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1. INTRODUCTION

In analogy to the decomposition of the space of Siegel modular forms

of fixed weight and degree into the space of cusp forms and spaces of

Eisenstein series of Klingen type associated to cusp forms, Dulinski

showed in [3] that the space of Jacobi forms of fixed weight, degree and

index admits a natural decomposition into a direct sum of the space
of cusp forms and certain spaces of Jacobi Eisenstein series of Klingen
type. In [2], Böcherer studied how the Fourier‐JacoUi coefficients of

square free index of a Klingen Eisenstein series of degree 2 behave un‐

der this decomposition, i. e., how one can identify the components in

Dulinski�s decomposition of these Fourier‐Jacobi coefficients. In par‐

ticular, whereas cusp forms have cuspidal Fourier‐Jacobi coefficients

and the Siegel Eisenstein series has Siegel‐JacoUi Eisenstein series as

Fourier‐Jacobi coefficients, he showed that the Fourier‐Jacobi coeffi‐

cients of the Klingen Eisenstein series of degree 2 attached to elhptic
cusp forms have both a cuspidal and an Eisenstein series part.
We continue this investigation here, using a different method, and ob‐

tain an explicit description of the components for arbitrary degree and

index. Again, one sees that more than one component appears.

This article and the talk at this RIMS workshop on this topic by the

second author on which it is based give an overview of the work of

the first author in his doctoral dissertation [7] written at Universität

des Saarlandes under the supervision of the second author. Most of

the proofs are only sketched, we refer to the dissertation for full de‐

tails. All results are due to to the first author, the second author takes

responsibility for the present write‐up and all possible mistakes in it.

2. PRELIMINARIES

For the basic notions of the theory of Siegel modular forms we refer to

[4, 6], for Jacobi forms to [3]. In particular, we consider for k>n+1
the decomposition \mathcal{M}_{n}^{k} = \oplus_{m=0}^{n}\mathcal{M}_{n,m}^{k} of the space of Siegel modular

forms of weight k and degree n for the full modular group Sp_{n}(\mathbb{Z}) into

the spaces \mathcal{M}_{n,m}^{k} generated by Eisenstein series E_{n,m}^{k}(f) of Klingen type
associated to a cusp form f\in \mathcal{M}_{m}^{k} . For F\in \mathrm{A}l_{n}^{k} we denote its Fourier

coefficient at the symmetric matrix T by A(F, T) ,
here T runs over the
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set \overline{\mathrm{M}\mathrm{a}\mathrm{t}}_{n}^{\mathrm{s}\mathrm{y}\mathrm{m}}(\mathbb{Z}) of positive definite half integral symmetric matrices of

size n with integral diagonal.
For n'<n and g= (_{CD}^{AB} ) \in Sp_{n'}(\mathbb{R})\subseteq GL_{2n'}(\mathbb{R}) we write

g^{\uparrow n}= \left(\begin{array}{llll}
A & 0 & B & 0\\
0 & 1_{n-n'} & 0 & 0\\
C & 0 & D & 0\\
0 & 0 & 0 & \mathrm{l}_{n-n'}
\end{array}\right) g^{\downarrow n}= \left(\begin{array}{llll}
1_{n-n'} & 0 & 0 & 0\\
0 & A & 0 & B\\
0 & 0 & 1_{n-n'} & 0\\
0 & C & 0 & D
\end{array}\right) ,

for U\in GL_{n}(\mathbb{R}) write L(U)= \left(\begin{array}{ll}
{}^{t}U^{-1} & 0\\
0 & U
\end{array}\right) \in Sp_{n}(\mathbb{R}) .

We let C_{n,r}\subseteq Sp_{n}(\mathbb{Z}) denote the intersection with Sp_{n}(\mathbb{Z}) of the maxi‐

mal parabolic P_{n,r}(\mathrm{Q}) of Sp_{n}(\mathrm{Q})\subseteq GL_{2n}(\mathrm{Q}) characterized as the set of

g=(g_{ij})\in Sp_{n}(\mathrm{Q}) with g_{ij}=0 for i>n+r,j\leq n+r and J_{n,r}\subseteq C_{n,r}
(the Jacobi group of degree(n, r) ) as the set of elements of C_{n,r} with

an (n-r) \times (n-r) identity matrix in the lower right hand corner.

Notice that, with n=r_{1}+r_{2} , Dulinski [3] writes J^{r_{1},r2} \subseteq C_{r+r,r}121 for

this group.
For s\leq r we divide an n\times n‐matrix into blocks of sizes

\left(\begin{array}{llll}
s\times s & s & \times(r-s)s & \times(n-r)s\\
(n-r)\times(r-s)\times & s & (n-r)\times(r-s)(r-s)\times(r-s) & (n-r)\times(n-r)(r-s)\times(n-r)
\end{array}\right)
and let

Q_{s}^{r,n-r}=\{\left(\begin{array}{ll}
A & B\\
C & D
\end{array}\right) \in Sp_{n}(\mathbb{Z}) |C= \left(\begin{array}{ll}
*0 & 0\\
00 & 0\\
00 & 0
\end{array}\right) D= \left(\begin{array}{l}
***0*\\
00*1_{n-r}
\end{array}\right) \}.
With a block division of type ((n-r)\times s(r-s)\times ss\times s(n-r)\times(n-r)(r-s)\times(n-r)s\times(n-r)(n-r)\times(r-s)(r-s)\times(r-s)s\times(r-s)) we let

