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ABSTRACT. This is a report on my joint work [CFGK17] with Solomon Friedberg, David

Ginzburg, and Eyal Kaplan. We present a family of global integrals representing tensor

product L‐functions of classical groups with general linear groups. Our construction is

uniform over all classical groups and their non‐linear coverings, and is applicable to all

cuspidal representations.

1. INTRODUCTION

In the 1980\mathrm{s} , Piatetski‐Shapiro‐Rallis [GPSR87] introduced a Rankin‐Selberg integral for

the standard L‐function for an irreducible cuspidal automorphic representation on classical

groups. This construction grew out of Rallis� work on the inner products of theta lifts—the

Rallis inner product formula. This is known as the doubling method.

The purpose of this note is to describe a generalization of the doubling method. We start

with some notations.

Let F be a number field and A be its adele ring. Let m be a positive integer. Let G_{ $\eta$} be

a split classical group of rank n (GLn, Sp_{2n}, SO_{2n}, SO_{2n+1}, \cdots) . Let G_{n}^{(m)}(\mathrm{A}) be an m‐fold

metaplectic cover of G_{n}(\mathrm{A}) and let GL_{k}^{(m)}(\mathrm{A}) be an m‐fold metaplectic cover of GL_{k}(\mathrm{A}) . Let  $\pi$

and  $\tau$ be irreducible genuine cuspidal representations on  G_{n}^{(m)}(\mathrm{A}) and GL_{k}^{(m)}(\mathrm{A}) , respectively.
We give a global integral, representing the tensor product L‐fUnction L(s,  $\pi$\times $\tau$) .

Remark 1.1. If m= 1
,

we take G_{n}^{(m)}(\mathrm{A}) =G_{n}(\mathrm{A}) and GL_{k}^{(m)}(\mathrm{A}) =GL_{k}(\mathrm{A}) . When k= 1,
our construction recovers the original doubling construction.

Remark 1.2. Our construction gives L‐fUnction for  $\pi$ twisted by  $\tau$ for arbitrary  k . It is a

�twisted doubling� construction.

Remark 1.3. If G_{n} = Sp_{2n} and m is even, we need to replace GL_{k}^{(m)}(\mathrm{A}) by GL_{k}^{(m/2)}(\mathrm{A}) to

make the covering consistent.

Remark 1.4. The global construction relies on the following unique models: matrix coeffi‐

cients on G_{n}^{(m)} and a degenerate type unique models related to  $\tau$ . Thus, this construction

works for arbitrary cuspidal representations on  G_{n}^{(m)}(\mathrm{A}) , not necessarily generic representa‐
tions. It is also crucial for covering groups since the dimension of Whittaker models is in

general greater than 1.

Remark 1.5, Our construction also works for all non‐linear coverings of G_{n} and GL_{k} . How‐

ever, for m > 1 (covering group case) we must assume a certain non‐vanishing result on

residues of metaplectic Eisenstein series. (Currently, this assumption is only known to be

valid for a few cases).
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2. THE FIRST NEW EXAMPLE

In this section, we give the global integral in the first new case.

Let  $\pi$ be an irreducible cuspidal automorphic representation on  Sp_{2}(\mathrm{A}) and  $\tau$ be an irre‐

ducible cuspidal automorphic representation on  GL_{2}(\mathrm{A}) .

The global integral is

\displaystyle \int_{(Sp_{2}(F)\backslash S_{\mathrm{P}2}(\mathrm{A}))^{2}} $\varphi$_{1}(g_{1})\overline{$\varphi$_{2}(g_{2})}\int_{U_{0}(F)\backslash U_{0}(\mathrm{A})} E_{ $\sigma$( $\tau$)}(u_{0}L(g_{1}, g_{2});f, s)$\psi$_{U_{0}}(u)du_{0}dg_{1}dg_{2} . (1)

Here

\bullet $\varphi$_{1}, $\varphi$_{2} are in the space of  $\pi$,
\bullet  U_{0} is a unipotent subgroup of Sp_{8} ,

defined by

U_{0}= \{u_{0}= (^{I_{2}} XI_{2} I_{2}Y0 XYI_{2}Z \in Sp_{8} : X, Y\in \mathrm{M}\mathrm{a}\mathrm{t}_{2\times 2}\}.
The matrices X', Y' and Z are chosen so that the matrix u_{0} is in Sp_{8}.

