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A fluid-particle system related to Vlasov-Navier-Stokes
equations

Franco Flandoli (Universita di Pisa)

Abstract

Preliminary results on the convergence to the Vlasov-Navier-Stokes equations of a
system of particles interacting with a fluid are announced. Main emphasis is given to
the difficulties that arise and hints for solutions are given. )

1 Introduction

The aim of this work is to investigate a fluid-particle system which seems to converge, in
the limit of infinitely many particles, to a Vlasov-Navier-Stokes (VNS) system. We restrict
this preliminary investigation mainly to dimension d = 2 and we shall assume to be on a
torus T? with periodic boundary conditions. The facts described in this note have only the
character of a preliminary investigation and announcement of partial results.

Let € € (0,1) and N € N be given, where N is the number of particles; consider the

system:

N N N N N CON N i i\ se
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%th‘ = 2 (ul (6 X)) - Vi) dt+ % SK (X -x])dt+ 2aw;.
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The first equation is the usual Navier-Stokes system for the velocity and pressure (u,7)
of a fluid, "forced” by the presence of N particles; a precise description of the interaction
between particles and fluid is a difficult topic (just as an instance, see [2], [5], [8], [9], [16]),
outside the scope of this preliminary note, hence we adopt a partially phenomenological
description, where particles act as delta Dirac forces, with intensity proportional to the
velocity difference between fluid and particle. For technical reasons, but also as a trace of
the fact that particles occupy a volume, we use a smoothed delta Dirac 6§(§ to describe the



force; and analogously the velocity difference is computed between the particle velocity V;*
and a local average at particle center X} of the fluid velocity, ulY (t, Xt')

The smoothings used in the first equation above are given by classical mollifiers of the
form €0 (z) = €990 (e‘lx) , where 6° is a smooth probability density with compact support
which includes a neighbor of the origin, and are defined as

B @)= (0x6x) @ =@ (2~ Xi),  ull =60xu.

The last two equations of the system above describe the Newtonian dynamics of parti-
cles and we assume the velocity V;' satisfies a stochastic differential equation driven by the
Brownian motion W¢ in R%; the Brownian motions W¢, ¢ = 1,..., N are independent and
defined on a probability space (2, F, P).

We assume the particles have mass 7%; the force acting on particle ¢ has three compo-
nents: the Stokes drug force due to the fluid, an interaction force given by the interaction
kernel K and a noise perturbation.

Remark 1 Recall that Stokes drag force is given by 6mruv where r is particle radius, v is
the relative velocity of particle and p is viscosity. Hence the interpretation of the scalings
in N chosen above is: the particle mass is of order'%; the particle radius is of order %
and co ~ 6mp. Particles with a mass density similar to the fluid should have mass of the
order N%, while here we assume it of order %, much bigger. This corresponds to a regime
of sparse heavy particles.

Example 2 The interaction kernel is usually absent in classical formulations of VNS sys-
tem. We include it here since it may be interesting in some applications. For instance,
think to metastatic cancer cells flowing in the blood stream, an example where the condition
of sparse heavy particles may be realistic. These cells do not only interact with the fluid
but also between themselves and possibly with other special cells.

Example 3 Having in mind applications to biological fluids, an interesting variations
could be to introduce a death-rate of the form X = g (uév (t, Xt’) - Vt’) , motivated by the fact
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that stress may induce cell death. Such additional term lead to the term —g (u (¢t,x) — v) F (¢, z,v)

in the limit. PDE.

As we said above, our aim is proving convergence to a Vlasov-Navier-Stokes system.We
would like to prove that, as N — oo and € — 0 with appropriate link between them, the
pair

N
1
N N _ 1 o
w (t, .’.t) 5 Sy = N Zlaxg’v;
=
(S¥ (dz,dv) is a time-dependent random probability measure, called empirical measure of
the particle system) converges to the solution (u, F') of

%=Au—u~Vu—~V7r—/(u(t,:c)—'U)F(w,v)dv (1)
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S +U VeF +divy (w—0) F+ (K + F)F) = 2AF @)

Remark 4 The term
—/(u(t,:c) —v) F(z,v)dv = /vF(x,v)d’u —u(t,a:)/F(:z:,v)dv
is the so called Brinkman’s force, usually denoted in the physical literature by ”j — up”.

