On the Brauer indecomposability of Scott modules

東京理科大学・理学研究科 石岡 大樹 Hiroki Ishioka Department of Mathematics, Tokyo University of Science

1. INTRODUCTION

Let k be an algebraically closed field of prime characteristic p. Let G be a finite group. For a finite dimensional kG-module M and a p-subgroup Q of G, we denote by M(Q) the Brauer quotient of M with respect to Q. The Brauer quotient M(Q) is naturally a $kN_G(Q)$ -module. A kG-module M is said to be Brauer indecomposable if M(Q) is indecomposable or zero as a $kQC_G(Q)$ -module for any p-subgroup Q of G ([4]). Brauer indecomposability of p-permutation modules is important for constructing stable equivalences of Morita type between blocks of finite groups (see [1]).

In [4], a relationship between Brauer indecomposability of p-permutation modules and saturated fusion systems was given. For a p-subgroup P of G, we denote by $\mathcal{F}_P(G)$ the fusion system of G over P. One of the main result in [4] is the following.

Theorem 1 ([4, Theorem 1.1]). Let P be a p-subgroup of G and M an indecomposable p-permutation kG-module with vertex P. If M is Brauer indecomposable, then $\mathcal{F}_P(G)$ is a saturated fusion system.

In the special case that P is abelian and M is the Scott kG-module S(G, P), the converse of the above theorem holds.

Theorem 2 ([4, Theorem 1.2]). Let P be an abelian p-subgroup of G. If $\mathcal{F}_P(G)$ is saturated, then S(G, P) is Brauer indecomposable.

In general, the above theorem does not hold for non-abelian P. However, there are some cases in which the Scott kG-module S(G, P) is Brauer indecomposable, even if P is not necessarily abelian.

We study the condition that S(G, P) to be Brauer indecomposable where P is not necessarily abelian. The following result gives an equivalent condition for Scott kG-module with vertex P to be Brauer indecomposable.

Theorem 3. Let G be a finite group and P a p-subgroup of G. Suppose that M = S(G, P)and that $\mathcal{F}_P(G)$ is saturated. Then the following are equivalent.

- (i) M is Brauer indecomposable.
- (ii) For each fully normalized subgroup Q of P, the module $\operatorname{Res}_{QC_G(Q)}^{N_G(Q)}S(N_G(Q), N_P(Q))$ is indecomposable.

If these conditions are satisfied, then $M(Q) \cong S(N_G(Q), N_P(Q))$ for each fully normalized subgroup $Q \leq P$.

A similar result is obtained independently in [3] by R. Kessar, S. Koshitani and M. Linckelmann. In their theorem ([3, Theorem 1.1]), they obtain a better condition than ours since they assume that $\mathcal{F}_P(G) = \mathcal{F}_P(N_G(P))$ which we do not assume.

The following theorem shows that $\operatorname{Res}_{QC_G(Q)}^{N_G(Q)} S(N_G(Q), N_P(Q))$ is indecomposable if Q satisfies some conditions.

Theorem 4. Let G be a finite group, P a p-subgroup of G and Q a fully normalized subgroup of P. Suppose that $\mathcal{F}_{P}(G)$ is saturated. Moreover, we assume that there is a subgroup H_Q of $N_G(Q)$ satisfying following two conditions:

(i) $N_P(Q) \in Syl_p(H_Q)$ (ii) $|N_G(Q) : H_O| = p^a$ (c)

(ii)
$$|N_G(Q): H_Q| = p^a \ (a \ge 0)$$

Then $\operatorname{Res}_{QC_G(Q)}^{N_G(Q)} S(N_G(Q), N_P(Q))$ is indecomposable.

The following is a consequence of above two theorems.

Corollary 5. Let G be a finite group and P a p-subgroup of G. Suppose that $\mathcal{F}_P(G)$ is saturated. If for every fully normalized subgroup Q of P there is a subgroup H_Q of $N_G(Q)$ satisfies the conditions of Theorem 4, then S(G, P) is Brauer indecomposable.