\tilde{Q}_{s}^{r,n-r}=\{\left(\begin{array}{ll}
A & B\\
C & D
\end{array}\right) \in Sp_{n}(\mathbb{Z}) |C= \left(\begin{array}{ll}
*0 & 0\\
00 & 0\\
00 & 0
\end{array}\right) D= (_{0}^{*}0 1_{r_{0}-s}^{*} ***) \}.
For n=r_{1}+r_{2} and T\in\overline{\mathrm{M}\mathrm{a}\mathrm{t}}_{r}^{\mathrm{s}\mathrm{y}\mathrm{m}}2(\mathbb{Z}) we denote by J_{r_{1},r2}^{k}(T) the space

of Jacobi forms of weight k
, degree (r_{1}, r_{2}) and index T (which have

good transformation behavior under the Jacobi group J_{n,r1} ). A Siegel
modular form then has a Fourier‐JacoUi expansion

F(Z)=\displaystyle \sum_{T_{4}\in\tilde{M}_{r_{2}}^{\mathrm{s}\mathrm{y}\mathrm{m}}(\mathbb{Z})}$\phi$_{T_{4}}(z_{1}, z_{2})e(T_{4}z_{4})=\sum_{T_{4}}$\phi$^{(T_{4})}(Z) ,

with Fourier‐Jacobi coefficients  $\phi$($\tau$_{4}) \in  J_{r,r}^{k}12(T) of degree (r_{1}, r_{2}) ,
in‐

dex T_{4} and weight k , where Z = \left(\begin{array}{ll}
z1 & z2\\
t_{z}2 & z4
\end{array}\right) is in the Siegel upper half

plane fl_{n} of degree n with z_{1} \in\ovalbox{\tt\small REJECT}_{r1}, z_{4}\in\hslash_{r}2, z_{2}\in \mathrm{M}\mathrm{a}\mathrm{t}_{r_{1},r_{2}}(\mathbb{C}) .
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By Theorem 2 of [3] the space \mathcal{J}_{rr}^{k}1,2(T) has a decomposition

J_{r_{1},r_{2}}^{k}(T)=\displaystyle \bigoplus_{s=0}^{1}I_{(r,r),s}^{k}12(T)r,
where the elements of \mathcal{J}_{(r_{1},r_{2}),s}^{k}(T) are Jacobi Eisenstein series of Klin‐

gen type associated to Jacobi cusp forms of degree (s, r_{2}) with varying
index T' for which T'[U] = T for some integral matrix U . Dulinski

defines these Jacobi Eisenstein series of Klingen type only for index T

of maximal rank. For T of rank t<r_{2} we notice that by [8] the space

J_{rr}1,2(T) is isomorphic to \mathcal{J}_{rr}1,2(\left(\begin{array}{l}
T_{1}0\\
00
\end{array}\right)) with a T_{1} which is positive
definite of size t and that this latter space is isomorphic to J_{r_{1},t}(T_{1}) .

These isomorphisms allow to transfer Dulinski�s definitions to index of

arbitrary rank.

Our task is then to identify the components in this decomposition of

the Fourier‐Jacobi coefficients of an Eisenstein series of Klingen type
as explicitly as possible.

3. PARTIAL SERIES OF THE KLINGEN EISENSTEIN SERIES

Lemma 3.1. For 0\leq m<n, 0\leq r_{1}<n and 0\displaystyle \leq t\leq\min(n-m, n-

r_{1}) let M_{n,mr_{1}}^{t} denote the set of all g= (_{CD}^{AB} ) \in Sp_{n}(\mathbb{Z}) for which the

lower right (n-m)\times (n-r_{1}) block C_{22} of C has rank t.

Then the sets M_{n,m,r}^{t} are left C_{n,m} and right C_{n,,.r} ‐invariant, and for
fixed j, r their (disjoint) union over 0 \leq  t \leq \displaystyle \min(n-m, n-r_{1}) is

Sp_{n}(\mathbb{Z}) .

Proof. This is easily checked, see the proof of Proposition 5.2 of [7]. \square 

Proposition 3.2. Let f\in \mathcal{M}_{m}^{k} be a cusp form.

i) For 0\leq m<n, 0<r_{1}<n and 0\displaystyle \leq t\leq\min(n-m, n-r_{1}) the

partial series

H_{n,m,r_{1}}^{t}(f;Z):=\displaystyle \sum_{ $\gamma$\in C_{n,m}\backslash M_{n,m,r_{1}}^{t}}f( $\gamma$\langle Z\rangle^{*})j( $\gamma$, Z)^{-k}
of the Eisenstein series E_{n,m}^{k}(f) of Klingen type is well defined
and invariant under the action H\mapsto H|_{k}g of g\in J_{n,r1}.

ii) For 0 \leq  m < n one has for each r_{1} with 0 \leq  r_{1} < n the

decomposition

E_{n,m}^{k}(f)=\displaystyle \sum_{t=0}^{\min(n-m,n-r_{1})}H_{n,m,r_{1}}^{t}(f) .

iii) The partial series H_{n,m,r_{1}}^{t}(f) has a Fourier‐Jacobi decomposi‐
tion

H_{n,m,r_{1}}^{t}(f;Z):=\displaystyle \sum_{T}$\Psi$_{n,m, $\Gamma$ 11}^{(T),t}(f;Z)=\sum_{T}$\Psi$_{n,m,r;T}^{t}(f;z_{1}, z_{2})e(Tz_{4}) ,
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where the $\Psi$_{n,m,r;T}^{t}1(f;z_{1}, z_{2}) are Jacobi forms of degree (r_{1}, n-

r_{1}) and index T.