We shall see that proving this limit result is a difficult problem. Let us preliminarily
describe a technical difficulty with the Navier-Stokes part.

Concerning the literature, there are results on particle systems related to VNS equations
but only under special conditions, caused by the fact that a true fluid-particle interaction
is imposed, see [1], [2], [6], [15]; and there are results on convergence of PDEs to PDEs,
although motivated by particle arguments, see [7], [10], [11].

1.1 Difficulty with the Navier-Stokes forcing

Let us restrict here to d = 2. The equation

N
%:AuN—uNVN \Z o COZ(UN(tX’) VY) 85;

contains a subtle difficulty. If we put € = 0, we force Navier-Stokes equations with an input
which is worse than H~! (recall that in two dimensions the delta Dirac is only in H 1=y
for every v > 0) and we pretend to speak of uN (t, X§) (for e = 0) which requires u" to be
continuous.

For € > 0 we do not see this regularity issue; but we need uniform estimates in (e, N)
to pass to the limit, and thus, sooner or later, we meet the difficulty just described.

Remark 5 The need for continuous-in-space velocity field in this area has been recognized
also dealing with other questions, see [14] who assumes u € L%2(0,T;C (D)).

Let us explain this difficulty also with the following argument. To simplify, assume we
have the heat equation in place of the Nawer—Stokes one and we have only one fized point

particle at position Xj:
ou

o = 38t e (b Xo) — Vo) 5,

The solution with u} = 0 is

wa)= [ ([ pslo 105, ) ) e (6. X0) - W s
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where p; () is the heat kernel. If we take the limit as ¢ — 0 we have

= t————-l e_%_t—)—(g)ﬁ u (s - s
Rl R N ICEOROLS

Already in d = 2, for z = X, we see that |u (¢, Xo)| = +oo!

1.2 Why the problem should be éolvable

Notice however that the conjectured limit equation, the Valsov-Navier-Stokes system is
better: no delta Dirac appear there.

What is meaningless, as remarked in the previous section, is the model with a finite
number Ny of point particles of mass —13,—0, if we take the limit € — 0. But this is not what
we want to do: we want to take the limit of infinitely many particles, with infinitesimal
interaction strength. We may hope that, in the limit as ¢ — 0, we may control the quantities
tiecause we also take N — oo and the intensity of fluid-particle interaction is rescaled by

N- .
However, to realize this program, it is essential to prove that particles do not concentrate
- too much, otherwise we take the risk to have again, in the limit, coricentrated masses of
particles with finite interaction strength. Therefore, a main purpose of the estimates below

is proving a form of non concentration.

2 Energy balance

Lemma 6 Setting
&= l/|uN(t o dot =3 VP
T2 ' aN &1

if ulV is a regular solution then we have

2 1 ; i\ 2
d&+ (f]VuN (t,z)| da:-!—-NZ(uév (t, X37) - V{) )dt

=1
TR DN S
= | — i T _ X7 P het 4 v i
= N2i§.=:1V*K(X* Xt)+ 2 ) dt+ N;d:thW*'

The proof is elementary by It6 formula. Notice that the previous result also gives us a

control on
1 N N i\ 2
-A? Z Ue (t’ X: )

=1



because it is bounded (up to constants) by £y, |Vt"|2 plus £ SN (ul (¢, X§) - Vti)2
that are both controlled (the second one integrated in time).
Using the previous a priori estimates one can prove, under the assumptions

up € L2 (T?)

N
1 i 12 ;12
£33 (f + )| <o
(L2 ('1[‘2) is the usual space of divergence free periodic zero mean vector fields on T2)
existence and uniqueness of solutions (for finite N) such that

E [ sup /|uN (t,a:)|2da:] <C
t€(0,T7]

E UOT/]VuN (t,a:)|2dxdt] <cC

N
1 012 P12
E —E X7+ |V <C

T1X & i i\2
E / -IVZ(Ue X5 Vi) dt| <C
0 =1

T X N 5]
?
E /0 —NE:ue (¢, X3)"dt| <C.

