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Abstract

Let  C denote a linear code of length n over a finite field $\Gamma$_{q} and let C^{\perp} denote the

corresponding dual. The Assmus‐Mattson theorem states that combinatorial designs
can be obtained from the supports of codewords of C with fixed weight type when‐

ever the Hamming weight enumerators of C and C^{\perp} satisfy certain conditions. This

famous result has been strengthened and extended to many different settings including
the Assmus‐Mattson type theorems for \mathbb{Z}_{4}‐linear codes due to Tanabe (2003), and due

to Shin, Kumar and Helleseth (2004). In this paper, we discuss an Assmus‐Mattson

type theorem for block codes where the alphabet is the vertex set of some commuta‐

tive association scheme. This particular theorem generalizes the Assmus‐Mattson type
theorems mentioned above as well as the original. In proving our results, we invoke

several techniques from multivariable polynomial interpolation and from the repre‐

sentation theory of Terwilliger algebras. This is based on a joint work with Hajime
Tanaka.

1 Introduction

We begin by recalling the famous Assmus‐Mattson theorem:

Theorem 1.1 (Assmus and Mattson [1, Theorem4.2]). Let C be a linear code of length
n over $\Gamma$_{\mathrm{q}} with minimum weight  $\delta$ . Let  C^{\perp} denote the dual code of C with minimum

weight $\delta$^{*} . Suppose that an integer t (1 \leq t \leq n) exists such that either there are at

most  $\delta$-t weights of C^{\perp}in \{1, 2, . . . , n-t\} or there are at most $\delta$^{*}-t weights of C

in \{1, 2, . . . , n-t\} . Then the supports of the words of any fixed weight in C form a

t‐design (possibly with repeated blocks).

The theorem mentioned above has been proven and strengthened in many different

settings (see [11, 10, 32, 2, 36, 23, 38] for instance). The objective of this paper is to

present a theorem which unifies many of the known generalizations and extensions of

Theorem 1.1. We advise the reader to check [29] for a more detailed discussion of the
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topic.

Recent interests in constructing combinatorial designs from codes began when Gul‐

liver and Harada [17] and Harada [18] found new 5‐designs from the lifted Golay code of

length 24 over \mathbb{Z}_{4} (among others) through computer search. Later, these constructions

were further explained and generalized by Bonnecaze, Rains, and Solé [6]. Motivated

by these results, Tanabe [35] then obtained an Assmus‐Mattson‐like theorem for linear

codes over \mathbb{Z}_{4} with respect to the symmetrized weight enumerator. Though Tanabe�s

theorem can find 5‐designs from the lifted Golay code over \mathbb{Z}_{4} , the technique involves

finding the ranks of matrices having quite complicated entries. As a consequence, ver‐

ifying the conditions by manual computations is difficult. Tanabe [37] then presented
a simpler version of his theorem, and we can easily check its conditions by hand for

the lifted Golay code over \mathbb{Z}_{4}.

By an Assmus‐Mattson‐type theorem, we mean a theorem which enables us to find

combinatorial t‐designs by just looking at some kind of weight enumerator of a code

(and some other information such as linearity). It should be noted that the combi‐

natorial designs obtained from such as a theorem does not necessarily give the best

estimate for the integer t but the wide range of applicability is commendable.

We shall see that there corresponds a weight enumerator for every s‐class transla‐

tion association scheme. In particular, the Hamming weight enumerator is related to

the Hamming association schemes which are extensions of 1‐claồs association schemes.

Hamming schemes belong to a family called metric and cometric association schemes,
and Tanaka [38] showed that Theorem 1.1 can be interpreted and generalized from this

point of view. On the other hand, the situation becomes more complicated when s>1

as we are considering an extension of a finer translation association scheme.