\bullet $\psi$_{U_{0}}(u_{0})= $\psi$(X_{11}+Y_{22}) where  $\psi$ is a nontrivial additive character on  F\backslash \mathrm{A} . Here X_{i,j}
is the (i, j)‐coordinate of X.

\bullet  0:Sp_{2} \times Sp_{2}\rightarrow Sp_{8} (^{(} doubling map is given by

(g_{1}, g_{2})\mapsto \left(g_{1} & g_{11}g_{13} & g_{2} & g_{12}g_{14} & g_{1}^{*}\right) where g_{1}= \left(\begin{array}{ll}
g_{11} & g_{12}\\
g_{13} & g_{14}
\end{array}\right) .

Here g_{1}^{*} is chosen so that  $\iota$(g_{1},g_{2}) is in Sp_{8}.
\bullet The representation  $\sigma$( $\tau$) is a generalized Speh representation. It is defined as residues

of Eisenstein series. The representation  $\sigma$( $\tau$) can also be understood as the unique
irreducible subrepresentation of

\mathrm{I}\mathrm{n}\mathrm{d}_{P(GL_{2}\times GL_{2})(\mathrm{A})}^{GL_{4}(\mathrm{A})}( $\tau$|\cdot|^{-1/2}\otimes $\tau$|\cdot|^{1/2})$\delta$_{P(GL_{2}\times GL_{2})}^{1/2}.
\bullet  E_{ $\sigma$( $\tau$)}(g;f, s) is the Siegel Eisenstein series attached to  $\sigma$( $\tau$) and f is a flat section in

\mathrm{I}\mathrm{n}\mathrm{d}_{P(GL_{4})(\mathrm{A})}^{Sp_{8}(\mathrm{A})} $\sigma$( $\tau$)$\delta$_{P(GL_{4})}^{s}.
Here P=\{\left(a & ua^{*}\right) \in Sp_{8}:a\in GL_{4}\} , and

E_{ $\sigma$( $\tau$)}(g;f, s)=\displaystyle \sum_{ $\gamma$\in P(GL_{4})(F)\backslash Sp_{8}(F)}f( $\gamma$ g;s) .

By a standard unfolding argument, when {\rm Re}(s)\gg 0 , Eq. (1) equals

\displaystyle \int_{Sp_{2}(\mathrm{A})}\{ $\pi$(g)$\varphi$_{1}, \overline{$\varphi$_{2}}\rangle\int_{U_{1}(\mathrm{A})} f_{W_{ $\sigma$( $\tau$)}}($\delta$_{U_{1}} $\iota$(1, g), s)$\psi$_{U_{0}}(u_{1})du_{1}dg . (2)
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Here

\bullet the pairing \rangle is the matrix coefficient:

\displaystyle \{$\varphi$_{1}, $\varphi$_{2}\}=\int_{S_{\mathrm{P}2}(F)\backslash Sp_{2}(\mathrm{A})} $\varphi$_{1}(h)$\varphi$_{2}(h)dh.
\bullet  $\delta$= \left(-I_{4} & I_{4}\right) \left(\begin{array}{llll}
 & I_{2} & I_{2} & \\
I_{2} &  & I_{2} & I_{2}
\end{array}\right).
\bullet  U_{1}= \{(^{I_{2}} I_{2}0 I_{2}Y0 Y^{\prime)}I_{2}Z0 \in U_{0}:Y\in \mathrm{M}\mathrm{a}\mathrm{t}_{2\times 2}\}.
\bullet  W_{ $\sigma$( $\tau$)}( $\xi$) is the global Shalika integral, given by

W_{ $\sigma$( $\tau$)}( $\xi$)=\displaystyle \int_{(F\backslash \mathrm{A})^{4}}  $\xi$\left(I_{2} & VI_{2}\right) $\psi$(\displaystyle \mathrm{t}\mathrm{r}V)dV
for  $\xi$\in $\sigma$( $\tau$) .

Both the matrix coefficient } and W_{ $\sigma$( $\tau$)} are factorizable. Thus Eq. (2) is Eulerian, that

is, it decomposes as an infinite product over all places of F . At an unramified place, Eq. (2)
equals

\displaystyle \frac{L(5s-2, $\pi$\times $\tau$)}{L(5_{S}-1, $\tau$)L(\wedge, $\tau$)L(10s-4,, $\tau$)}.
3. COMPARISON WITH PREVIOUS WORKS

In this section, we compare our construction with Langlands�s calculation of constant terms

of Eisenstein series and Shahidi�s theory of local coefficients.