=1 J

From these bounds, with relatively classical compactness theorems, one can show that
the family of laws of (u”, SV) are tight and thus there exist subsequences which converge
in law; changing probability space it is possible to assume a.s. convergence in appropriate
topologies. In the sequel, to understand the difficulties, we assume for simplicity such
a.s. convergence. We do not want to give the details here, which will be included in a
forthcoming technical work. Let us only mention that subsequences (u™*, SV+), on the
new probability space, will have the property that

o ylVk converges‘ strongly in L? (0,T; L% (T?))
o uNe converges weakly in L? (0,T; W2 (T?)) and weak star in L (0,T; L? (T?))
o SNk converges in the weak topology of measures uniformly in time.

In the sequel, when we informally discuss questions of convergence, we replace the
subsequence (uVk, SNk) with the full sequence (u”,SV) for notational simplicity.
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3 A difficulty about passage to the limit in the Navier-Stokes
system

Let us stress that the existence of a convergent subsequence (uN k, SN k) (denoted below by
(uN SN )), in the topologies indicated at the end of the previous section, is true both if
we keep € > 0 unchanged with N, or if we link it to N by choosing € = ¢y — 0. However,
in the first case we can pass to the limit, in the second one we meet a relevant technical
difficulty, that we now explain.

In weak form on divergence free smooth test vector fields ¢, the Navier-Stokes system
reads :

(u? (), 8), — (uo, ), + f t (Vu,V¢)_ds

/(u Vo, uly, ds—<NZ (t, X7) - V’)éfz()¢()>

where (f,9), = [ra f (z)-g () dz for suitable vector fields f, g, and - denotes scalar product
in R%. The difficulty is only in the convergence of the last term, when uN converges only
in the usual topologies of weak solutions mentioned at the end of last section. What about
the convergence of

x

ul (¢, X7) = (00 xul) (XF) ?

It seems necessary to prove some convergence of 4V in the uniform topology. But uniform
estimates are not among the a priori bounds.

Although not being the only one, a natural way to prove bounds in the uniform topology
for u}¥ is by Sobolev embedding, hence investigating bounds on derivatives of »{'. Since
we are on a torus and we restrict to d = 2, we use vorticity. The question then is: can
we prove enstrophy type bounds? Consider thenthe vorticity equation, which in the case
d = 2, for the vorticity function w™ = V1L .oV, is

N

S = awt -t vl C°Zvl ((uN (t, X7) — v*)aer;). (3)

i=1
A main conceptual remark is that particles create vorticity. Terms like 6,6;?2 contribute
. t
diverging terms in N for € = ¢y — 0 and thus vorticity does not seem to be under control.
4 Summary of results

After this long introduction, let us state the two directions discussed below.
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o First we develop a ”two steps approach”, which consists in two separate limit theo-
rems.

1. The first one is only the limit as N — oo, given a constant value of € € (0,1); it
identifies a limit PDE;

2. The second one is the limit PDE, —-PDE as ¢ — 0.

Linking artificially (¢, N), there are sequences (e, Nx) where Particlesc, n,) —PDE
as k — 0o. This is not the solution we were looking for, but it is important to know
that at least this relatively simple two-step approach works.

e Second, we conjecture a local in time result of the form Particles(, n) —PDE as

N — oo. It is based on local-in-time uniform-in-z estimates on u”, jointly with
estimates on no concentration of particles (these two facts proceed together). A full
proof still requires to solve technical problems, so we limit ourselves to express a
reasonable conjecture.

5 Two-steps approach

5.1 Preliminaries

The advantage of the ”two-steps” or ”separate limit” strategy is that it works with minimal
ingredients: we do not need to prove no-concentration of particles; we do not need the noise
to regularize; we can say something also in the case d = 3 (always on a torus T2, to simplify)
. We assume, for simplicity of notations, K = 0,0, = 0,co = 1. However the result remains
true when o, # 0 and when K is bounded Lipschitz continuous and presumably also in
some cases when K = Ky is rescaled in a proper way.

For sake of clarity (also because here there is no average over the randomness), we
restate the well posedness mentioned above for finite N and the energy bounds.

Lemma 7 For every € € (0,1) and N € N, the system

oul N_ N g,N N_ LN~ N yi iy g€

= =M — o vl —vn —]-\—rz:(ue (& X}) = Vi) 6
i=1

d_,; i d_. ) .

dxiovi,  Lyiou ) -V

has a unique solution such that

T
sup /|uN (t,:t)|2dx+/ /|VuN (t,x)|2dxdt§_0.
te[0,T] Jo

N
1 ;12 i12
— D H A <C.
tg;f;]N;:l:(l I+ V) <
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5.2 First limit: N — oo, € € (0,1) given
We now consider the following mollified VNS system

'%;Au—u-Vu—V'/r—02*/(uE(t,-)—v)F(-,d'u) 4)
%+v-VxF+divu((ue—v)F):0 - (5)
where
‘ ue = 00 x u.