Proof. Obvious. The last assertion follows since both the existence of

an expansion as given and the transformation behavior of the coeffi‐

cients in it hold for functions on fl_{n} which are J_{n,r}1 ‐invariant but not

necessarily Siegel modular forms. \square 

Remark 3.3. Divide a matrix M \in \mathrm{M}\mathrm{a}\mathrm{t}_{n}(\mathbb{R}) for 0 < m, r < n into

blocks M_{11}, M_{12}, M_{21}, M_{22} of sizes j\times r, j\times(n-r) , (n-m)\times r, (n-
m) \times(n-r) respectively.
For  $\gamma$= (_{CD}^{AB}) let $\gamma$' be the (n+m) \times(n+r) matrix obtained from  $\gamma$

by removing the blocks  A_{21}, A_{22}, B_{22}, B_{12}, D_{12}, D_{22} in the second block

row and the last block column. Then it can be shown ([7, Satz 5.24])
that the set M_{n,m,r}^{t} is the set of all  $\gamma$\in  Sp_{n}(\mathbb{Z}) for which $\gamma$' has rank

m+r+t.

In order to compute the partial series given above one needs explicit
coset representatives for C_{n,m}\backslash M_{n,m,r}^{t} :

Theorem 3.4. Let \mathcal{R}_{1}^{s} for s\leq r denote a set of representatives of the

double cosets in L^{-1}(C_{m+r+t-2s,r-s})\backslash GL_{m+r+t-2s}^{r-s,*}(\mathbb{Z})/L^{-1}(J_{m+r+t-2s,r-s})
and \mathcal{R}_{2}^{s} a set of representatives of the cosets in

(_{0_{n-m-t+s-r,m+t+s}^{*}} **) \in GL_{n-r}(\mathbb{Z})\}\backslash GL_{n-r}(\mathbb{Z}) ,

where GL_{m+r+t-2s}^{r-s,*}(\mathbb{Z}) denotes the set of matrices in GL_{m+r+t-2s}(\mathbb{Z}) for
which the (r-s) \times (r-s) block in the lower left corner has full rank

r-s.

For u\in GL_{m+r+t-2s}^{r-s,*}(\mathbb{Z}) we put

û = \left(\begin{array}{lll}
1_{s} & 0 & 0\\
0 & u & 0\\
0 & 0 & 1_{n+s-m-t-r}
\end{array}\right) \in GL_{n}(\mathbb{Z})

and for u'\in GL_{n-r}(\mathbb{Z}) we put \~{u}'=\left(\begin{array}{ll}
1_{r} & 0\\
0 & u
\end{array}\right) \in GL_{n}(\mathbb{Z}) .

Then a set of representatives of the cosets in C_{n,m}\backslash M_{n,m,r}^{t} is given by
the matrices

$\gamma$_{1}^{\uparrow n}L(\hat{u})$\gamma$_{2}L(\tilde{u}') ,

where for s running from \displaystyle \max(r+m+t-n, 0) to \displaystyle \min(j, r) one lets u run

through \mathcal{R}_{1}^{s} and u' through \mathcal{R}_{2}^{s}, $\gamma$_{1} runs through a set of representatives
for C_{m+t,m}\backslash M_{m+t,m,s}^{t} and $\gamma$_{2} through a set of representatives of

J_{m+t+r-s,r}^{\uparrow n}\cap L(\hat{u}^{-1})(\tilde{Q}_{s}^{r,m+t-s})^{\uparrow n}L(\hat{u})\backslash J_{m+t+r-s,r}^{\uparrow n}.
Proof. This is Satz 5.21 of [7]. The rather technical proof occupies
most of Section 5. \square 
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4. THE FOURIER‐JACOBI COEFFICIENTS OF THE PARTIAL SERIES

Lemma 4.1. Let f\in M_{m}^{k} be a cusp form. With the notations of The‐

orem 3.4 let s, u, u' be fixed and let $\gamma$_{1}, $\gamma$_{2} run through the sets specified
there.

Then the partial sum

\displaystyle \sum_{$\gamma$_{1}}\sum_{$\gamma$_{2}}f($\gamma$_{1}^{\uparrow n}L(\hat{u})$\gamma$_{2}L(\tilde{u}^{J})\langle Z\rangle^{*})j($\gamma$_{1}^{\uparrow n}L(\hat{u})$\gamma$_{2}L(\tilde{u}'), Z)^{-k}
has a Founer‐Jacobi expansion of degree (r_{1}, r_{2}) with coefficients in

J_{(r_{1},r_{2}),s}(T^{J}) whose index T' has rank m+t-s.

In particular, for m+t=n and s=r_{1} the T' occurring have maximal

rank r_{2} and the Fourier‐Jacobi coefficients are cusp forms.

Proof. The first part of the assertion is formulated on p. 57 of [7] before

Lemma 6.3, its proof uses Lemma 6.3, 6.4, 6.6., where Lemma 6.6 is

the second part of our assertion. \square 

Theorem 4.2. i) The partial series H_{n,m,r}^{t}1(f) has a Fourier‐Jacobi

expansion whose coefficient  $\Psi$(T) := $\Psi$_{n,m,r_{1};T}^{t}(f) at T is in

\mathcal{J}_{(rr),m+t-\mathrm{r}\mathrm{k}(T)}^{k}1,2(T) .

ii) Let  $\phi$(T) denote the Fourier‐Jacobi coefficient at T\in\overline{\mathrm{M}\mathrm{a}\mathrm{t}}_{r}^{sym}2(\mathbb{Z})
of degree (r_{1}, r_{2}) of the Eisenstein series E_{n,m}(f) and let  $\Psi$(T)
be as in i) . Then  $\Psi$(T) is the component $\phi$_{(r_{1},r2} ),m+t-\mathrm{r}\mathrm{k}( $\tau$)(T) of
 $\phi$(T) in the space J_{(r_{1},r_{2}),m+t-\mathrm{r}\mathrm{k}(T)}^{k}(T) in Dulinski�s decomposi‐
tion.

