REAL TORIC MANIFOLDS AND SHELLABLE POSETS ARISING FROM GRAPHS

SEONJEONG PARK（OCAMI）

The purpose of this paper is to introduce joint work with Boram Park［12］from a toric topological view．

1．Motivation

Throughout this paper，a graph permits multiple cdges but not a loop，and a simple graph means a graph having neither multiple edges nor a loop．

A toric variety of complex dimension n is a normal algebraic variety over \mathbb{C} with an effective action of $\left(\mathbb{C}^{*}\right)^{n}$ having an open dense orbit．A real toric manifold is the subset consisting of points with rcal coordinates of a complete smooth toric variety．The fundamental theorem of toric geometry says that there is a one－to－one correspondence between the class of toric varieties of complex dimension n and the class of fans in \mathbb{R}^{n} ．In particular，for a complete smooth toric varicty X ，the fan Σ_{X} is complete and smooth．Furthermore，if a smooth toric variety X is projective，then Σ_{X} can be realized as the normal fan of a Delzant polytope in \mathbb{R}^{n} ，where a Delzant polytope is a simple convex polytope such that the n primitive vectors（outwardly）normal to the facets meeting at each vertex form a \mathbb{Z}－basis．Note that the normal fan of a Delzant polytope is a complete non－singular fan and hence it defines a complete smooth toric variety and a real toric manifold as well．

It is known by Danilov［10］and Jurkiewicz［11］that the（integral）Betti numbers of a complete smooth toric varicty X vanish in odd degrees and the $2 i$ th Betti number of X is equal to h_{i} ，where $\left(h_{0}, \ldots, h_{n}\right)$ is the h－vector of Σ_{X} ．Note that the i th $\bmod 2$ Betti number of a real toric manifold $X_{\mathbb{R}}$ is also equal to h_{i} ．However，unlike toric varieties，only little is known about the cohomology of real toric manifolds．In［14］and［15］，Suciu and Trevisan have found a formula for the rational cohomology groups of a real toric manifold，see also［8］．

Recently，the rational Betti numbers of some interesting family of real toric manifolds，arising from graphs，have been formulated in terms of some poscts detcrmined by a graph by using the Suciu－Trevisan formula，see $[7,9]$ ．For a graph G ，a simple polytope P_{G} was introduced in $[5,6]$ as iterated truncations of the product of standard simplices．${ }^{1}$ Furthermore，P_{G} can be realized as a Delzant polytope canonically， see $[7,9]$ for more details．Hence there is a real toric manifold M_{G} corresponding to a graph G ．

Theorem 1.1 （［9］）．The ith rational Betti number of the real toric manifold M_{G} is

$$
\beta^{i}\left(M_{G}\right)=\sum_{\substack{\text { H.PI-graph } \\ \text { of } G}} \sum_{A \in \mathcal{A}(H)} \tilde{\beta}^{i-1}\left(\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {odd }}}\right)\right),
$$

where $\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {odd }}}\right)$ is the ordered complex of the proper part of the poset $\mathcal{P}_{H, A}^{\text {odd }}$ ．
In Section 2，we will define a PI－graph H of G ，an admissible collection $\mathcal{A}(H)$ of H ，the poset $\mathcal{P}_{H, A}^{\text {odd }}$ ， and the poset $\mathcal{P}_{H, A}^{\text {even }}$ satisfying that $\tilde{H}^{i}\left(\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {odd }}}\right)\right) \cong \tilde{H}_{\operatorname{dim}\left(P_{H}\right)-i-2}\left(\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {even }}}\right)\right)$ ．

[^0]
SEONJEONG PARK

A simplicial complex is shellable if its facets can be arranged in lincar order $F_{1}, F_{2}, \ldots, F_{t}$ in such a way that the subcomplex $\left(\sum_{\imath=1}^{k-1} \overline{F_{i}}\right) \cap \overline{F_{k}}$ is pure and $\left(\operatorname{dim} F_{k}-1\right)$-dimensional for all $k=2, \ldots, t$. A bounded ${ }^{2}$ poset \mathcal{P} is said to be shellable if its order complex $\Delta(\mathcal{P})$ is shellable. It is shown in [3] that for a shellable poset \mathcal{P}, the order complex $\Delta(\overline{\mathcal{P}})$ is homotopy equivalent to a wedge of spheres (of various dimensions).