" Thanks to the mollification, we are allowed to investigate this system and convergence of
the particle system when the density of particles is treated just as a measure, not as a
density function. Let us give the appropriate definition. Denote by Pr; (T¢ x R?) the set
of all Borel probability measures y on T¢ x R? such that

/ / |v| g (dz, dv) < oo
T¢ JRY

we endow Pry (T4 x R?) with the weak topology, with convergence of first moment. The
notation 62 * [ (uc(t,-) —v) F. (dv), when F € C ([0,T];Pr; (T¢ x RY)) and uc(t,-) is
measurable and bounded, stands for '

(03 * / (ue (t,+) —v) F(-,d’u)) (x) = / / 62 (z — &) (ue (t,2') — V') F (t,da’, dv") .
Td JRe ‘
. Beside the notation (f, g), already introduced above, here we also write (u, f)gyp for
o= [, [ £ @)z, dv).
Td JRe

Definition 8 Let up € L2 ('11'2) and Fy € Pry (Td X ]Rd) be given. A pair (u,F) is a
solution of system (4)-(5) with initial condition (ug, Fo) if

ueL® (0, T, L? (Td)) N L2 (o, T, W1'2-('|i‘d))
FecC ([0, T); Pry (Td x Rd)) |
t .
(W), 0), — (u0,8), + /0 (Vu, V), ds
= /Ot (u-Vé,u), ds — /Ot <92 */(uf (s,") —v)F(s,_-,dv),q5>xds

t t
(F(t), )z = (Fo,P)zp + /0 (F(s),v-Vap),,ds+ /0 (F(8), (ue (s) —v) - Voip), , ds
for all divergence free smooth fields ¢ : T¢ — R? and all smooth functions ¢ : T xR% — R.
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Theorem 9 Let € € (0,1) be given. Assume uo € L2 (T?), % >y (|X(",|2 + IV3|2) <C,
and S — Fy in the weak sense of probability measures.
1) Let d = 3. Given € € (0,1), there exists a subsequence Ni — oo such that the pair
uNe, SNk) converges (in the sense described at the end of section 2) to a solution (u, F)
of system (4)-(5) with initial condition (ug, Fp).
2) Let d = 2. System (4)-(5), with initial condition (uo,Fp), has a unique solution
(u, F) and, as N = oo, the pair (uN 8N ) converges to (u, F).

Remark 10 In d = 3 obviously we do not know uniqueﬁess due to the Navier-Stokes part;
hence the convergence holds only for certain subsequences (for every subsequence there is
a sub-subsequence which converges).

Remark 11 Existence of a solution (u,F) of the limit system (with given ¢ € (0,1))
either can be proved directly or it follows from the convergence result itself, being based on
a compactness argument. Uniqueness of (u, F') (for d =2) has to be proved directly.

Let us give a few elements of the proof. From the estimates

T
sup /|uN (t,:v)|2da:+/ /IVuN (t,a:)|2da:dt$C
t€[0,T) 0 :

it is classical (cf. [17]) to apply the compactness Aubin-Lions lemma. Due to the estimate

1 N il2 32 <
tZﬁEqNg(lth +vil) <c

one can use a criterion based on Wasserstein distance to prove compactness of SN,‘“”
in C ([0,T];Pr; (T¢ x R?)). From these fact one has the existence of a subsequence
(uMe, SNk) which converges as described at the end of section 2. Call (u, F) the limit
of such subsequence.