In this paper, we present an Assmus‐Mattson‐type theorem for codes over the vertex

set of some s‐class translation scheme. In general, the weights of a codeword take the

form  $\alpha$= ($\alpha$_{1}, $\alpha$_{2}, \ldots , $\alpha$_{s}) where each $\alpha$_{i} is a nonnegative integer and \mathrm{a}_{1}+\cdots+$\alpha$_{n}\leq n.
We count the number of weights in a given interval when s = 1 as in Theorem 1.1,
but in case s>1 then we speak of the minimal degree of subspaces of the polynomial
ring \mathbb{R}[$\xi$_{1}, $\xi$_{2}, $\xi$_{s}] which allow unique Lagrange interpolation with respect to those

weights (which are lattice points in \mathbb{R}^{S} ) contained in a given region. When specialized
to the case of \mathbb{Z}_{4}‐linear codes with the symmetrized weight enumerator as in [35, 37],
the association scheme on the alphabet \mathbb{Z}_{4} has two classes R_{1} and R_{2} , together with

the identity class R_{0} , defined by

(x, y)\in R_{\dot{ $\eta$}} \Leftrightarrow  y-x=\pm i (mod4) (x, y\in \mathbb{Z}_{4})

for  i\in \{0 , 1, 2 \} , and the extension of this 2‐class association scheme is called the Lee

association scheme over \mathbb{Z}_{4} . Our results give a slight extension of Tanabe�s theorem in

[37]. Moreover, the Assmus‐Mattson‐type theorem for \mathbb{Z}_{4} ‐linear codes with the Ham‐

ming weight enumerator due to Shin, Kumar, and Helleseth [31] can also be recovered.

In proving our results, we make heavy use of the representation theory of the Ter‐

williger algebra [41, 42, 43], which is a non‐commutative semisimple matrix \mathbb{C}‐algebra
with respect to a fixed vertex of an association scheme.
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2 Preliminaries

In this section we briefly review some basic concepts concerning commutative associa‐

tion schemes and related algebras. We advise the reader to check [4, 9, 25] for a more

thorough discussion of the topic.

Let X be a nonempty finite set. Let V denote the vector space over \mathbb{C} of column

vectors with coordinates indexed by X . Define the vector \hat{x}\in V for each x\in X such

that y‐coordinate of \hat{x} is $\delta$_{xy} for all y \in  X where  $\delta$ is the Kronecker delta function.

The set \{\hat{x}| x\in X\} forms an orthonormal basis for V with respect to the Hermitian

inner product \{u,  v\rangle =u^{\mathrm{t}}\overline{v} for all u, v\in V . Let \mathrm{M}\mathrm{a}\mathrm{t}_{X}(\mathrm{C}) denote the \mathbb{C}‐algebra of all

matrices over \mathbb{C} with rows and columns indexed by X . Observe that \mathrm{M}\mathrm{a}\mathrm{t}_{X}(\mathbb{C}) acts on

V by left multiplication. Let \mathcal{R}=\{R_{0}, R_{1}, . . . , R_{s}\} denote a partition on X\times X and

let A_{i}\in \mathrm{M}\mathrm{a}\mathrm{t}_{X}(\mathbb{C}) denote the characteristic matrix of R_{\dot{ $\eta$}}\subseteq X\times X . The pair (X, \mathcal{R}) is

called a commutative association scheme on s classes if

(i) A_{0}=I , the identity matrix;

(ii) \displaystyle \sum_{i=0}^{s}A_{i}=J , the all ones matrix;

(iii) \{A_{0}, A_{1}, . . . , A_{s}\} is closed under conjugate‐tranpose;

(iv) A_{i}A_{j}=A_{j}A_{i}\in M :=\displaystyle \sum_{k=0}^{s}\mathbb{C}A_{k} for 0\leq i,j\leq s.

In this case, we call X the vertex set and \mathcal{R}=\{R_{0}, . . . , R_{s}\} the set of associate classes.

We call V the standard module for the commutative association scheme (X, \mathcal{R}) .