Proof. The first assertion is proven in [7] in the calculation following
equation (6.2) on page 60 by using the lemma above and carrying
out the summation over u, u' from the set of representatives given in

Theorem 3.4. The second assertion follows since the components in

Dulinski�s decomposition are uniquely determined and E_{n,m}(f) is the

sum of the partial series H_{n,m,r_{1}}^{t}(f) . \square 

Remark 4.3. In particular, we see that only the spaces \mathcal{J}_{(rr),s}^{k}1,2(T)
with m-\mathrm{r}\mathrm{k}(T) \leq  s \leq \displaystyle \min(n-\mathrm{r}\mathrm{k}(T), m+r_{2}-\mathrm{r}\mathrm{k}(T)) . For m=n

the lower bound and \mathrm{r}\mathrm{k}(T) \leq  r_{2} give s \geq  r_{1_{f}} hence s = r_{1} , i.e., the

Fourier‐Jacobi coefficients of a cusp form are Jacobi cusp forms, which

is trivial.

For m = 0 we obtain s \leq  r_{2} -\mathrm{r}\mathrm{k}(T) ,
so the Fourier‐Jacobi coeffi‐

cients with index of maximal rank of the Siegel Eisenstein series are

Jacobi Eisenstein series of Siegel type, which is known from [1]. For

\mathrm{r}\mathrm{k}(T) < r_{2} the Fourier‐Jacobi coefficient of degree (r_{1}, r_{2}) with index

T is essentially the Fourier‐Jacobi coefficient of degree (r_{1}, \mathrm{r}\mathrm{k}(T)) of
the Siegel Eisenstein series of degree n-(r_{2}-\mathrm{r}\mathrm{k}(T)) at a matrix of
maximal rank, so it is again a Jacobi Eisenstein series of Siegel type.
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5. PULLBACKS AND FOURIER EXPANSIONS

Having identified the components in Dulinski�s decomposition of the

Fourier‐Jacobi expansion of the Eisenstein series E_{n,m}(f) in terms of

the coefficients of the partial series H_{n,m,r}^{t}1 we turn now to the task of

computing their Fourier expansion explicitly. For this we adapt and

refine ideas from [1] to our situation and divide the series defining the

Siegel Eisenstein series of degree n+m into certain subseries in way
similar to what we did in Section 3.

Lemma 5.1. Divide forj, r\leq n a matrix M\in \mathrm{M}\mathrm{a}\mathrm{t}_{n+m}(\mathbb{R}) into blocks

of types

((n-jjm)\displaystyle \times\times r\times rr (n-jjm)\times(n\frac {}{}r)\times(n-r)\times(n-r) (n\frac{j}{j}m)\times\times j\times jj)
and denote these blocks by M_{11} ,

. . .

, M_{33} . For  $\gamma$= (_{CD}^{AB} ) \in Sp_{n+m}(\mathbb{Z})

let \hat{ $\gamma$}= (_{C_{31}C_{32}D_{31}^{21}}^{CCD}C_{21}^{11}C_{22}^{12}D^{11}) \in \mathrm{M}\mathrm{a}\mathrm{t}_{n+m,n+r}(\mathbb{Z}) and denote for m+r \leq  v \leq

\displaystyle \min(n+m, n+r) the set of all  $\gamma$\in Sp_{n+m}(\mathbb{Z}) with \mathrm{r}\mathrm{k}(\hat{ $\gamma$})=v by X_{n,m,r}^{v}.
then X_{n,m,r}^{v} is left invariant under C_{n+m,0} and right invariant under

Sp_{m}^{\downarrow n+m}(\mathbb{Z}) , and Sp_{n+m}(\mathbb{Z}) is the disjoint union of the X_{n,m,r}^{v} for  m+r\leq

 v\displaystyle \leq\min(n+m, n+r) .

Proof. This is Proposition 7.2 of [7]. Since \hat{ $\gamma$} is obtained from  $\gamma$ by
deleting  n-r columns and n-m rows, its rank v must be between

m+r and \displaystyle \min(n+m, n+r) . the assertions about left and right
invariance are checked easily. \square 

We need an explicit set of representatives of the cosets in C_{n+m,0}\backslash X_{n,m,r}^{v}.
For this we recall that by [5] a set of representatives for C_{n+m,0}\backslash Sp_{n+m}(\mathbb{Z})
is given by the products

g_{j,M}(g_{j,0}')\uparrow n+m'g_{j}^{\uparrow n+m}((g_{j,1}'')^{\uparrow m})_{n+m}^{\downarrow}(g_{j}'')_{n+m}^{\downarrow},
where j runs from 0 to m , and for any such j we let g_{j,0}' run through
Sp_{j}(\mathbb{Z}) , g_{j}' through a set of representatives for C_{n,j}\backslash Sp_{n}(\mathbb{Z}) and g''
through a set of representatives for C_{m,j}\backslash Sp_{m}(\mathbb{Z}) . Moreover, with

M' running through the j \times j elementary divisor matrices and M=

(M'000) \in M_{m,n}(\mathbb{Z}) we let g_{j,M}= (_{M001_{m}}^{1000}0^{n}1m000{}^{t}M1_{n}0 ) and $\Gamma$_{j}(M') :=Sp_{j}(\mathbb{Z})\cap

\left(\begin{array}{ll}
0 & M^{\prime- 1}\\
M & 0
\end{array}\right)Sp_{s}(\mathbb{Z})\left(\begin{array}{ll}
0 & M^{\prime- 1}\\
M & 0
\end{array}\right) and let g_{j,1}'' run through a set of represen‐

tatives of $\Gamma$_{j}(M')\backslash Sp_{j}(\mathbb{Z}) .

