chen and the author [6] gave a mathematically rigorous formulation of orthogonal
LMOV conjecture dealing with the colored Kauffman invariants by using the theory of

the Birman‐Murakami‐Wenzl algebras. By using the cabling technique, we obtained [6] \mathrm{a}

uniform formula of the colored Kauffman polynomial for all torus links. Then we were able

to prove [6] many interesting cases of this orthogonal LMOV conjecture. The topological
string side of the large N duality of the orthogonal LMOV conjecture is the open Gromov‐

Witten theory of orientifolds developed purely by physicists, while its math is still in its

infancy.

3.3 Congruence skein relations for colored HOMFLY‐PT invariants

The reformulated colored HOMFLY‐PT invariant \check{\mathcal{Z}}_{\vec{ $\mu$}}(\mathcal{L};q, t) is defined as

\displaystyle \check{\mathcal{Z}}_{\vec{ $\mu$}}(\mathcal{L};q, t) = [\vec{ $\mu$}] \sum_{A^{ $\alpha$}}\prod_{ $\alpha$=1}^{L}$\chi$_{A^{ $\alpha$}}($\mu$^{ $\alpha$})\overline{W}_{\vec{A}}(\mathcal{L};q, t) ,

where \overline{W}_{\vec{A}}(\mathcal{L};q, t) is the framing dependent colored HOMFLY‐PT invariant colored by \vec{A}
and $\chi$_{A^{ $\alpha$}} is the character of the irreducible representation indexed by the Young tableau

A^{ $\alpha$}.

In particular, suppose \vec{ $\mu$} = ((p), (p)) with L row partitions (p) ,
for p \in \mathbb{Z}_{+} . We

use the notation \check{\mathcal{Z}}_{p}(\mathcal{L};q, t) to denote the reformulated colored HOMFLY‐PT invariant

\mathcal{Z} q ,
t ) for simplicity. Although the definition of \check{\mathcal{Z}}_{\vec{ $\mu$}}(\mathcal{L};q, t) seems complicated

in the above definition, it has a simpler form than the colored HOMFLY‐PT invariant
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W_{\vec{A}}(\mathcal{L};q, t) in the the HOMFLY‐PT skein theory. In fact, \check{\mathcal{Z}}_{\vec{ $\mu$}}(\mathcal{L};q, t) has nice properties
and it is natural to study the reformulated colored HOMFLY‐PT invariant \check{\mathcal{Z}}_{\vec{ $\mu$}}(\mathcal{L};q, t)
instead of \overline{W}_{\vec{A}}(\mathcal{L};q, t) .

All classical knot invariants can be defined from a simple computational rule, the skein

relation. Under the above setups, classical skein relation for HOMFLY‐PT polynomials
can be restated as follows. For any link \mathcal{L} , we have

\check{\mathcal{Z}}_{1}(\mathcal{L}_{+};q, t)-\check{\mathcal{Z}}_{1}(\mathcal{L}_{-};q, t)=\check{\mathcal{Z}}_{1}(\mathcal{L}_{0};q, t) type I

\check{\mathcal{Z}}_{1}(\mathcal{L}_{+};q, t)-\check{\mathcal{Z}}_{1}(\mathcal{L}_{-};q, t)=\{1\}^{2}\check{\mathcal{Z}}_{1}(\mathcal{L}_{0};q, t) type II,

where type I means self‐crossing in a link component and type II means crossing in

different link components.
The question �whether quantum invariants share the same property of certain skein

relation� has perplexed people for quite a long time due to the complexity of definition

of quantum invariants. The colored HOMLFY‐PT invariants are notoriously hard to

compute, and even the case of the figure‐eight knot 4_{1} with arbitrary shape of Young
tableau is not established.

Inspired by studying the framed LMOV conjecture (a generalization of the original
LMOV Conjecture mentioned in the last subsection), Chen‐Liu‐Peng‐Zhu [7] discovered

a very interesting phenomenon called congruence skein relations, which means that skein

relations hold for (reformulated) colored HOMFLY‐PT at certain roots of unity.

Conjecture 3.2 (Congruence skein relations for the colored HOMFLY‐PT invariants,
Chen‐Liu‐Peng‐Zhu [7]). For any link \mathcal{L} and prime number p ,

we have

\check{\mathcal{Z}}_{p}(\mathcal{L}_{+};q, t)-\check{\mathcal{Z}}_{p}(\mathcal{L}_{-};q, t)\equiv(-1)^{p-1}\check{\mathcal{Z}}_{p}(\mathcal{L}_{0};q, t) \mathrm{m}\mathrm{o}\mathrm{d} \{p\}^{2} type I