The Bose‐Mesner algebra M is the commutative subalgebra of \mathrm{M}\mathrm{a}\mathrm{t}_{X}(\mathbb{C}) with basis

consisting of the associate matrices A_{0}, A_{1} , . . . , A_{s} . There exists a second basis for M

consisting of the matrices E_{0}=|X|^{-1}J, E_{1} , . . . , E_{s} such that E_{0}+E_{1}+\cdots+E_{s}=I
and E_{i}E_{j}=$\delta$_{ij}E_{i} for all 0\leq i,j\leq s . The matrices E_{0}, E_{1} , . . . , E_{8} are called primitive
idempotents. We define the change‐of‐basis matrices P and Q by

A_{i}=\displaystyle \sum_{j=0}^{s}P_{ji}E_{j} , (1)

E_{i}=|X|^{-1}\displaystyle \sum_{j=0}^{s}Q_{ji}A_{j} . (2)

we refer to P and Q as the first and second eigenmatrix of (X, \mathcal{R}) , respectively.

Fix x\in X . We recall the dual Bose‐Mesner algebra M^{*}(x) with respect to x . Define

diagonal matrices E_{i}^{*}=E_{i}^{*}(x) and A_{i}^{*}=A_{i}^{*}(x) in \mathrm{M}\mathrm{a}\mathrm{t}_{X}(\mathbb{C}) for each integer 0\leq i\leq s
such that the (y, y)‐entries are given by (E_{i}^{*})_{yy} = (A_{i})_{xy} and (A_{i}^{*})_{yy}= |X|(E_{i})_{xy} for

each y \in  X . Then M^{*}(x) is the commutative subalgebra of \mathrm{M}\mathrm{a}\mathrm{t}_{X}(\mathbb{C}) that has two

special bases, \{E_{0}^{*}, E_{1}^{*}, . . . , E_{s}^{*}\} and \{A_{0}^{*}, A_{1}^{*}, . . . , A_{s}^{*}\} . The matrices E_{0}^{*}, E_{1}^{*} , . . .

, E_{s}^{*} are

called dual primitive idempotents with respect to x and the matrices A_{0}^{*}, A_{1}^{*} , . . . , A_{s}^{*} are

called dual associate matrices with respect to x.

Let T(x) denote the subalgebra of \mathrm{M}\mathrm{a}\mathrm{t}_{X}(\mathbb{C}) that is generated by M and M^{*}(x) .

We call T(x) the Terwilliger algebra of (X, R) with respect to x . Note that T(x) is
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finite‐dimensional and is semisimple since T(x) is closed under the conjugate transpose

map. On the standard module V , any two non‐isomorphic irreducible modules for T(x)
are orthogonal. For every irreducible T(x) ‐module W\subseteq V , define the sets

W_{s}=\{0\leq i\leq s|E_{i}^{*}W\neq 0\} and W_{s}^{*}=\{0\leq i\leq s|E_{i}W\neq 0\}.

We call W_{s}, W_{s}^{*} the support and dual support of W , respectively. We say W is thin

(resp. dual thin) if \dim(E_{i}^{*}W) \leq  1 for all i (resp. \dim(E_{j}W) \leq  1 for all j ). There

exists a unique irreducible module for T(x) that is both thin and dual thin for which

the support and the dual support are both equal to \{0, 1, . . . , s\} . We call this the

primary module for T(x) .

We end this section with a connection between commutative association schemes

and codes. The reader may refer to [12, 13] for more details. For the rest ofthis section,
let C denote a subset of X and let \hat{C} denote the characteristic vector of  C\subseteq  X . In

this paper, we shall call C a code if 1< |C| < |X| . Assume for a moment that C is a

code. The inner distribution of C is the vector a= ( a_{0}, al, . . . , a_{s} ) \in \mathbb{R}^{s+1} where the

scalars a_{i} are defined by

a_{i}=|C|^{-1}\langle\hat{C}, A_{i}\hat{C}\rangle=|C|^{-1}\cdot|R_{\dot{ $\eta$}}\cap(C\times C

Clearly, the scalars a_{i} are nonnegative. Observe that using (2), we obtain

\langle\hat{C}, E_{i}\hat{C}\rangle=|X|^{-1}|C|(aQ)_{i}
for every i(0\leq i\leq s) where (aQ)_{i} denotes the ith coordinate of the vector aQ\in \mathbb{R}^{s+1}.
The vector aQ is often referred to as the MacWilliams transform of a.

