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1. INTRODUCTION

Let k be an algebraically closed field of prime characteristic p . Let G be a finite

group. For a finite dimensional kG‐module M and a ‐subgroup Q of G ,
we denote

by M(Q) the Brauer quotient of M with respect to Q . The Brauer quotient M(Q) is

naturally a kN_{G}(Q)‐module. A kG‐module M is said to be Brauer indecomposable if

M(Q) is indecomposable or zero as a kQC_{G}(Q) ‐module for any p‐‐subgroup Q of G ([4]).
Brauer indecomposability of p‐‐permutation modules is important for constructing stable

equivalences of Morita type between blocks of finite groups (see [1]).
In [4], a relationship between Brauer indecomposability of p‐permutation modules and

saturated fusion systems was given. For a p‐‐subgroup P of G , we denote by \mathcal{F}_{P}(G) the

fusion system of G over P . One of the main result in [4] is the following.

Theorem 1 ([4, Theorem 1.1| ). Let P be a p‐subgroup of G and M an indecomposable
p‐permutation kG ‐module with vertex P. If M is Brauer indecomposable, then \mathcal{F}_{P}(G) is

a saturated fusion system.

In the special case that P is abelian and M is the Scott kG‐module S(G, P) , the

converse of the above theorem holds.

Theorem 2 ([4, Theorem 1.2]). Let P be an abelian p ‐subgroup of G. If \mathcal{F}_{P}(G) is

saturated, then S(G, P) is Brauer indecomposable.

In general, the above theorem does not hold for non‐aUelian P . However, there are

some cases in which the Scott kG‐module S(G, P) is Brauer indecomposable, even if P is

not necessarily abelian.

We study the condition that S(G, P) to be Brauer indecomposable where P is not

necessarily abelian. The following result gives an equivalent condition for Scott kG‐

module with vertex P to be Brauer indecomposable.

Theorem 3. Let G be a finite group and P a p‐subgroup of G. Suppose that M=S (G ) P)
and that \mathcal{F}_{P}(G) is saturated. Then the following are equivalent.

(i) M is Brauer indecomposable.

(ii) For each fully normalized subgroup Q ofP , the module {\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}S(N_{G}(Q), N_{P}(Q))
is indecomposable.

If these conditions are satisfied, then M(Q)\cong S(N_{G}(Q), N_{P}(Q)) for each fully normalized

subgroup Q\leq P.
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A similar result is obtained independently in [3] by R. Kessar, S. Koshitani and M.

Linckelmann. In their theorem ([3, Theorem 1.1]), they obtain a better condition than

ours since they assume that \mathcal{F}_{P}(G)=\mathcal{F}_{P}(N_{G}(P)) which we do not assume.

The following theorem shows that {\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}S(N_{G}(Q), N_{P}(Q)) is indecomposable if Q
satisfies some conditions.

Theorem 4. Let G be a finite group, P a p ‐subgroup of G and Q a fully normalized

subgroup of P. Suppose that \mathcal{F}_{P}(G) is saturated. Moreover, we assume that there is a

subgroup H_{Q} of N_{G}(Q) satisfying following two conditions:

(i) N_{P}(Q)\in Syl_{p}(H_{Q})
(ii) |N_{G}(Q) : H_{Q}|=p^{a} (a\geq 0)

Then {\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}S(N_{G}(Q), N_{P}(Q)) is indecomposable.

The following is a consequence of above two theorems.

Corollary 5. Let G be a finite group and P a p ‐subgroup of G. Suppose that \mathcal{F}_{P}(G) is

saturated. If for every fully normalized subgroup Q of P there is a subgroup H_{Q} of N_{G}(Q)
satisfies the conditions of Theorem 4, then S(G, P) is Brauer indecomposable.

Throughout this article, we denote by L\displaystyle \bigcap_{G}H the set \{^{g}L\cap H|g\in G} for subgroups
L and K of G.

2. PRELIMINARIES

2.1. Scott modules. First, We recall the definition of Scott modules and some of its

properties:

Definition 6. For a subgroup H of G ,
the Scott kG‐module S(G, H) with respect to H

is the unique indecomposable summand of \mathrm{I}\mathrm{n}\mathrm{d}_{H}^{G}k_{H} that contains the trivial kG‐module.

If P is a Sylow ‐subgroup of H , then S(G, H) is isomorphic to S(G, P) . By definition,
the Scott kG‐module S(G, P) is a p‐permutation kG‐module.

By Green�s indecomposability criterion, the following result holds.

Lemma 7. Let H be a subgroup of G such that |G : H| = p^{a} (for some a\geq 0). Then

\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{G}k_{H} is indecomposable. In particular, we have that

S(G, H)\cong \mathrm{I}\mathrm{n}\mathrm{d}_{H}^{G}.

Hence, for p‐‐subgroup P of G ,
if there is a subgroup H of G such that P is a Sylow

‐subgroup of H and |G : H|=p^{a} , then we have that

S (G )
P ) \cong \mathrm{I}\mathrm{n}\mathrm{d}_{H}^{G}k_{H}.

The following theorem gives us information of restrictions of Scott modules.

Theorem 8 ([2, Theorem 1.7]). Let H be a subgroup of G and P a p‐subgroup of G. If
Q is a maximal element of P\displaystyle \bigcap_{G}H , then S (H ) Q ) is a direct summand of {\rm Res}_{H}^{G}S(G, P) .
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2.2. Brauer quotients. Let M be a kG‐module and H a subgroup of G . Let M^{H} be

the set of H‐fixed elements in M . For subgroups L of H ) we denote by \mathrm{T}\mathrm{r}_{H}^{G} the trace map

\mathrm{T}\mathrm{r}_{L}^{H} : M^{L}\rightarrow M^{H} . Brauer quotients are defined as follows.