Proposition 5.2. A set of representatives for C_{n+m,0}\backslash X_{n,m,r}^{v} is ob‐

tained from the representatives above by restricting gj�to a set of repre‐

sentatives of C_{n,j}\backslash M_{n,j,r}^{v-r-j}
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Proof. A straightforward computation shows that indeed these are pre‐

cisely the products which are in X_{m,n,r}^{v} , see Satz 7.4 of [7] and the proof
given there. \square 

Theorem 5.3. For 0 < s \leq  m let (f_{\mathrm{s}, $\nu$})_{ $\nu$} be an orthonormal basis of
Hecke eigenforms for the space of cusp forms of degree s and weight k.

We set A_{s}^{k} := $\pi$\displaystyle \frac{s(s-1)}{4}(4 $\pi$)^{\frac{s(s+1)}{2}-sk}\prod_{i=1}^{s} $\Gamma$(k-\frac{s+i}{2}) and

 $\beta$(s, k)=(-1)^{\frac{ $\epsilon$ k}{2}}s^{s(k-\frac{s-1}{2})}\displaystyle \prod_{i=0}^{s-1}\frac{$\pi$^{k-\frac{i}{2}}}{ $\Gamma$(k-\frac{i}{2})} $\zeta$(k)^{-1}\prod_{i=1}^{m} $\zeta$(2k-2i)^{-1}
For 0\leq m, r<n and m+r\displaystyle \leq v\leq\min(n+m, n+r) we put

G_{n,m,r}^{v}(Z):=\displaystyle \sum_{ $\gamma$\in c_{n+m,0\backslash X_{n,m,r}^{v}}}j( $\gamma$, Z)^{-k}
Then for Z_{1} \in \mathfrak{y}_{n}, Z_{2}\in\ovalbox{\tt\small REJECT}_{m} the pullback G_{n,m,r}^{v}(\left(\begin{array}{l}
-\overline{Z_{1}}0\\
Z_{2}0
\end{array}\right)) of G_{n,m,r}^{v} to

\mathfrak{H}_{n}\times \mathfrak{g}_{m} can be written as

G_{n,m,r}^{v}(\left(\begin{array}{ll}
-\overline{Z_{1}} & 0\\
0 & Z_{2}
\end{array}\right)) =\displaystyle \sum_{s=0}^{m}c_{s}\sum_{ $\nu$}D_{f_{s, $\nu$}}(k-s)E_{m,s}(f_{s, $\nu$};Z_{2})\overline{H_{n,s,r}^{v-r-s}(f,Z_{1})},
where D_{f_{S, $\nu$}} denotes the standard L ‐function of the Hecke eigenform
f_{s, $\nu$} (and this factor doesn�t occur for s=0) and where for s > 0 we

put c_{s}=2 $\beta$(s, k)A_{s}^{k} and set c_{0}=1.

Proof. This follows from the proof of the theorem in Section 5 of [5]
and the explicit evaluation of the constants occurring there in [1]. \square 

Corollary 5.4. For a Hecke eigenform f\in M_{m}^{k} of Petersson norm 1

one has

 H_{n,m,r}^{v-r-m}(f;Z_{1})= $\lambda$(f)^{-1}\langle f(\cdot) , G_{n,m,r}^{v}( (^{-\overline{Z_{1}}}0 0))\rangle
with  $\lambda$(f)=2 $\beta$(m, k)A_{m}^{k}D_{f}(k-m) as in the theorem above.

Proof. This follows since taking the Petersson product with f singles
out the summand containing H_{n,m,r}^{v-r-m}(f, Z_{1}) from the formula in the

theorem. \square 

By the corollary we can compute the Fourier expansion of our partial
series H_{n,m,r}^{v-r-m}(f) by computing the Petersson product on the right
hand side. We will do this adapting again ideas from [1].

Lemma 5.5. i) Let P_{n,m} = \left(\begin{array}{ll}
0 & 1_{m}\\
1_{n} & 0
\end{array}\right) . Then for l \leq  n the set

M_{n+m,0}^{l},{}_{n}L(P_{n,m})\cap X_{n,m,r}^{v} is nonempty only if l\leq v and X_{n,m,r}^{v}
is contained in the (disjoint) union of the M_{n+m,0}^{l},{}_{n}L(P_{n,m}) for
0\leq l\leq v.
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ii) With

G_{n,m,r}^{v,l}(Z):_{M_{n+m,0}^{l}}=,\displaystyle \sum_{{}_{n}L(P_{n,m})\cap X\mathfrak{X}_{m,r}},j( $\gamma$, Z)^{-k}
one has G_{n,m,r}^{v}(Z)=\displaystyle \sum_{l=0}^{v}G_{n,m,r}^{v,l}(Z)

iii) A set of representatives of C_{n+m,0}\backslash M_{n+m,0}^{l},{}_{n}L(P_{n,m})\cap X_{n,m,r}^{v}is
given by the

x^{\uparrow n+m}L(U)y^{\downarrow n+m} , where x runs through a set of representatives
of C_{l.0}\backslash M_{l,0,0}^{l}, y through a set of representatives of C_{m,0}\backslash Sp_{m}(\mathbb{Z})
and U through a set of representatives of

\{ (0_{n-l,l ,0_{m,l}}^{*} *** ***)\}\backslash 
{ \left(\begin{array}{lll}
u_{1} & u_{2} & u_{3}\\
u_{4} & u_{5} & u_{6}\\
u_{7} & u_{8} & u_{9}
\end{array}\right)\in GL_{n+m}(\mathbb{Z}) | rk \left(\begin{array}{l}
u_{4}\\
u_{7}
\end{array}\right) =v-l ,

rk \left(\begin{array}{l}
u_{6}\\
u_{9}
\end{array}\right) =m},
where U has a block division of type ((n\displaystyle \frac{l}{m}l)\times r\times r\times r(n-l)\times(n\frac{)}{r)}r)m\times(n-l\times(n-r(nlm-\times l\times)m\times mm)