Theorem 1.2 ([7]). Let H be a simple graph. If each of connected components of H has even number of vertices, then $\mathcal{A}(H)=\{V(H)\}$ and $\mathcal{P}_{H, V(H)}^{\text {even }}$ is pure and shellable; otherwise $\mathcal{A}(H)=\emptyset$. Furthermore,

$$
\begin{equation*}
\beta^{\imath}\left(M_{G}\right)=\sum_{\substack{I \subseteq V(G) \\|I|=2 \imath}} \mu\left(\mathcal{P}_{\left.G\right|_{I}, I}^{\text {even }}\right) \tag{1.1}
\end{equation*}
$$

where $\left.G\right|_{I}$ is the subgraph of G induced by I and $\mu\left(\mathcal{P}_{\left.G\right|_{I}, I}^{\text {even }}\right)$ is the Möbius invariant of the poset $\mathcal{P}_{\left.G\right|_{I}, I}^{\text {even }}$.
For instance, for a simple connected path graph,

$$
\begin{equation*}
\mu\left(\mathcal{P}_{P_{2 k},[2 k]}^{\text {even }}\right)=\frac{1}{k+1}\binom{2 k}{k} \text { and } \beta^{i}\left(M_{P_{n}}\right)=\binom{n}{i}-\binom{n}{i-1} \tag{1.2}
\end{equation*}
$$

for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$, where $[2 k]=\{1,2, \ldots, 2 k\}$. Note that $\frac{1}{k+1}\binom{2 k}{k}$ is known as the k th Catalan number and denoted by C_{k}. In [7], we can find not only (1.2) but also the explicit formula for the rational Betti numbers of M_{G} when G is a complete graph, a cycle graph, or a star graph. The rational Betti numbers of M_{G} for completc multipartite graphs are computed in [13].

When G is a simple graph, cvery PI-graph of G is an induced subgraph of G, and hence Theorem 1.1 is a generalization of (1.1). But, in general, for a non-simple graph G, our posets $\mathcal{P}_{H, C}^{\text {even }}$ and $\mathcal{P}_{H, C}^{\text {odd }}$ are not necessarily to be pure, and many of them are not shellable.
Question ([9]). For a graph G, let $\mathcal{A}^{*}(G)=\{(H, A) \mid H$ is a PI-graph of G and $A \in \mathcal{A}(H)\}$. Find all graphs G such that $\mathcal{P}_{H, A}^{\text {even }}$ is shellable for every $(H, A) \in \mathcal{A}^{*}(G)$.

In [12], we answer the question above and give an explicit formula for the rational Betti numbers of the real toric manifolds corresponding to some path graphs having multiple edges.

2. Preliminaries

In this section, we introduce some properties of the polytope P_{G}, and prepare some notions and basic facts about a poset and its shellability.

Let $G=(V, E)$ be a graph. An edge $e \in E$ is multiple if there exists an edge $e^{\prime}(\neq e)$ in E such that e and e^{\prime} have the samc pair of cndpoints. A bundle of G is a maximal set of multiple edges which have the same pair of endpoints. ${ }^{3}$ A subgraph H of G is an induced (respectively, semi-induced) subgraph of G if H includes all the edges (respectively, at least onc edge) betwecn every pair of vertices in H if such edges exist in G.
Properties of P_{G}. Let G be a connected graph with vertcx sct V and bundles B_{1}, \ldots, B_{k}.
(1) The polytope P_{G} is constructed from $\Delta^{|V|-1} \times \Delta^{\left|B_{1}\right|-1} \times \cdots \times \Delta^{\left|B_{k}\right|-1}$ by truncating the faces corresponding to the proper connected semi-induced subgraphs of G. ${ }^{4}$
(2) There is a one-to-one correspondence between the facets of P_{G} and the proper connected semiinduced subgraphs of G.

[^1]

Figure 1. The faccts of P_{G} and the proper semi-induced connected subgraphs of G
(3) Two facets F_{H} and $F_{H^{\prime}}$ of P_{G} intersect if and only if H and H^{\prime} are disjoint and cannot be connected by an edge of G, or one contains the other. Sce Figurc 1.
If G_{1}, \ldots, G_{ℓ} are connected components of G, then $P_{G}=P_{G_{1}} \times \cdots \times P_{G_{\ell}}$.
A graph H is a partial underlying graph of G if H can be obtained from G by replacing some bundles with simple edges, that is, cvery bundle of H is also a bundle of G. A graph H is a partial underlying induced graph (PI-graph for short) of G if H is an induccd subgraph of some partial undcrlying graph of G. Now we let \mathcal{C}_{G} be the set of all the vertices and multiple cdges of G. Then every semi-induced subgraph of G can be expressed as a subset of \mathcal{C}_{G} and for a PI-graph H of G, \mathcal{C}_{H} is inherited from \mathcal{C}_{G}. See Figurcs 1 and 2.

For a connected graph H, a subset $A \subset \mathcal{C}_{H}$ is admissible to H if the following hold:
(1) $|A \cap V(H)| \equiv 0(\bmod 2)$ and each vertex incident to only simple edges of H is contained in A,
(2) $B \cap A \neq \emptyset$ and $|B \cap A| \equiv 0(\bmod 2)$, for cach bundle B of H.