3 Translation Schemes and Extensions

Let (X, \mathcal{R}) denote a commutative association scheme with s classes. Assume further

that X has the structure of an abelian group (written additively) with identity 0 . We

call (X, \mathcal{R}) a translation association scheme if for every 0\leq i\leq s and for every z\in X

we have (x, y)\in R_{\dot{ $\eta$}} implies (x+z, y+z)\in R_{ $\eta$} . For the rest of the section, assume that

(X, \mathcal{R}) is a translation association scheme and we shall pick the identity element as the

base vertex when dealing with Terwilliger algebras of translation association schemes.

We show that there exists an association scheme (X^{*}, \mathcal{R}^{*}) that is dual to (X, \mathcal{R}) . It

turns out that this dual is also a translation association scheme.

Let X^{*} denote the character group of X with identity element L . To each  $\epsilon$\in X^{*}

we associate the vector

\displaystyle \hat{ $\epsilon$}=|X|^{-1/2}\sum_{x\in X}\overline{ $\epsilon$(x)}\hat{x}\in V.
By the orthogonal relations of the characters, we observe that the set \{\hat{ $\epsilon$}|  $\epsilon$ \in X^{*}\}
forms an orthonormal basis of V . We claim that these basis vectors are eigenvectors
for the associate matrices A_{0}, A_{1} , . . .

, A_{s} . In particular, one routinely obtains

\langle A_{i}\hat{ $\epsilon$}, \hat{ $\tau$}\rangle=\left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f}  $\epsilon$\neq $\tau$\\
\sum_{x\in X_{i}}\overline{\mathcal{E}i(x)} & \mathrm{i}\mathrm{f}  $\epsilon$= $\tau$
\end{array}\right.
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for every  $\epsilon$,  $\tau$\in X^{*} where X_{i}=\{x\in X| (0, x)\in R_{ $\eta$}\} for each 0\leq i\leq s . Consequently,
each vector \hat{ $\epsilon$} is contained in one of the subspaces E_{i}V of V . Thus, we have a partition

X^{*}=X_{0}^{*}\sqcup x_{1}^{*}\mathrm{u}\cdots \mathrm{u}x_{ $\epsilon$}^{*},

given by X_{i}^{*}=\{ $\epsilon$\in X^{*} : \hat{ $\epsilon$}\in E_{i}V\} (0\leq i\leq s) . Define the set \prime \mathcal{R}^{*}=\{R_{\mathrm{c}}^{*}, R_{1}^{*}, . . . , R_{s}^{*}\}
of nonempty binary relations on X^{*} by

R_{ $\eta$}^{*}=\{( $\epsilon$,  $\eta$)\in X^{*}\times X^{*} :  $\eta \epsilon$^{-1}\in X_{i}^{*}\} (0\leq i\leq s) .

It turns out that the pair (X^{*}, \mathcal{R}^{*}) is again a translation association scheme called

the dual of (X, \mathcal{R}) . Suppose that P^{*} and Q^{*} are the first and second eigenmatrices of

(X^{*}, R^{*}) , respectively. Then P^{*}=Q and Q^{*}=P , and that

P_{ji}=\displaystyle \sum_{x\in X_{i}}\overline{ $\epsilon$(x)} ( $\epsilon$\in X_{j}^{*}) , Q_{ji}=\sum_{ $\epsilon$\in X_{i}^{*}} $\epsilon$(x) (x\in X_{j}) .

We view V together with the basis \{\hat{ $\epsilon$}: $\epsilon$\in X^{*}\} as the standard module for (X^{*}, \mathcal{R}^{*}) .

We call a code C in X an additive code if C is a subgroup of X . Assume for the

moment that C is an additive code, and let the vector a= ( a_{0}, al, . . . , a_{s} ) denote its

inner distribution. We claim that a_{i}=|X_{i}\cap C| for each 0\leq i\leq s . This follows from

the fact that every element z\in X_{i}\cap C can be expressed as y-x where x,  y\in  C in

exactly |C| ways. In this case, the vector a is also called the weight distribution of C.

The duat code of C is the subgroup C^{\perp} in X^{*} defined by

C^{\perp}= {  $\epsilon$\in X^{*} :  $\epsilon$(x)=1 for all x\in C}.