Throughout this article, we denote by $L \cap_G H$ the set $\{{}^gL \cap H \mid g \in G\}$ for subgroups L and K of G.

2. Preliminaries

2.1. Scott modules. First, We recall the definition of Scott modules and some of its properties:

Definition 6. For a subgroup H of G, the Scott kG-module S(G, H) with respect to H is the unique indecomposable summand of $\operatorname{Ind}_{H}^{G}k_{H}$ that contains the trivial kG-module.

If P is a Sylow p-subgroup of H, then S(G, H) is isomorphic to S(G, P). By definition, the Scott kG-module S(G, P) is a p-permutation kG-module.

By Green's indecomposability criterion, the following result holds.

Lemma 7. Let H be a subgroup of G such that $|G:H| = p^a$ (for some $a \ge 0$). Then $\operatorname{Ind}_{H}^{G}k_{H}$ is indecomposable. In particular, we have that

$$S(G, H) \cong \operatorname{Ind}_{H}^{G}.$$

Hence, for p-subgroup P of G, if there is a subgroup H of G such that P is a Sylow *p*-subgroup of H and $|G:H| = p^a$, then we have that

$$S(G, P) \cong \operatorname{Ind}_{H}^{G} k_{H}.$$

The following theorem gives us information of restrictions of Scott modules.

Theorem 8 ([2, Theorem 1.7]). Let H be a subgroup of G and P a p-subgroup of G. If Q is a maximal element of $P \cap_G H$, then S(H,Q) is a direct summand of $\operatorname{Res}_H^G S(G,P)$.

2.2. Brauer quotients. Let M be a kG-module and H a subgroup of G. Let M^H be the set of H-fixed elements in M. For subgroups L of H, we denote by Tr_H^G the trace map $\operatorname{Tr}_L^H : M^L \longrightarrow M^H$. Brauer quotients are defined as follows.

Definition 9. Let M be a kG-module. For a p-subgroup Q of G, the Brauer quotient of M with respect to Q is the k-vector space

$$M(Q):=M^Q/(\sum_{R< Q} \operatorname{Tr}^Q_R(M^R))$$

This k-vector space has a natural structure of $kN_G(Q)$ -module.

Proposition 10. Let P be a p-subgroup of G and M = S(G, P). Then $M(P) \cong S(N_G(P), P)$.

Proposition 11. Let M be an indecomposable p-permutation kG-module with vertex P. Let Q be a p-subgroup of G. Then $Q \leq_G P$ if and only if $M(Q) \neq 0$.

2.3. Fusion systems. For a *p*-subgroup P of G, the fusion system $\mathcal{F}_P(G)$ of G over P is the category whose objects are the subgroups of P, and whose morphisms are the group homomorphisms induced by conjugation in G.

Definition 12. Let P be a p-subgroup of G

- (i) A subgroup Q of P is said to be fully normalized in $\mathcal{F}_P(G)$ if $|N_P(^xQ)| \le |N_P(Q)|$ for all $x \in G$ such that $^xQ \le P$.
- (ii) A subgroup Q of P is said to be fully automized in $\mathcal{F}_P(G)$ if $p \nmid |N_G(Q) : N_P(Q)C_G(Q)|$.
- (iii) A subgroup Q of P is said to be receptive in $\mathcal{F}_P(G)$ if it has the following property: for each $R \leq P$ and $\varphi \in \operatorname{Iso}_{\mathcal{F}_P(G)}(R, Q)$, if we set

$$N_{\varphi} := \{ g \in N_P(Q) \mid \exists h \in N_P(R), c_g \circ \varphi = \varphi \circ c_h \},\$$

then there is $\overline{\varphi} \in \operatorname{Hom}_{\mathcal{F}_P(G)}(N_{\varphi}, P)$ such that $\overline{\varphi}|_R = \varphi$.