For a disconnccted graph $H, A \subset \mathcal{C}_{H}$ is admissible to H if $\mathcal{C}_{H^{\prime}} \cap A$ is admissible to H^{\prime} for cach component H^{\prime} of H. We denote by $\mathcal{A}(H)$ the set of all the admissible collections of H. For each H_{\imath} in Figure 2, we have $\mathcal{A}\left(H_{1}\right)=\{1234\}, \mathcal{A}\left(H_{2}\right)=\{1234 a b, 34 a b\}$, and $\mathcal{A}\left(H_{3}\right)=\{1234 c d, 1234 c e, 1234 d e, 14 c d, 14 c e, 14 d e\}$.

For each $A \in \mathcal{A}(H)$, a semi-induced subgraph I of H is A-even (respectively, A-odd) if $\left|I^{\prime} \cap A\right|$ is even (respectively, odd) for each component I^{\prime} of I. Now we define the poset $\mathcal{P}_{H, A}^{\text {even }}$ (respectively, $\mathcal{P}_{H, A}^{\text {odd }}$) by the poset consisting of all A-even (respectively, A-odd) semi-induced subgraphs of H ordered by subgraph containment, including both \emptyset and H. Note that if $\mathcal{A}(H)=\emptyset$ then $\mathcal{P}_{H, A}^{\text {even }}$ and $\mathcal{P}_{H, A}^{\text {odd }}$ are defined to be the null poset, and if $\mathcal{A}(H) \neq \emptyset$ then $\mathcal{P}_{H, A}^{\text {even }}$ and $\mathcal{P}_{H, A}^{\text {odd }}$ are bounded posets. Figure 2 gives cxamples of $\mathcal{P}_{H, A}^{\text {even }}$.

Note that for a graph $H, \Delta\left(\overline{\mathcal{P}_{H, A}^{\text {even }}}\right)$ (respectively, $\left.\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {odd }}}\right)\right)$ is a geometric subdivision of the simplicial complex dual to the union of the facets F_{I} of the polytope P_{H} such that $|I \cap A|$ is even (respectively, odd). Hence, from the Alexander duality, we have $\tilde{H}^{\imath}\left(\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {odd }}}\right)\right) \cong \tilde{H}_{\operatorname{dim}\left(P_{H}\right)-\imath-2}\left(\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {even }}}\right)\right)$.

For a bounded poset \mathcal{P}, we denote by $\mathcal{M E}(\mathcal{P})$ the set of pairs $(\sigma, x \lessdot y)$ consisting of a maximal chain σ and a cover $x \lessdot y$ along that chain. For $x, y \in \mathcal{P}$ and a maximal chain r of $[\hat{0}, x]$, the closed rooted intcrval $[x, y]_{r}$ of \mathcal{P} is a subposet of \mathcal{P} obtained from $[x, y]$ adding the chain r. A chain-edge labeling of \mathcal{P} is a map $\lambda: \mathcal{M E}(\mathcal{P}) \rightarrow \Lambda$, where Λ is some poset satisfying; if two maximal chains coincide along their bottom d covers, then their labels also coincide along thosc covers. A chain-lexicographic labeling (CL-labeling for short) of a bounded poset \mathcal{P} is a chain-edge labeling such that for each closed rooted interval $[x, y]_{r}$ of \mathcal{P}, there is a unique strictly increasing maximal chain, which lexicographically precedes all other maximal chains of $[x, y]_{r}$. A poset that admits a CL-labeling is said to be CL-shellable. We can easily see that $\mathcal{P}_{H_{1}, 1234}^{\text {even }}$ and $\mathcal{P}_{H_{2}, 1234 a b}^{\text {even }}$ arc CL-shellable.

Given a CL-labeling $\lambda: \mathcal{M} \mathcal{E}(\mathcal{P}) \rightarrow \Lambda$, a maximal chain $\sigma: x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{\ell}$ of \mathcal{P} is called a falling chain if $\lambda\left(\sigma, x_{\imath-1} \lessdot x_{i}\right) \geq_{\Lambda} \lambda\left(\sigma, x_{\imath} \lessdot x_{i+1}\right)$ for every $1 \leq i<\ell$.

Figure 2. Examples for PI-graphs of G and the posets $\mathcal{P}_{H, A}^{\text {even }}$

Theorem 2.1 ($[1,3,4]$). The following hold:
(1) If a bounded poset \mathcal{P} is CL-shellable, then $\Delta(\overline{\mathcal{P}})$ has the homotopy type of a wedge of spheres. Furthermore, for any fixed CL-labeling, the ith reduced Betti number of $\Delta(\overline{\mathcal{P}})$ is equal to the number of falling chains of length $i+2$.
(2) Every (closed) interval of a shellable (respectively, CL-shellable) poset is shellable (respectively, CL-shellable).
(3) The product of bounded posets is shellable (respectively, CL-shellable) if and only if each of the posets is shellable (respectively, CL-shellable).
(4) A bounded poset is pure and totally semimodular, then it is CL-shellable.