\bullet Langlands [Lan71] computed constant terms of Eisenstein series and used it to de‐

duce meromorphic continuation of certain  L‐functions. This is extended to Brylinski‐
Deligne covering groups in [Gaoar].

\bullet Shahidi developed the theory of local coefficients to deduce functional equations for

certain  L‐fUnctions (see [Sha10]). His method relies on uniqueness of Whittaker mod‐

els. Thus, it works for generic representations. It is not clear if one can extend the

theory of local coefficients to general covering groups.

\bullet Twisted doubling (for  G_{n}^{(m)}\times GL_{k}^{(m)} ): when m=1 , it works for non‐generic represen‐
tations as well. When m>1 , this construction relies on an assumption on metaplectic
Eisenstein series. However, it might provide a definition for local factors for covering
groups.
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4. THE GENERAL GLOBAL INTEGRAL

We now give some more details of the global integral.
The general global integral is of the form

\displaystyle \int_{(G(F)\backslash G(\mathrm{A}))^{2}} $\varphi$_{1}(g_{1})\overline{$\varphi$_{2}(g_{2})}E_{ $\sigma$( $\tau$)}^{U_{0},$\psi$_{U_{0}}}(L(g_{1}, g_{2});f, s)dg_{1}dg_{2}.
Here

\bullet  E_{ $\sigma$( $\tau$)}^{U_{0},$\psi$_{U_{0}}} : a certain (U_{0}, $\psi$_{U_{0}}) ‐Fourier coefficient of E_{ $\sigma$( $\tau$)}.
\bullet  E_{ $\sigma$( $\tau$)} : Siegel Eisenstein series on H^{(m)} with special inducing data  $\sigma$( $\tau$) .

\bullet  H : \mathrm{a} �large�� classical group. For example, if G_{n} = Sp_{2n} and m is odd, then H =

Sp_{4nkm}.

Key ideas in our construction:

\bullet  $\iota$ (G_{n}^{(m)} \times G_{n}^{(7n)}) is contained in the stabilizer of $\psi$_{U_{0}} in H^{(m)}.
\bullet The representation  $\sigma$( $\tau$) has a suitable Gelfand‐Kirillov dimension so that the dimen‐

sion equation in [Gin14] is satisfied. In particular,  $\sigma$( $\tau$) affords a certain nonzero

Fourier coefficient. Moreover, the corresponding local model is unique. (Together
with uniqueness of the spherical model, this implies that the integral is Eulerian.)

\bullet The representation  $\sigma$( $\tau$) carries the same representation‐theoretic information as  $\tau$

(see Theorem 4.4).

4.1. Construction of  $\sigma$( $\tau$) . We now describe the construction of  $\sigma$( $\tau$) . Let n be a positive
integer. We define a representation  $\sigma$( $\tau$) on GL_{mkn}^{(m)}(\mathrm{A}) by residues of Eisenstein series.

Let P be the standard parabolic subgroup of GL_{mkn} whose Levi subgroup is  GL_{k}\times\cdots\times
 GL_{k} , where GL_{k} appears mn times. Consider the Eisenstein series E(g;f, \underline{s}) attached to the

induced representation

\mathrm{I}\mathrm{n}\mathrm{d}_{P(\mathrm{A})}^{GL_{kmn}^{(m)}(\mathrm{A})}(m)( $\tau$|\cdot|^{s_{1}}\otimes\cdots\otimes $\tau$|\cdot|^{s_{mn}})$\delta$_{P}^{1/2}
Here \underline{s}= (s_{1}, \cdots , s_{mn})\in \mathbb{C}^{mn} and P^{(m)}(\mathrm{A}) is the preimage of P(\mathrm{A}) in GL_{k_{7}nn}^{(m)}(\mathrm{A}) . We remark

that, when m>1 , the tensor product process here is complicated. (See [Tak16, Takar

Conjecture 4.1. The Eisenstein series E(g;f, \underline{s}) has a pole at

m(s_{i}-s_{i+1})=1, s_{1}+\cdots+s_{mn}=0.

When m= 1
, this is a theorem of Jacquet and Shalika. When k=2 , this conjecture is

known since the Shimura correspondence is known (thanks to the work of Flicker [Fli80]). For

the double covers, this can be proved by the adapting the method in [JR92]. It is not known

in general, but might be accessible via other Rankin‐Selberg integrals or by establishing a

generalized Shimura lift.