Proof. This is Satz 8.1 of [7]. For the proof one checks which of the

representatives of C_{n+m,0}\backslash M_{n+m,0}^{l},{}_{n}L(P_{n,m}) obtained from Theorem 3.4

are in X_{n,m,r}^{v} ,
see [7] for details. \square 

Lemma 5.6. Let U run through the set of representatives from the

previous lemma and write a matrix in \mathrm{M}\mathrm{a}\mathrm{t}_{n+m,l}(\mathbb{Z}) as (_{w^{2}}^{w}w_{3}^{1} ), where

w_{1}, w_{2} , w3 have r, n-r, m rows respectively. Then the matrix formed
by the first l columns of U^{-1} runs through a set of representatives of

{ \left(\begin{array}{l}
w_{1}\\
w_{2}\\
w_{3}
\end{array}\right) primitive | rk \left(\begin{array}{l}
w_{1}\\
w_{2}
\end{array}\right) =l
,
rk \left(\begin{array}{l}
w_{2}\\
w_{3}
\end{array}\right) =v-r } /GL_{l}(\mathbb{Z}) .

Proof. This is Lemma 8.4 a) of [7]. The proof uses computations from

Lemma 5.7 and Remark 5.8 of [7]. \square 

Lemma 5.7. We denote by a_{l}(T) the Fourier coefficient at T of the

Siegel Eisenstein series of degree l and weight k and write \mathcal{A}_{l}^{+}for the

set of positive definite matrices in \overline{\mathrm{M}\mathrm{a}\mathrm{t}}_{l}^{sym}(\mathbb{Z}) . Then

G_{n,m,r}^{v,l}(Z)=\displaystyle \sum_{T\in A_{l}^{+}}\sum_{w_{1},w_{2}}\sum_{w_{3}}\sum_{y}a_{l}(T)

\times e (T ((y^{\downarrow n+m}\langle Z\rangle)^{*} [\left(\begin{array}{l}
w_{1}\\
w_{2}\\
w_{3}
\end{array}\right)]))j(y, z_{4})^{-k},
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where y runs through a set of representatives ofC_{m,0}\backslash Sp_{m}(\mathbb{Z}) , w_{1}, w_{2} , w3

are as in the previous lemma, and z_{4}\in\hslash_{m} is the lower left m\times m cor‐

ner of Z.

Proof. We carry out the summation over the coset representatives given
in Lemma 5.5, expanding the automorphy factor j using its cocycle
relation and j(L(U), \cdot) = 1 . The summation over x gives then by [1,
Lemma 3]

\displaystyle \sum_{T\in \mathcal{A}_{l}^{+}}\sum_{U}\sum_{y}a_{l}(T)e(T(L(U)y^{\downarrow n+m}\langle Z\rangle)^{*})j(\mathrm{Y}, z_{4})^{-k},
Using L(U)y^{\downarrow n+m}\langle Z\rangle=y^{\downarrow n+m}\langle Z\rangle[U^{-1}] and writing the upper left block

of U^{-1} in terms of w_{1}, w_{2} , w3 as in the previous lemma, we obtain the

assertion. \square 

Lemma 5.8. Write \mathbb{Z}_{s}^{m\times l} = \{w \in \mathrm{M}\mathrm{a}\mathrm{t}_{m,l}(\mathbb{Z}) | \mathrm{r}\mathrm{k}(w) = s\}, \mathbb{Z}_{s,0}^{m\times l} =

\{(0_{m-s,l}^{*}) \in \mathbb{Z}_{8}^{m\times l}\}.
Let GL_{m}(\mathbb{Z})_{s}=\{(0_{m-s,s*}^{**}) \in GL_{m}(\mathbb{Z})\} and GL_{m}(\mathbb{Z})_{5}^{1}=\{(_{0_{m- $\epsilon,\ \epsilon$}*}1_{s}* ) \in

 GL_{m}(\mathbb{Z})\}.
Let w_{3}' run through a set of representatives of GL_{m}(\mathbb{Z})_{s}^{1}\backslash \mathbb{Z}_{s,0}^{m\times l} and w_{3}^{l/}
through a set of representatives of GL_{m}(\mathbb{Z})/GL_{m}(\mathbb{Z})_{s}^{1} . Then every ele‐

ment of Z_{s}^{m\times l} has a unique expression as a product w_{3}''w_{3\mathrm{z}}' and all these

products are in Z_{s}^{m\times l}.
For w_{1}, w_{2} fixed, the matrix \left(\begin{array}{l}
w_{1}\\
w2w_{3}'
\end{array}\right) is primitive if and only if \left(\begin{array}{l}
w1\\
w_{3}''w_{3}'w_{2}
\end{array}\right)
is primitive, and one has \mathrm{r}\mathrm{k}\left(\begin{array}{l}
w2\\
w_{3}'
\end{array}\right) =\mathrm{r}\mathrm{k}\left(\begin{array}{l}
w2\\
w_{3}''w_{3}'
\end{array}\right).
Proof. This is Lemma 8.4 b) of [7]. It is clear that any u\in \mathbb{Z}_{s}^{m\times l} can

be written as ww_{3}' with w \in  GL_{m}(\mathbb{Z}) and w_{3}' \in  Z_{s,0}^{m\times l} , where w_{3}' is

unique up to multiplication with an element of GL_{m}(\mathbb{Z})_{s} from the left.