Saturated fusion systems are defined as follows.

Definition 13. Let P be a p-subgroup of G. The fusion system $\mathcal{F}_P(G)$ is saturated if the following two conditions are satisfied:

- (i) P is fully normalized in $\mathcal{F}_P(G)$.
- (ii) For each subgroup Q of P, if Q is fully normalized in $\mathcal{F}_P(G)$, then Q is receptive in $\mathcal{F}_P(G)$.

For example, if P is a Sylow p-subgroup of G, then $\mathcal{F}_P(G)$ is saturated.

3. Sketch of Proof

In this section, let P be a p-subgroup of G and M the Scott module S(G, P).

Lemma 14. If $Q \leq P$ is fully normalized in $\mathcal{F}_P(G)$, then $N_P(Q)$ is a maximal element of $P \cap_G N_G(Q)$.

By above lemma, we can show that $S(N_G(Q), N_P(Q))$ is a direct summand of M(Q) for each fully normalized subgroup Q of P. Therefore, we have that (i) implies (ii) in Theorem 3.

Assume that Theorem 3 (ii) holds. We prove that $\operatorname{Res}_{QC_G(Q)}^{N_G(Q)}(M(Q))$ is indecomposable for each $Q \leq P$ by induction on |P:Q|. Without loss of generality, we can assume that Q is fully normalized. If M(Q) is decomposable, then by the following lemma, we can show that there is a subgroup R such that $Q < R \leq P$ and $\operatorname{Res}_{RC_G(R)}^{N_G(R)}$ is decomposable, this contradicts the induction hypothesis.

Lemma 15. Suppose that a subgroup Q of P is fully automized and receptive. Then for any $g \in G$ such that $Q \leq {}^{g}P$, we have that $N_{{}^{g}P}(Q) \leq_{N_{G}(Q)} N_{P}(Q)$.

Hence, M(Q) is indecomposable, and isomorphic to $S(N_G(Q), N_P(Q))$. Consequently, Theorem 3 (ii) implies 3 (i).

Theorem 4 is proved by using properties of Scott modules and the following lemma.

Lemma 16. If Q is fully automized subgroup of P, and there is a subgroup $H_Q \leq N_G(Q)$ containing $N_P(Q)$ such that $|N_G(Q) : H_Q| = p^a$, then $C_G(Q)H_Q = N_G(Q)$.

4. Example

Suppose that p = 2. Let G be a group defined by

$$G := \langle a, x, y \mid a^4 = x^2 = e, a^2 = y^2,$$
$$xax = a^{-1}, ay = ya, xy = yx \rangle$$

and let P be a subgroup $\langle a, xy \rangle$ of G. Then we can easily verify that $\mathcal{F}_P(G)$ is saturated. For each fully normalized subgroup Q of P, if we choose H_Q as P, then H_Q satisfies two conditions in Theorem 4. Therefore, S(G, P) is Brauer indecomposable by Corollary 5.

In particular, if G is a p-group and $\mathcal{F}_P(G)$ is saturated for a p-subgroup P of G, then G and P satisfy the hypothesis of the Corollary 5, and hence S(G, P) is Brauer indecomposable.

References

- M. Broué, On Scott Modules and p-permutation modules : an approach through the Brauer morphism, Proc. Amer. Math. Soc. 93 (1985), 401-408.
- [2] H. Kawai. On indecomposable modules and blocks. Osaka J. Math., 23(1):201-205, 1986.
- [3] R. Kessar, S. Koshitani, and M. Linckelmann, On the Brauer indecomposability of Scott modules, Q. J. Math. 66 (2015), 895-903.
- [4] R. Kessar, N. Kunugi, N. Mitsuhashi, On Saturated fusion systems and Brauer indecomposability of Scott modules, J. Algebra 340 (2011), 90-103.

DEPARTMENT OF MATHEMATICS TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601 JAPAN

E-mail address: 114701@ed.tus.ac.jp