It turns out that |X_{i}^{*}\cap C^{\perp}| = |C|^{-1}(aQ)_{i} (0 \leq i \leq s) so that |C|^{-1}(aQ) gives the

weight distribution of C^{\perp}.

The group operation on X^{*} is multiplicative. In many cases we may view a code

in X^{*} as a code in X by fixing \mathrm{a} (non‐canonical) isomorphism X\rightarrow X^{*} (x\mapsto$\epsilon$_{x}) such

that

$\epsilon$_{x}(y)=$\epsilon$_{y}(x) (x, y\in X) . (3)

Thus, the dual code of an additive code in X becomes again an additive code in X.

For more details about translation association schemes, the reader may refer to [12,
Chapter 6], [9, §2.10], and [25, §6].

For the rest of this paper, we will fix an integer  n\geq  2 . Delsarte [12, §2.5] gave a

construction of a new commutative association scheme from (X, \mathcal{R}) with vertex set X^{n}

as follows. For a sequence  $\alpha$= ($\alpha$_{1}, $\alpha$_{2}, \ldots , $\alpha$_{s}) \in \mathbb{N}^{s} , let | $\alpha$| =\displaystyle \sum_{i=1}^{s}$\alpha$_{i} . For any two

vertices x= (x_{1}, x2, . . . , x_{n}) , y= (y_{1}, y2, . . . , y_{n}) \in X^{n} , define the composition of x, y

to be the vector c(x, y)=(c_{1}, c_{2}, \ldots , c_{s})\in \mathrm{N}^{S} where

c_{i}=|\{l:(x_{\ell}, y_{\ell})\in R_{ $\eta$}\}| (1\leq i\leq s) .

Let S denote the set of all possible compositions. For every  $\alpha$\in S , define the binary
relation R_{\mathfrak{v}} on X^{n} by

R_{ $\alpha$}=\{(x, y)\in X^{n}\times X^{n} : c(x, y)= $\alpha$\}.
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Then it follows that the pair (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) is a commutative association scheme

called the extension of (X, \mathcal{R}) of length n . We shall identify its standard module with

V^{\otimes n} so that \hat{x} :=\hat{x}_{1}\otimes\hat{x}_{2}\otimes\cdots\otimes\hat{x}_{n} for every x= (x_{1}, x2, . . . , x_{n}) \in X^{n} . For every

 $\alpha$\in S , the associate matrix A_{ $\alpha$} is the characteristic matrix of R_{ $\alpha$} \subseteq X^{n} and is then

given by

A_{ $\alpha$}=\displaystyle \sum_{i_{1},i_{2},\ldots,i_{n}}A_{i_{1}}\otimes A_{i_{2}}\otimes\cdots\otimes A_{i_{n}} , (4)

where the sum is over i_{1}, i_{2} , . . ., i_{n}\in \mathrm{N} such that

\{i_{1}, i_{2}, . . . , i_{n}\}=\{0^{n-| $\alpha$|}, 1^{$\alpha$_{1}} , 2^{ $\alpha$ 2}, . . . , s^{$\alpha$_{s}}\}
as multisets. In particular, the Bose‐Mesner algebra M of (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) coincides

with the n^{\mathrm{t}\mathrm{h}} symmetric tensor space of M . Similar expressions hold for the primitive
idempotents, dual idempotents, and the dual associate matrices of (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S

denoted by the E_{ $\alpha$}, E_{ $\alpha$}^{*} , and the A_{ $\alpha$}^{*} , respectively. Recall that if x_{0} is the identity
element in X then the vertex x_{0} := (x0, x0, . . . , x_{0}) is the identity element in X^{n} and

is then chosen as the base vertex. We denote the corresponding dual Bose‐Mesner

algebra and the Terwilliger algebra by M^{*} and T , respectively. We also consider the

partition

X^{n}=\sqcup(X^{n})_{ $\alpha$} $\alpha$\in S
where (X^{n})_{ $\alpha$}=\{x\in X^{n} : (x_{0}, x)\in R_{ $\alpha$}\}.