Moreover, if w_{3}' is fixed, w is unique up to right multiplication by an

element of GL_{m}(\mathbb{Z})_{s}^{1} . The second assertion is obvious. \square 

Lemma 5.9. i) With notations as in Lemma 5.7 the sum

\displaystyle \sum_{w3}e (T ((y^{\downarrow n+m}\langle Z\rangle)^{*} [\left(\begin{array}{l}
w_{\mathrm{l}}\\
w_{2}\\
w_{3}
\end{array}\right)]))j(y, z_{4})^{-k}
for T, y, w_{1}, w_{2} fixed is equal to

\displaystyle \sum_{s}\sum_{w_{3}'}\sum_{w_{3}''}e (T ((L(w_{3}^{;;-1})^{\downarrow n+m}y^{\downarrow n+m}\{Z\rangle)^{*} [\left(\begin{array}{l}
w_{1}\\
w_{2}\\
w_{3}
\end{array}\right)]))j(y, z_{4})^{-k},
where s runs from 0 to \displaystyle \min(l, m) , w_{3}' runs over the set of ma‐

trices in \mathbb{Z}_{s}^{m\times l} for which \left(\begin{array}{l}
w2\\
w_{3}'
\end{array}\right) has rank v-r_{f} and w_{3}'' runs over

a set of representatives of GL_{m}(\mathbb{Z})/GL_{m}(\mathbb{Z})_{s}^{1}.
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ii) For a block diagonal matrix Z= (_{\mathrm{o}^{1}z_{2}}^{Z0} ) with Z_{1}\in fl_{n}, Z_{2}\in \mathfrak{H}_{m}
one has

G_{n,m,r}^{v,l}(Z)=\displaystyle \sum a(T)\sum_{w_{1}Tw}e(T[t\left(\begin{array}{l}
w_{1}\\
w_{2}
\end{array}\right)]Z_{1})
\displaystyle \times\sum_{s=0}^{\min(l,m)} $\epsilon$(s)\sum_{w_{3}'}g_{m,s}^{k}(Z_{2}, T[{}^{t}w_{3}']) ,

with  $\epsilon$(0) = 1 and  $\epsilon$(s) = 2 otherwise, where the summations

over w_{1}, w_{2}, w_{3}' are as before and where the Poincare series

g_{m,s}^{k}(Z_{2}, T[{}^{t}w_{3}']) is given by

g_{m,s}^{k}(Z_{2}, T_{1}^{\uparrow})=\displaystyle \sum_{ $\gamma$\in \mathrm{u}_{m,s}\backslash Sp_{m}(\mathbb{Z})}e(T_{1}^{\uparrow}( $\gamma$\langle Z\rangle))j( $\gamma$, Z)^{-k},
where \mathrm{u}_{m,s} \subseteq  C_{m,0} is the group of matrices \left(\begin{array}{l}
AB\\
0D
\end{array}\right) \in  C_{m,0} \subseteq

 Sp_{m}(\mathbb{Z})_{f} with A=(^{\pm 1_{s}*}0* ).

Proof. For a) we use the decomposition w_{3}=w_{3}''w_{3}' from the previous
lemma and order the sum over w_{3}' by the rank s of w_{3}' . For b), with

$\mu$_{m,s}^{+}=\{\left(\begin{array}{ll}
A & B\\
0 & D
\end{array}\right)\in \mathfrak{U}_{m,s}|A=\left(\begin{array}{l}
\mathrm{l}_{s}*\\
0*
\end{array}\right)\} we see that L(w_{3}^{\prime\prime-1}) runs through a

set of representatives of ỉ\mathrm{J}_{m,s}^{+}\backslash C_{m,0} , so that L(w_{3}^{\prime\prime-1})y runs through a set

of representatives ỹ of \'{A}\square _{m,s}^{+}\backslash Sp_{m}(\mathbb{Z}) which satisfy j(ỹ, Z_{2} ) =j(y, Z_{2})
for \ovalbox{\tt\small REJECT}= L(w_{3}^{\prime\prime-1})y and Z_{2} \in \mathfrak{H}_{m} . For s =0 one has \mathrm{u}_{m,s} =\mathfrak{U}_{m,s}^{+} , for

s>0 each coset modulo \text{￡}\mathrm{t}_{m,s} is the union of two cosets modulo \mathfrak{U}_{m,s}^{+},
which explains the factor  $\epsilon$(s) . The expression obtained in a) then

transforms (with z_{4}=Z_{2} ) to

a_{l}( $\tau$)e(T[^{t}\left(\begin{array}{l}
w_{1}\\
w_{2}
\end{array}\right)t,
and the sum over ỹ equals the Poincaré series g_{m,s}^{k}(Z_{2}, T[{}^{t}w_{3}']) (notice
that T[{}^{t}w_{3}'] has the block diagonal shape required). \square 

Theorem 5.10. Let f(Z) =\displaystyle \sum_{S\in\overline{\mathrm{M}\mathrm{a}\mathrm{t}}_{m}^{\mathrm{s}ym}(\mathbb{Z})}b(S)e(SZ) \in M_{m}^{k} be a cusp

form with Fourier coefficients b(S) .