Taking the limit in the first four terms of the weak formulation of Navier-Stokes equa-
tions (see Definition 8) is classical (cf. [17]). Concerning the last term, we have to prove
that

N,
k]_l'_)ﬂc}o <Nik g; (uévk (t, Xf’Nk) - Vf’Nk) 5}:,Nk,¢>z

— </;a ,/1;4 02 (- — 2') (ue (t,2') — ') F (t,d2’, dv) ,¢>

x
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The term on the left-hand side is equal to

o 35 o () ) (5 ) o0 i

i=1
- /T /T., /R (ul* (t,2') =) 6 (z — &) ¢ (2) SV (do', dv') dv
= /T,, /R (02 %™ @) () =) (62 + 9) (o) 8™ (da’, ')

where 6%~ (z) = 02 (—z). The term 62 * u™* (¢) converges uniformly to 80 x u (t) for a.e.
t (passing to a subsequence). With little additional care we can take the limit as k£ — oo
and get '

/Td /R (62 xu(®) (') — V') (62~ »4) («/) F (t,do, dv)
- < Lo [ 686 =) (ue (0) =) F (1.t ) ,¢> ,

x

To prove that F satisfies the weak identity in Definition 8 we have first to derive an
identity for SN, By chain rule applied to ¢ (th e, VN ") we get

’ t t
<va“,<p>“ = (S{,"" <p>”+ /0 (8%, v- Vo), ds + /0 (8%, (ue () —v) - Vi), ds

(in the deterministic case it is a well known fact that the empirical measure is already a
solution of the limit PDE; in the stochastic case, o, # 0, one has to.apply It6 formula and
an additional martingale term appears, which however, converges to zero). Then one can
pass to the limit.

Finally, for d = 2 we have to prove uniqueness for the limit system (4)-(5). In principle,
one of the difficulties is that we deal with solutions F° which are only measures. However, we
may use a well known method (see for instance [3]) based on Wasserstein distance dy (u,v)
between y, v € Pry (T¢ x R?). Assume that (u, F), («/, F') are two solutions. One has

& (F(t),F () <E[|X—X{|+ V- V/|]

where (X;,V;) satisfies
d
axt =W

d
Vo= ue(t, Xe) ~ Vi
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where u is the first component of the solution (u, F), and similarly for (X3, V;) (with respect
to (u/, F')). The initial conditions for these two problems are the same, (Xo, Vo), with law
Fpy. One can easily prove that

R t o
B (X - X+ Vi V) <C [ B (X, = Xo| + V.~ V] ds
. 0 .
¢
+ C/ ue (5, X5) — ug (s, X,)| ds.
0 .

Then one has to repeat classical energy type computations of the 2-dimensional theory
of Navier-Stokes equations (cf. [17]) to control u — v’ in the norms L* (0,T; L? (T%)) N

- L?(0,T; W2 (T¢)), bounds to be used jointly with the previous one. The only non clas-
sical term is

<og . f (ue (t,-) — v) F (-, dv) ,u (t)> - <'eg . / (W (t,) = v) F' (- dv) (t)>
which is controlled by the previous norms of » — v/ plus the term
(8 [ eter) =) (F Coao) - F () u )

/Td /m (6%~ % u (2)) (z) (ue (t,z) — v) (F (dz, dv) — F' (dz, dv))
<C-di (F(t),F (t)

T T

(the last bound requires some work, omitted here).These recursive estimates allow one to
apply Gronwall lemma and prove that (u, F) = (v/, F').

5.3 Second limit: ¢ = 0

Until now we have proven that the fluid, coupled with the particles, converges,.as N — oo
to system (4)-(5), where the mollification with ¢ € (0,1) survives. Called (uf, F€) the
solution in d = 2 (or a solution in d = 3) of (4)-(5), it remains to investigate the limit as
e—0.

The limit cannot be taken at the level of measure solutions F, or at least this looks
very difficult. Omne can give a meaning to the weak formulation of the VNS (1)-(2) when F
is only measure-valued, but at the price of imposing a priori that « is continuous bounded.
This direction could be investigated but requires a fully original approach to VNS system
which is beyond the scope of this note. And in addition, as remarked below, one should
expect only local-in-time solutions.

Therefore let us consider the modified VNS system and the true one when F is a
function. First, one has to prove that the modified VNS system has a solution (u¢, F€) in
appropriate function spaces; by the uniqueness result for measures proved above, it should
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be unique also in the weaker class of measure valued solutions. Then one should prove
convergence of (u, F€) to a solution (u, F') of system (1)-(2). We have checked that both
these steps are plausible following the approach of [18]; see also [4]; however there are
several details and results will appear in a forthcoming work.

When this is done, it is possible to extract suitable sequences (ex, Ni) such that
(uM*, SNe) converges to (u, F) as k — oc. Here, by (u™*, SV*), we mean those obtained
by the fluid-particle system with € = .