Let \{e_{i} : 1\leq i\leq s\} be the standard basis of \mathbb{R}^{S} . It can be routinely checked that

A_{\mathrm{e}_{i}}=\displaystyle \sum_{ $\alpha$\in \mathrm{N}^{s} ,| $\alpha$|\leq n}(\sum_{j=0}^{s}$\alpha$_{j}P_{ji})E_{ $\alpha$}, A_{e_{i}}^{*}=\sum_{ $\alpha$\in \mathrm{N}^{s} ,| $\alpha$|\leq n}(\sum_{j=0}^{s}$\alpha$_{j}Q_{ji})E_{ $\alpha$}^{*} , (5)

where $\alpha$_{0} :=n-| $\alpha$| . More generally, Mizukawa and Tanaka [27] described the eigenma‐
trices of (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) in terms of certain s‐variable hypergeometric orthogonal
polynomials that generalize the Krawtchouk polynomials. The reader may also refer

to [22] and [21].

Suppose (X, \mathcal{R}) is a translation association scheme and let (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) is

the extension of length n of the association scheme (X, R) . To this end, we define a

corresponding weight enumerator of C for every additive code C in X^{n} and we recall

a generalization of the well‐known MacWilliams identity. Let  $\xi$=($\xi$_{0}, $\xi$_{1}, \ldots, $\xi$_{s}) be a

sequence so that $\xi$_{0}, $\xi$_{1} , . . . , $\xi$_{s} are indeterminates. For every element  $\alpha$\in S , we define

$\xi$^{ $\alpha$}=$\xi$_{0}^{n-| $\alpha$|}$\xi$_{1}^{$\alpha$_{1}}$\xi$_{2}^{$\alpha$_{2}}\ldots$\xi$_{s}^{$\alpha$_{8}}.
Now, we consider a code C in X^{n} with corresponding inner distribution a=(a_{ $\alpha$})_{ $\alpha$\in S}.
Define the polynomial w_{C}( $\xi$) in \mathbb{R}[ $\xi$]=\mathbb{R}[$\xi$_{0}, $\xi$_{1}, . . . , $\xi$_{s}] given by

w_{C}( $\xi$)=\displaystyle \sum_{ $\alpha$\in S}a_{ $\alpha$}$\xi$^{ $\alpha$}.
Since (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) is a translation association scheme, the vector a is also the

weight distribution of C . We refer to the polynomial wc( $\xi$) as the weight enumerator
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of C . It should be remarked that (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) and (X^{*n}, \{R_{ $\alpha$}^{*} :  $\alpha$\in S^{*}\}) are

dual to each other. It can be shown that

w_{C^{\perp}}( $\xi$)=|C|^{-1}w_{C}( $\xi$ Q^{\mathrm{T}}) .

This generalizes the well‐known MacWilliams identity. This equation implies that

the weight enumerator of the dual code C^{\perp} can be easily obtained from the weight
enumerator of the code C.

4 Codes over \mathbb{Z}_{4}
In this section, we consider abelian group X=\mathbb{Z}_{4} as the vertex set and discuss different

examples of translation association schemes (X, \mathcal{R}) . We also construct the extension

(X^{n}, \{R_{ $\alpha$} :  $\alpha$ \in S\}) of length n of the translation scheme (X, \mathcal{R}) and describe the

corresponding weight enumerator of an additive code C in X^{n}.

For our first example, we consider the partition \mathcal{R}= \{R_{0}, (X\times X)\backslash R_{0}\} so that

(X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) is an extension of a one‐class association scheme. The association

scheme (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) is called the Hamming association scheme. The Hamming
schemes are well‐studied association schemes and they belong to a family of metric and

cometric schemes. In this case, the corresponding weight enumerator of any additive

code in X^{n} is called the Hamming weight enumerator.

For our second example, we consider the partition \mathcal{R}=\{R_{0}, R_{1}, R_{2}\} of X\times X such

that R_{\dot{ $\eta$}} = \{(x, y) \in X\times X | y-x=\pm i (\mathrm{m}\mathrm{o}\mathrm{d} 4)\} for each 0\leq i \leq  2 . Observe that

the pair (X, \mathcal{R}) is a two‐class translation association scheme. We refer to the extension

(X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) as a Lee association scheme over \mathbb{Z}_{4} . The Terwilliger algebras of

Lee association schemes over \mathbb{Z}_{4} are described in [28]. Now let C denote an additive

code in X^{n} and let w_{C}( $\xi$) denote the corresponding weight enumerator of C . We refer

to wc( $\xi$) as the symmetrized weight enumerator of C.