Then the Fourier coefficient of H_{n,m,r}^{t}(f) at R\in\overline{\mathrm{M}\mathrm{a}\mathrm{t}}_{n}^{syM}(\mathbb{Z}) with \mathrm{r}\mathrm{k}(R)=
l is

 $\beta$(m, k)^{-1}D_{f}(k-m)^{-1}\displaystyle \sum_{T\in A_{l}^{+}}\sum_{w_{1},w_{2}}\sum_{w_{3}'}b(T[{}^{t}w_{3}'])\det(T[^{t}w_{3}'])^{\frac{m+1}{2}-k}
with  $\beta$(m, k) , D_{f}(k-m) as in Theorem 5.3.
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In the sum, \left(\begin{array}{l}
w1\\
w2w_{3}'
\end{array}\right) \in \mathrm{M}\mathrm{a}\mathrm{t}_{n+m,l}(\mathbb{Z}) with w_{1}\in \mathrm{M}\mathrm{a}\mathrm{t}_{r,l}(\mathbb{Z}) , w_{2}\in \mathrm{M}\mathrm{a}\mathrm{t}_{n-r,l}(\mathbb{Z}) ,

w_{3}' \in \mathrm{M}\mathrm{a}\mathrm{t}_{m,l}(\mathbb{Z}) runs through those primitive elements of a set of rep‐
resentatives of \mathrm{M}\mathrm{a}\mathrm{t}_{n+m,l}(\mathbb{Z})/GL_{l}(\mathbb{Z}) which satisfy

R=T[^{t}\left(\begin{array}{l}
w_{1}\\
w_{2}
\end{array}\right)], \mathrm{r}\mathrm{k}(w_{3}')=m ,
rk \left(\begin{array}{l}
w_{2}\\
w_{3}
\end{array}\right) =t+m.

Proof. By our previous results only the Petersson product

\{f(\cdot) , G_{n,m,r}^{t+m+r,l}(-\overline{z_{1}}00\cdot)\rangle
contributes to the Fourier coefficient of  H_{n,m,r}^{t}(f) at a matrix R of rank

l
, and we have reduced the computation of this Petersson product to

the product with the Poincare series g_{m,s}^{k}(Z_{2}, T[{}^{t}w_{3}']) . For s<m ,
these

are known to be orthogonal to cusp forms (being Eisenstein series of

Klingen type), for s=m the Petersson product has been computed in

[6, p.90,94]. Plugging in that result gives the assertion. \square 

Remark 5.11. It should be noticed that the sum in the formula of the

theorem is a finite sum.

Corollary 5.12. As in Theorem 4.2 denote by $\phi$_{m+t-\mathrm{r}\mathrm{k}(R_{4})}^{(R_{4})} the com‐

ponent in J_{(rr),m+t-\mathrm{r}\mathrm{k}(T)}^{k}1,2(T) of the Fourier‐Jacobi coefficient at the

r_{2}\times r_{2} ‐symmetric matrix R_{4} of the Klingen Eisenstein series E_{n,m}^{k}(f) .

Then the Fourier coefficient at (R_{1}, R_{2}) of $\phi$_{m+t-\mathrm{r}\mathrm{k}(R_{4})}^{(R_{4})} is given by the

formula in the previous theorem for the Fourier coefficient ofH_{n,m,r}^{t}1(f)
at R=\left(\begin{array}{ll}
R_{1} & R_{2}\\
t_{R_{2}} & R_{4}
\end{array}\right).
Proof. This follows directly from the previous theorem and Theorem

4.2. \square 

6. THE CASEn =2

We consider here r=r_{1}=r_{2}=m=1 , i.e., we study the Klingen Eisen‐

stein series attached to an elliptic cusp form f(z) = \displaystyle \sum_{n=1}^{\infty}b(n)e(nz) ,

which we assume to be a Hecke eigenform.
One obtains here  $\beta$(m, k)^{-1}D_{f}(k-1)^{-1}=\displaystyle \frac{1}{2} $\zeta$(1-k) $\zeta$(2k-2)L_{2}(f, 2k-

2)^{-1} , where L_{2}(f, s)= $\zeta$(2s-sk+2)\displaystyle \sum_{n=1}^{\infty}b(n^{2})n^{-s} is the symmetric
square L‐function of f . We have to consider the H_{2,1,1}^{t} for t=0, t=1.

For t=1 our computation in the previous paragraph shows that H_{2,1,1}^{1}
has nonzero Fourier coefficients only at matrices R= (\displaystyle \frac{r_{1}r_{2}}{2}rB^{r_{2}}4) of rank

2. The Fourier coefficient at such an R is then computed as

\displaystyle \frac{1}{2} $\zeta$(1-k) $\zeta$(2k-2)L_{2}(f, 2k-2)^{-1}\sum_{a,b,d}a_{2}(T)
\displaystyle \times\sum_{u,v}b(u^{2}t_{1}+uvt_{2}+v^{2}t_{4})(u^{2}t_{1}+uvt_{2}+v^{2}t_{4})^{1-k},
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where the summation over a, b, d runs over a, d>0 and 0\leq b<a such

that

T= (_{\frac{t_{1}t_{2}}{2}} \displaystyle \frac{t_{2}}{t_{4}^{2}}) = \left(\begin{array}{ll}
a & b\\
0 & d
\end{array}\right)R\displaystyle \left(\begin{array}{ll}
a & b\\
0 & d
\end{array}\right)\in\overline{\mathrm{M}\mathrm{a}\mathrm{t}}_{2}^{\mathrm{s}\mathrm{y}\mathrm{m}}(\mathbb{Z})
and the summation over u, v runs over u, v\in \mathbb{Z} satisfying u\neq 0, \mathrm{g}\mathrm{c}\mathrm{d}(u, a)=
\mathrm{g}\mathrm{c}\mathrm{d}(av-ub, d) = 1. \mathrm{I}\mathrm{f}-\det(2R) is a fundamental discriminant only
a= d= 1 occurs, and one checks that this agrees with the result in

[2]. One can proceed from here to obtain asymptotic formulas as in [2].
For details see [7, Section 9].
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