\check{\mathcal{Z}}_{p}(\mathcal{L}_{+};q, t)-\check{\mathcal{Z}}_{p}(\mathcal{L}_{-};q, t)\equiv(-1)^{p-1}p\{p\}^{2}\check{\mathcal{Z}}_{p}(\mathcal{L}_{0};q, t) \mathrm{m}\mathrm{o}\mathrm{d} \{p\}^{2}\lceil p]^{2} type II

where \{p\} = q^{p} -q^{-p}, \lceil p ] = \{p\}/\{1\} . The notation A \equiv  B \mathrm{m}\mathrm{o}\mathrm{d} C means \displaystyle \frac{A-B}{c} \in

\mathbb{Z}[(q-q^{-1})^{2}, t^{\pm 1}].
Different kinds of examples are confirmed in [7].
More excitingly, such congruence skein relations is not an isolated phenomenon. Chen‐

Zhu [12] first proved the integrality of composite invariants of full colored HOMFLY‐PT

invariants and discovered a type II congruence skein relation for them. But it looks like

skein relations for Kauffman invariants. This could explain the mysterious mathematical

nature of an LMOV type conjecture proposed by Marino in [42], connecting the full

colored HOMFLY‐PT invariants and the colored Kauffman invariants. We will study
congruence skein relations of the colored Kauffman invariants and substantial evidence

has been obtained [9].

3.4 A new vision on proposing Volume Conjectures inspired by Congruence
relations and Habiro type cyclotomic expansion

Habiro [25] established the following cyclotomic expansion formula which has many ap‐

plications in the area of TQFT.
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Theorem 3.3 (Cyclotomic expansion for colored Jones polynomial, Habiro [25]). For

any knot \mathcal{K} , there exists H_{k}(\mathcal{K})\in \mathbb{Z}[q, q^{-1}] , independent of N (N\geq 0) ,
such that

J_{N}(\displaystyle \mathcal{K};q)=\sum_{k=0}^{N}C_{N+1},{}_{k}H_{k}(\mathcal{K}) ,

where C_{N+1,k}=\{N-(k-1)\}\{N-(k-2)\}\cdots\{N-1\}\{N\}\{N+2\}\{N+3\}\cdots\{N+2+
(k-1 for k=1, N

,
and C_{N+1,0}=1 . In particular, J_{0}(\mathcal{K};q)=H_{0}(\mathcal{K})=1.

We discover that the idea of �gap equations�� in cyclotomic expansions plays an impor‐
tant role in Volume Conjectures. The root of unity used in original Volume Conjecture
is \displaystyle \frac{ $\pi$\sqrt{-1}}{N+1} ,

a solution of �gap equations�� \{N+1\}=0 ,
where \{N+1\} serves as a �gap�� in

C_{N+1,k}.
Chen‐Liu‐Zhu [8] discovered the cyclotomic expansion of colored SU(n) invariants were

indicated from their congruence relations. By studying the so called �gap equation� in

cyclotomic expansions, we proposed a Volume Conjecture for the colored SU(n) invariants.

We think this new machinery will open a window to understand the very mysterious
essence of quantum invariants, especially between Volume Conjectures and Habiro

type cyclotomic expansion
In [7], we proposed a congruence relation conjecture for the colored SU(n) invariants

J_{N}^{SU(n)}(\mathcal{K};q) which is actually a consequence of the following conjecture.

Conjecture 3.4 (Cyclotomic expansions for colored SU(n) invariants, Chen‐Liu‐Zhu

[8]). For any knot \mathcal{K} , there exist H_{k}^{(n)}(\mathcal{K}) \in \mathbb{Z}[q, q^{-1}] , independent of N (N \geq 0) ,
such

that

J_{N}^{SU(n)}(\displaystyle \mathcal{K};q)=\sum_{k=0}^{N}C_{N+1}^{(n)},{}_{k}H_{k}^{(n)}(\mathcal{K}) ,

where C_{N+1,k}^{(n)}=\{N-(k-1)\}\{N-(k-2)\}\cdots\{N-1\}\{N\}\{N+n\}\{N+n+1\}\cdots\{N+
n+(k-1 for k=1, N

,
and C_{N+1,0}^{(n)}=1 . In particular, J_{0}^{SU(n)}(\mathcal{K};q)=H_{0}^{(n)}(\mathcal{K})=1.