6 Joint limit

6.1 Introduction

As described in Sections 1.1 and 3, uniform estimates on the velocity are required to pass
to the limit simultaneously in N — oo and € — 0. A natural approach to prove uniform
bounds on ¥ is to get W&?2 (for ¢ > 0) bounds on the vorticity w™ = V+ - «V, which
satisfies equation (3). Bounds on the enstrophy are not sufficient, since they are bounds
on the W'2-norm of 4" which do not imply uniform bounds on u"V. Hence we work with
semigroups and look for bounds in more regular topologies. Notice however that enstrophy
bounds meet the same difficulties we have with semigroups.

Denoting by €' the semigroup associated to the Laplacian operator in L? or C* spaces
on the torus, we have

ow - 3 . .
O A N = DY VL (), (X - V) 6%)

=1
¢
Wl (t) = 2w (0) — / =8N (). Vb (s) ds
0
t N ) )
~ [T RS (5, X) - Vi) S,
=1
We want to estimate w? (¢) in W22 (T9), hence we use the inequality
12 = 2)% W™ Ol 2 ey < 1 = )7 ©)l] a1

+ [ -2y 9. 0 )

12(nd) ds -

ds. (6)

N
(I— Aypteelt=ayl (1 _ Ay, % > (s, X%) — Vi) 8
L2(T4)

=1

+/
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Let us only concentrate on the term (6) without V7, which is the source of the main
difficulty. For every T > 0, denote by ||-||T,°o the supremum norm over [0,7] x T¢. We
have

N
LS, (0,0 0 (@)] < [ FO (2)

i=1

”T,oo

where FON = 62, * (ILV YN8 Xf) and therefore the term (6) without V/ is bounded above
by (VX (I - A)_% is a bounded operator in L? (T%))

¢
1 -1 1 —s)A N
"V (I-A)"2 pa(re) () “ua,V"T,oo/‘; “(I — A)iteet-o) D(r4)or(r4) [|F° (s)lle(Td) ds
1_
<Ol e T4 10 17 o

because

9

AV ta (t-s)A «__ v
"(I A)2 € L2(Td)—>L2(11‘4) - (t _8)%-]-&

by well known analytic semigroup estimates.
We need an estimate on ||[FOM|| r2(ny+: this is the property of no concentration of

particles, as announced in Section 1.2.
6.2 No concentration of particles

Set FN = 6, * (% Zfil JX{',V#')’ where now 6, = 0, (z,v) are suitable mollifiers in both

variables, related to 2. Here we need o, # 0. One has

2
dFN = (%A,,Fg" — Vg Oy * (08N )) dt
— (Vo - Oey * (ul, ¢, 2) —v) SN)) dt + dMy¥

where

N t . . .
MtN (z,v) = % Z./o Vibey (z — X3 v — V7) 0pdBi.

t=1

Hence



—d/ / (7Y) dwdv+—/ / IV FY|? dedvdt

f (e = * (vSY)) Vo EN dedvdt
Td

/ / (Bew * ((udyy (t,2) —v) 8Y)) Vo F dudvdt

plus terms related to the martingale part that we do not discuss explicitly here. Let us see
how to treat the most difficult term: since

|(Bew * (udyy (8,2) ST)) (2,0)]

/ 05N(x ' ’U—‘U)u (tx)SN(da': d’U')
Td JRA

< [, [ e o) o, (0,2 52 ()

< [l iz g0 Ber * 51) (2,0)

we have

/ / (Oey * (ul, (¢,7) SN)) Vo FN dwdv

Td

< ||l ||T°°/ / FY |VoFN| dwdv

< N2 ” Yey "T,oo N2

<o [ VRN aso+ T [ (5N doa,

Td Rd € Td ]Rd

Summarizing,

2
sd [ [ @) dador % [ [ |V,RN P dadvat
2 Jra Jre 4 Jra Jge

- /’l[‘d ]}Rd (O * (”SQN ) V. EN dedvdt

N |12
+||UENIIT,00 [w [, (FtN)zdxdv

pius terms related to the martingale.
Heuristically, it seems that for small T, using (7), the previous estimates ”close” and
give a bound on '

T
4" ||z, an S |7

12(14)
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