Now assume the Conjecture is true. Then we define  $\sigma$( $\tau$) as the representation generated
by the residues. When k = 1 , this is the theta representation studied in [KP84]. When

n=1 , the construction is considered in [Suz98].
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4.2. Properties of  $\sigma$( $\tau$) . We now explain properties of  $\sigma$( $\tau$) in detail.
Let V be the unipotent subgroup of GL_{mkn} consisting elements of the form

v= (^{I_{n}} X_{1}I_{n} X_{2}^{*}
Define a character $\psi$_{V} on V by

I_{n}^{*}*. X_{mk-1}^{*}*\cdot)
$\psi$_{V}(v)= $\psi$(\mathrm{t}\mathrm{r}(X_{1}+\cdots+X_{mk-1})) .

Notice that when n=1
, this is the character used to define Whittaker coefficient.

Theorem 4.2. The unipotent orbit attached to  $\sigma$( $\tau$) is ((mk)^{n}) , in the sense of [Gin06].
This means the following:

(1) The orbit ((mk)^{n}) supports a nonzero Fourier coefficient. That is

\displaystyle \int_{V(F)\backslash V(\mathrm{A})}  $\varphi$(vg)$\psi$_{V} (v ) dv\neq 0

for some  $\varphi$\in $\sigma$( $\tau$) .

(2) Any orbit larger than or not comparable with ((mk)^{n}) does not support any Fourier

coefficient.

Theorem 4.3. Let  $\nu$ be an unramified place of  F and  $\sigma$( $\tau$)_{ $\nu$} be the local component of  $\sigma$( $\tau$)
at  $\nu$ . Then the unipotent orbit attached to  $\sigma$( $\tau$) is ((mk)^{n}) and

\dim \mathrm{H}\mathrm{o}\mathrm{m}_{V(F_{ $\nu$})}( $\sigma$( $\tau$)_{ $\nu$}, $\psi$_{V})=1.

When n=1
, this is proved in [Suz98]. (That is, uniqueness of Whittaker models holds for

 $\sigma$( $\tau$).) When k=1 , this is proved in [Cai16].
Finally, we state a Casselman‐Shalika type formula for  $\sigma$( $\tau$) . Let \mathrm{y} be an unramified place

of F and let n= 1 . Let Sh($\tau$_{ $\nu$}) be the local Shimura lift of $\tau$_{ $\nu$} to GL_{k}(F_{ $\nu$}) . Notice that in

this case uniqueness of Whittaker models holds for both  $\sigma$( $\tau$)_{ $\nu$} and Sh($\tau$_{ $\nu$}) .

Let W_{Sh($\tau$_{ $\nu$})} be the normalized unramified Whittaker function for Sh($\tau$_{ $\nu$}) . Let W_{ $\sigma$( $\tau$)_{ $\nu$}} be
the normalized unramified Whittaker function for  $\sigma$( $\tau$)_{ $\nu$}.

Theorem 4.4. We have the following identity between two Casselman‐Shalika type formulas:

W_{ $\sigma$( $\tau$)_{\mathrm{v}}} \left($\varpi$^{ml} & I_{mk-1}\right) =q^{*}W_{Sh($\tau$_{ $\nu$})}\left($\varpi$^{l} & I_{k-1}\right) for l\geq 0.

Here  $\varpi$ is a uniformizer for  F_{ $\nu$}, | $\varpi$|=q^{-1}, and* is some explicit constant.

This result is proved in [Suz98] when k=1
,
2. We manage to prove it for arbitrary k.
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5. APPLICATIONS IN PROGRESS

These doubling integrals are expected to have far‐reaching consequences. We mention a

few applications here. This is work in progress.
The first application is on the functoriality from classical groups to general linear groups,

which should follow from Arthur�s work on the trace formula. By combining these new

integrals and the converse theorem of Cogdell and Piatetski‐Shapiro, we might give a new

proof of this case of functoriality.
One can also develop a local theory of the doubling construction. This would give a

definition of local L‐factor and  $\epsilon$‐factor at every local place. Moreover, using these integrals,
one can potentially locate possible poles of the global  L‐fUnctions.

Finally, we remark that, it is also possible to extend the above projects to covering groups.
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