Finally, we consider the partition \mathcal{R}=\{R_{0}, R_{1}, R_{2}, R3\} of X\times X given by

R_{1}=\{(0,1) , (1, 2), (2, 3), (3, 0

R_{2}=\{(0,2) , (1, 3), ( 2, 0) , (3, 1

R_{3}=\{(0,3) , (1, 0) , (2, 1), (3, 2) \}

so that (X^{n}, \{R_{ $\alpha$} :  $\alpha$\in S\}) is an extension of a three‐class association scheme. In this

case, the corresponding weight enumerator of any additive code in X^{n} is called the

complete weight enumerator.

5 Main Results

In this section, we present the main theorem (Theorem 5.3) as well as some supple‐
ments that improve the main theorem (see [29] for the proofs). To do this, we need to

recall some concepts from polynomial interpolation (see [14] for more details).
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Let F be a finite set of points in \mathbb{R}^{S} . We call a linear subspace \mathscr{L} of \mathbb{R}[$\xi$_{1}, $\xi$_{2}, \cdots, $\xi$_{s}]
an interpolation space with respect to F if for every f\in \mathbb{R}[$\xi$_{1}, $\xi$_{2}, . . . , $\xi$_{s}] , there exists

a unique g\in \mathscr{L} such that f(z) =g(z) for every point  z\in  F . If, in addition, this g

always satisfies \deg f \geq \deg g , then we refer to \mathscr{L} as a minimal degree interpolation
space. Let \mathscr{M}(F) denote a minimal degree interpolation space with respect to F and

define

 $\mu$(F)=\displaystyle \max\{\deg f : f\in \mathscr{M}(F)\}.

We recall a construction of a minimal degree interpolation space \mathscr{M}(F) due to de Boor

and Ron (see [7, 8 For every non‐zero element f = \displaystyle \sum_{i=0}^{\infty}f_{i} in the ring of formal

power series \mathbb{R}[[$\xi$_{1}, $\xi$_{2}, \cdots, $\xi$_{s}]] where f_{i} is homogeneous of degree i , define

f\downarrow=f_{i_{0}},

where i_{0}=\displaystyle \min\{i:f_{i}\neq 0\} . Conventionally, we set 0\downarrow:=0 . The theorem below gives
us a construction for a minimal degree interpolation space \mathscr{M}(F) .

Theorem 5.1 ([7, 8 Let F be a finite set of points in \mathbb{R}^{S} . Let á be the subspace of
\mathbb{R}[[$\xi$_{1}, $\xi$_{2}, . . . , $\xi$_{s}]] spanned by the exponential functions

\displaystyle \exp(\sum_{i=1}^{s}z_{i}$\xi$_{i}) ( (z_{1}, z2, . . . , z_{s})\in F) .

Then the subspace

\displaystyle \sum_{f\in \mathscr{E}}\mathbb{R}f_{\downarrow}\subset \mathbb{R}[$\xi$_{1}, $\xi$_{2}, . . . , $\xi$_{s}]
is a minimal degree interpolation space with respect to F.

Theorem 5.1 immediately leads to the following formula for  $\mu$(F) which is well suited

for computer calculations:

Supplement 5.2. For every finite set F of points in \mathbb{R}^{s} , the scalar  $\mu$(F) equals the

smallest m\in \mathrm{N} for which the polynomials

\displaystyle \sum_{k=0}^{m}(\sum_{i=1}^{s}z_{i}$\xi$_{i})^{k} ( (z_{1}, z2, \cdots z_{s})\in F)
are linearly independent.

We see that \mathscr{M}(F) exists but is not unique. However, it can be shown that  $\mu$(F) is

well‐defined that is, it is independent of the choice of \mathscr{M}(F) .