Definition 9. Let M be a kG‐module. For a ‐subgroup Q of G , the Brauer quotient of

M with respect to Q is the k‐vector space

M(Q):=M^{Q}/(\displaystyle \sum_{R<Q}\mathrm{T}\mathrm{r}_{R}^{Q}(M^{R})) .

This k‐vector space has a natural structure of kN_{G}(Q) ‐module.

Proposition 10. Let P be a p‐subgroup of G and M = S(G, P) . Then M(P) \cong

 S(N_{G}(P), P) .

Proposition 11. Let M be an indecomposable p‐permutation kG ‐module with vertex P.

Let Q be a p‐subgroup of G. Then Q\leq c^{P} if and only if M(Q)\neq 0.

2.3. Fusion systems. For a  1\succ‐subgroup  P of G ,
the fusion system \mathcal{F}_{P}(G) of G over P is

the category whose objects are the subgroups of P , and whose morphisms are the group

homomorphisms induced by conjugation in G.

Definition 12. Let P be a p‐subgroup of G

(i) A subgroup Q of P is said to be fully normalized in \mathcal{F}_{P}(G) if |N_{P}(^{x}Q ) | \leq |N_{P}(Q)|
for all x\in G such that XQ\leq P.

(ii) A subgroup Q of P is said to be fully automized in \mathcal{F}_{P}(G) if p  $\dagger$ |N_{G}(Q) :

N_{P}(Q)C_{G}(Q)|.
(iii) A subgroup Q of P is said to be receptive in \mathcal{F}_{P}(G) if it has the following property:

for each R\leq P and  $\varphi$\in \mathrm{I}\mathrm{s}\mathrm{o}_{\mathcal{F}_{P}(G)}(R, Q) , if we set

N_{ $\varphi$} :=\{g\in N_{P}(Q) |\exists h\in N_{P}(R), c_{g}\circ $\varphi$= $\varphi$\circ c_{h}\},
then there is \overline{ $\varphi$}\in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{F}_{P}(G)}(N_{ $\varphi$}, P) such that \overline{ $\varphi$}|_{R}= $\varphi$.

Saturated fusion systems are defined as follows.

Definition 13. Let P be a p‐‐subgroup of G . The fusion system \mathcal{F}_{P}(G) is saturated if

the following two conditions are satisfied:

(i) P is fully normalized in \mathcal{F}_{P}(G) .

(ii) For each subgroup Q of P
,
if Q is fully normalized in \mathcal{F}_{P}(G) , then Q is receptive

in \mathcal{F}_{P}(G) .

For example, if P is a Sylow p‐subgroup of G , then \mathcal{F}_{P}(G) is saturated.

3. SKETCH OF PROOF

In this section, let P be a p‐‐subgroup of G and M the Scott module S(G, P) .

Lemma 14. If Q\leq P is fully normalized in \mathcal{F}_{P}(G) , then N_{P}(Q) is a maximal element

of P\displaystyle \bigcap_{G}N_{G}(Q) .
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By above lemma, we can show that S(N_{G}(Q), N_{P}(Q)) is a direct summand of M(Q)
for each fully normalized subgroup Q of P . Therefore, we have that (i) implies (ii) in

Theorem 3.

Assume that Theorem 3 (ii) holds. We prove that {\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}(M(Q)) is indecomposable
for each Q\leq P by induction on |P : Q| . Without loss of generality, we can assume that

Q is fully normalized. If M(Q) is decomposable, then by the following lemma, we can

show that there is a subgroup R such that Q <R\leq  P and {\rm Res}_{RC_{G}(R)}^{N_{G}(R)} is decomposable,
this contradicts the induction hypothesis.

Lemma 15. Suppose that a subgroup Q of P is fully automized and receptive. Then for
any g\in G such that Q\leq 9P , we have that N_{gP}(Q) \leq_{N_{G}(Q)}N_{P}(Q) .

Hence, M(Q) is indecomposable, and isomorphic to S(N_{G}(Q), N_{P}(Q)) . Consequently,
Theorem 3 (ii) implies 3 (i).

Theorem 4 is proved by using properties of Scott modules and the following lemma.

Lemma 16. If Q is fully automized sub_{9}roup of P , and there is a sub_{9}roupH_{Q}\leq N_{G}(Q)
containing N_{P}(Q) sttch that |N_{G}(Q):H_{Q}|=p^{a} , then C_{G}(Q)H_{Q}=N_{G}(Q) .

4. EXAMPLE

Suppose that p=2 . Let G be a group defined by

G :=\langle a, x, y|a^{4}=x^{2}=e, a^{2}=y^{2},
xax=a^{-1}, ay=ya, xy=yx\rangle,

and let P be a subgroup \{a,  xy\rangle of  G . Then we can easily verify that \mathcal{F}_{P}(G) is saturated.

For each fully normalized subgroup Q of P ,
if we choose H_{Q} as P , then H_{Q} satisfies two

conditions in Theorem 4. Therefore, S(G, P) is Brauer indecomposable by Corollary 5.

In particular, if G is a p‐‐group and \mathcal{F}_{P}(G) is saturated for a p‐subgroup P of G,
then G and P satisfy the hypothesis of the Corollary 5) and hence S(G, P) is Brauer

indecomposable.
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