We choose solutions of �gap equations� as our roots of unity. In the above conjecture
of cyclotomic expansions, we could see that the �gap equations� associated to the basis

C_{N+1,k}^{(n)} of the cyclotomic expansion are \{N+a\}=0 for a\in\{1, 2, n-1\} . We introduce

roots of unity $\xi$_{N,a}(s)=\displaystyle \exp(\frac{s $\pi$\sqrt{-1}}{N+a}) ,
where a, s\in \mathbb{Z} ,

which satisfy these �gap equations�
Then for a fixed n\geq 2 ,

we have

Conjecture 3.5 (Volume Conjecture for colored SU(n) invariants, Chen‐Liu‐Zhu [8]). If
a\in\{1, 2, n-1\} ,

then

2 $\pi$ s\displaystyle \lim_{N\rightarrow\infty}\frac{\log J_{N}^{SU(n)}(\mathcal{K};$\xi$_{N,a}(s))}{N+1}=Vol (S^{3}\backslash \mathcal{K})+\sqrt{-1}CS(S^{3}\backslash \mathcal{K})
for any hyperbolic knot \mathcal{K}.
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3.5 Applying this new vision to Superpolynomials

M. Khovanov introduced the idea of categorification that the reduced Poincare poly‐
nomial of Khovanov�s homology \mathcal{P}(\mathcal{K};q, t) recovers the Jones polynomial J(\mathcal{K};q) i.e.

\mathcal{P}(\mathcal{K};q, -1) = J(\mathcal{K};q) . Then Khovanov‐Rozansky [32] generalized the categorification
of the Jones polynomial to the categorification of the sl(N) invariants, whose corre‐

sponding Poincare polynomial \mathcal{P}^{sl(N)}(\mathcal{K};q, t) recovers the classical HOMFLY‐PT poly‐
nomial with specialization a = q^{N} ,

i.e. \mathcal{P}^{sl(N)}(\mathcal{K};q, -1) = P(\mathcal{K};q^{N}, q) . The idea of

the superpolynomial \mathcal{P}(\mathcal{K};a, q, t) was introduced in [16] by Dunfield‐Gukov‐Rasmussen

so that they could recover the classical HOMFLY‐PT polynomial and Alexander polyno‐
mial respectively. This was further studied by Khovanov‐Rozansky in [33]. The theory
of the superpolynomial become a very active area which attracts many mathematician

and physicists. Dunfield‐Gukov‐Rasmussen further argued [16] that the superpolynomial
\mathcal{P}(\mathcal{K};a, q, t) could recover \mathcal{P}^{sl(N)}(\mathcal{K};q, t) under a certain differential d_{N} while the special‐
ized superpolynomial \mathcal{P}(\mathcal{K};t^{-1}, q, t) could recover the Poincare polynomial HFK(\mathcal{K};q^{2}, t)
of Heegaard‐Floer knot homology \overline{HFK}_{i}(\mathcal{K};s) under a certain differential d_{0}.

The author first proposed a congruence relation conjecture under some homological t‐

grading shifting just like the non‐categorified colored SU(n) invariants[7]. Based on these

congruence relations, finally the author formulated the following cyclotomic expansion
conjecture,

Conjecture 3.6 (Cyclotomic Expansion Conjecture of the Superpolynomial of colored

HOMFLY‐PT homology, Chen [5]). For any knot \mathcal{K} , there exists an integer‐valued invari‐

ant  $\alpha$(\mathcal{K}) \in \mathbb{Z}, s.t . the reduced Superpolynomial \mathcal{P}_{N}(\mathcal{K};a, q, t) of the colored HOMFLY‐PT

homology of a knot \mathcal{K} has the following cyclotomic expansion formula

(-t)^{N $\alpha$(\mathcal{K})}\mathcal{P}_{N}(\mathcal{K};a, q, t)

= 1+\displaystyle \sum_{k=1}^{N}H_{k}(\mathcal{K};a, q, t) (A_{-1}(a, q, t)\prod_{i=1}^{k}(\frac{\{N+1-i\}}{\{i\}}B_{N+i-1}(a, q, t)))
with coefficient functions H_{k}(\mathcal{K};a, q, t) \in \mathbb{Z}[a^{\pm 1}, q^{\pm 1}, t^{\pm 1}] ,

where A_{i}(a, q, t)=aq^{i}+t^{-1}a^{-1}q^{-i},
B_{i}(a, q, t)=t^{2}aq^{i}+t^{-1}a^{-1}q^{-i} and \{p\}=q^{p}-q^{-p}.

Remark 3.1. The above Conjecture‐Definition for the invariant  $\alpha$(\mathcal{K}) should be understood

in this way. If the above conjecture of a knot \mathcal{K} is true for N=1
,

then  $\alpha$(\mathcal{K}) is defined.

We tested many homologically thick knots up to 10 crossings to illustrate this con‐

jecture as well as many examples with higher representation. Based on highly nontrivial

computations of torus knots/links studied in [17], we are able to prove the following
theorem for torus knots.

Theorem 3.7 (Chen [5]). For any coprime pair (m, n)=1 ,
where m<n ,

the cyclotomic
expansion conjecture is true for torus knot T(m, n) and we have  $\alpha$(T(m, n)) = -(m-
1) (n-1)/2.