We retain the notation of Section 3. For every x= (x_{1}, x2, . . . , x_{n})\in X^{n} , define

\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)=\{P:x_{\ell}\neq x_{0}\}\subset\{1, 2, . . . , n\}.

We call \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x) the support of x (with respect to x_{0} ). We now present our main

theorem.
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Theorem 5.3. Let C denote a code in X^{n} and let wc( $\xi$) = \displaystyle \sum_{ $\alpha$\in S}a_{ $\alpha$}$\xi$^{ $\alpha$} denote its

corresponding weight enumerator. Let w_{C^{\perp}}( $\xi$) = \displaystyle \sum_{ $\alpha$\in S}a_{ $\alpha$}^{*}$\xi$^{ $\alpha$} denote the weight enu‐

merator of the dual code C^{\perp}of C. Let

F_{r}=\{ $\alpha$\in S : r\leq| $\alpha$| \leq n-r, a_{ $\alpha$}\neq 0\} (1\leq r\leq \lfloor n/2\rfloor) ,

and let

$\delta$^{*}=\displaystyle \min\{| $\alpha$|\neq 0: $\alpha$\in S and a_{ $\alpha$}^{*}\neq 0\}.

Suppose that an integer t(1\leq t\leq n) is such that

 $\mu$(F_{r})<$\delta$^{*}-r (1\leq r\leq t) . (6)

Then the multiset

\{\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mathrm{x}) : x\in(X^{n})_{ $\alpha$}\cap C\} (7)

is a t‐design for every  $\alpha$\in \mathrm{N}^{S} with | $\alpha$|\leq n.

We use Theorem 5.3 together with the following �supplements� and these supple‐
ments improve the main theorem.

Supplement 5.4. Let C be a code in X�. Assume that we are given in advance a set

 K\subset  S such that the multiset (7) \dot{u} a t ‐design for every  $\alpha$\in K. Then the condition

(6) in Theorem 5.3 may be replaced by

 $\mu$(F_{r}\backslash K)<$\delta$^{*}-r (1\leq $\tau$\leq t) .

We call a subset C of X^{n} a weakly t ‐balanced arrayl over (X, \mathcal{R}) (with respect to

the base vertex x_{0} ) if, for any  $\Lambda$\subset\{1, 2, . . . , n\} and  $\gamma$\in S such that | $\gamma$| \leq| $\Lambda$|\leq t , the

number

|\{x\in C:(x_{i})_{i\in $\Lambda$}\in (X^{| $\Lambda$|})_{ $\gamma$}\}|
depends only on | $\Lambda$| and  $\gamma$.

Supplement 5.5. Suppose that (X, \mathcal{R}) is a translation association scheme, and that

C \dot{u} an additive code in X^{n} . Assume that we are given in advance a set L\subset S such

that, for every  $\alpha$\in L, (X^{*n})_{ $\alpha$}\cap C^{\perp}is a weakly t ‐balanced array over (X^{*}, \mathcal{R}^{*}) . Then

the scalar $\delta$^{*} in Theorem 5.3 may be replaced by

\displaystyle \min\{|\mathrm{a}| : 0\neq $\alpha$\in S\backslash L, a_{ $\alpha$}^{*}\neq 0\} . (8)

Supplement 5.6 below was inspired by [37, Theorem 2], and allows us to estimate

 $\mu$(F) , and hence t , by geometrical considerations. It is a general result about minimal

degree interpolation spaces.

Supplement 5.6. Let F be a finite set of points in \mathbb{R}^{S} . Suppose that there are real

scalars z_{i\ell} (1 \leq i \leq s, \ell \in \mathrm{N}) , a positive integer m , and a linear automorphism
 $\sigma$\in \mathrm{G}\mathrm{L}(\mathbb{R}^{S}) such that z_{ik}\neq zu whenever k\neq P , and that

 $\sigma$(F)\subset\{(z, z, \ldots, z_{s$\alpha$_{8}})\in \mathbb{R}^{S}: $\alpha$\in \mathbb{N}^{s}, | $\alpha$|\leq m\} . (9)

Then  $\mu$(F)\leq m.
'This term is meant as only provisional; cf. [34].
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