Now we are considering a problem relating to the sliceness of a knot.
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Definition 3.1. The smooth 4‐ball genus g_{4}(\mathcal{K}) of a knot \mathcal{K} is the minimum genus of

a surface smoothly embedded in the 4‐ball B^{4} with boundary the knot. In particular, \mathrm{a}

knot \mathcal{K}\subset S^{3} is called smoothly slice if g_{4}(\mathcal{K})=0.

Conjecture 3.8 (Milnor Conjecture, proved by Kronheimer‐Mrowka and Rasmussen).
The smooth 4‐ball genus for torus knot T(m, n) is (m-1)(n-1)/2.

Based on all the above results, we are able to propose the following conjecture.

Conjecture 3.9 (Chen [5]). The invariant  $\alpha$(\mathcal{K}) (determined by the cyclotomic expansion
conjecture for N= 1) is a lower bound for the smooth 4‐ball genus g_{4}(\mathcal{K}) , i.e. | $\alpha$(\mathcal{K})| \leq

 g_{4}(\mathcal{K}) .

Remark 3.2. Rasmussen [55] introduced a knot concordant invariant s(\mathcal{K}) ,
which is a lower

bound for the smooth 4‐ball genus for knots. For all the knots we tested, it is identical

to the Ozsváth‐Szabó�s  $\tau$ invariant and Rasmussen�s  s invariant (up to a factor of 2).
Now we present certain motivation to propose our Volume Conjecture for reduced

superpolynomials associated to the colored HOMFLY‐PT homologies.
We have the following expression for the figure‐eight knot 4_{1} [27],

\displaystyle \mathcal{P}_{N}(4_{1};a, q, t) = 1+ \sum_{k=1}^{N}\prod_{i=1}^{k}(\frac{\{N+1-i\}}{\{i\}}A_{i-2}(a, q, t)B_{N-1+i}(a, q, t)) ,

where A_{i}(a, q, t)=aq^{i}+t^{-1}a^{-1}q^{-i}, B_{i}(a, q, t)=t^{2}aq^{i}+t^{-1}a^{-1}q^{-i} and \{p\}=q^{p}-q^{-p}.
Now we apply the idea of �gap equations� on the cyclotomic expansion of reduced

superpolynomial of the colored HOMFLY‐PT homology. By looking at middle terms

A_{N-2}(q^{n}, q, t)=q^{N+n-2}+t^{-1}q^{-(N+n-2)} and B_{N}(q^{n}, q, t)=(-t)^{2}q^{N+n}+t^{-1}q^{-(N+n)} ,
we get

to know that the possible �gap equations� is the equation (-t)q^{N+n-1}+t^{-1}q^{-(N+n-1)}=0.
By studying the above 2‐variable �gap equations�, we propose a Volume Conjecture for

superpolynomials of the HOMFLY‐PT homology at its solution t=q^{-(N+n-1)} as follows.

Conjecture 3.10 (Volume Conjecture for the Superpolynomial of the HOMFLY‐PT

homology, Chen [5]). For any hyperbolic knot \mathcal{K}
,

we have

2 $\pi$\displaystyle \lim_{N\rightarrow\infty}\frac{\log \mathcal{P}_{N}(\mathcal{K};q^{n},q,q^{-(N+n-1)})|_{q=e^{\frac{ $\pi$\sqrt{-1}}{N+b}}}}{N+1}=Vol (S^{3}\backslash \mathcal{K})+\sqrt{-1}CS(S^{3}\backslash \mathcal{K}) (mod\sqrt{-1}$\pi$^{2}\mathbb{Z}) ,

where b\geq 1 and \displaystyle \frac{n-1-b}{2} is not a positive integer.

Remark 3.3. The choices of roots of unity in this conjecture are much more relaxed than

those of the original Volume conjectures, because here b can be any large positive integers.
For example, the original Volume Conjecture is only proposed for n=2 and b= 1

,
but

this Volume Conjecture is proposed for all positive integer b with n=2.

It will be interesting to know the relationship of this volume conjecture to the one

proposed in [19], where they used categorified \mathrm{A}‐polynomials of knots.

We think this new vision on Volume Conjecture creates many problems, which opens a

new window to understand the very mysterious essence of quantum invariants,
and form another key goal of this survey.
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Cyclotomic expansion for the reduced superpolynomial \mathcal{F}_{N}(\mathcal{K};a, q, t) of the colored

Kauffman homology (Gukov‐Walcher [24]) were also proposed by the author in [5].
The author address the following question in Problem set of ITLDT conference. From

the above discussion and many results we have obtained, the author have a feeling that

all quantum invariants may have such cyclotomic expansion and will also have Volume

Conjecture from studying of such �Gap equations�� indicated from the corresponding
cyclotomic expansion.

Here is a summary of various results.

Relations between various HOMFLY‐PT theories
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Relations between various Kauffman theories
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