By (1) of Theorem 2.1, both $\Delta\left(\overline{\left.\mathcal{P}_{H_{1}, 1234}^{\text {even }}\right) \text { and } \Delta\left(\overline{\left.\mathcal{P}_{H_{2}, 1234 a b}^{\text {even }}\right) \text { in Figure } 2 \text { have the homotopy type }} \text {, }{ }^{\text {en }} \text {. }\right.}\right.$ $S^{0} \vee S^{0}$ because they have two falling chains of length 2 for any CL-labelling. Theorem 2.1 shows that $\mathcal{P}_{H_{3}, 1234 c d}^{\text {even }}$ is not shcllable because the interval $[\emptyset, 1234 c d]$ is not shellable.

An alternative approach to CL-shellability, via so-called "recursive atom orderings", was introduced in $[2,3]$.
Definition 2.2. A bounded poset \mathcal{P} admits a recursive atom ordering if its length $\ell(\mathcal{P})$ is 1 , or $\ell(\mathcal{P})>1$ and there is an ordering $\alpha_{1}, \ldots, \alpha_{t}$ of the atoms of \mathcal{P} satisfying the following:
(1) For all $j=1, \ldots, t$, the interval $\left[\alpha_{j}, \hat{1}\right]$ admits a recursive atom ordering in which the atoms of [$\left.\alpha_{j}, \hat{1}\right]$ that belong to $\left[\alpha_{2}, \hat{1}\right]$ for some $i<j$ come first.
(2) For all i, j with $1 \leq i<j \leq t$, if $\alpha_{i}, \alpha_{j}<y$ then there exist an integer k and an atom z of $\left[\alpha_{j}, \hat{1}\right]$ such that $1 \leq k<j$ and $\alpha_{k}<z \leq y$.

Theorem 2.3 ([3]). A bounded poset admits a recursive atom ordering if and only if it is CL-shellable.

3. Main result and its application

In this section, we introduce the main result in [12] and give the formula for the rational Betti numbers of $M_{\tilde{P}_{n, 2}}$ as an application, where $\tilde{P}_{n, 2}$ is a graph in Figure 3.

Let \mathcal{G} be the collection of graphs whose connected components are simple or belong to the list in Figure 3.

Figure 3. Non-simple connected graphs with n vertices and multiple edges ($m \geq 2$)
Theorem 3.1 (Main result in [12]). Let G be a graph. Then $\mathcal{P}_{H, A}^{\text {even }}$ is $C L$-shellable for every $(H, A) \in$ $\mathcal{A}^{*}(G)$ if and only if G belongs to \mathcal{G}.
Sketch of proof. The proof of 'only if' part relies on (2) of Theorem 2.1; if a graph G is not in \mathcal{G}, then we can always find a pair $(H, A) \in \mathcal{A}^{*}(G)$ such that $\mathcal{P}_{H, A}^{\text {even }}$ has a non-shellable interval, sce Theorem 4.2 in [12].

The proof of the 'if' part relies on (3)~(4) of Theorem 2.1 and Thcorcm 2.3. For a simple connected graph H, if $\mathcal{A}(H) \neq \emptyset$, then $\mathcal{P}_{H, V(H)}^{\text {even }}$ is pure and totally semimodular (see [7]), and hence $\mathcal{P}_{H, V(H)}^{\text {even }}$ is CL-shellable by (4) of Theorem 2.1. For a non-simple connected graph $H \in \mathcal{G}, \mathcal{P}_{H, A}^{\text {even }}$ admits a recursive atom ordering for every $A \in \mathcal{A}(H)$ (sce Thcorem 5.3 in [12]), and hence it is CL-shellable by Theorem 2.3. Since every PI-graph of $G \in \mathcal{G}$ belongs to \mathcal{G}, every $G \in \mathcal{G}$ satisfies that $\mathcal{P}_{H, A}^{\text {even }}$ is shellable for every $(H, A) \in \mathcal{A}^{*}(G)$ by (3) of Thcorem 2.1.

Now we see the rational Betti numbers of the real toric manifold corresponding to $\tilde{P}_{n, 2}$ in Figure 3. We give labels $1, \ldots, n$ to the vertices from left to right and a, b to the multiple edges as shown below.

Under the recursive atom ordering in Theorem 5.3 in [12], we can compute the number of falling chains of $\mathcal{P}_{\tilde{P}_{n, 2}, A}^{\text {even }}$, which tells us the homotopy type of $\Delta\left(\overline{\mathcal{P}_{\tilde{P}_{n, 2}, A}^{\text {even }}}\right)$ by (1) of Theorem 2.1. Note that

$$
\mathcal{A}\left(\tilde{P}_{n, 2}\right)= \begin{cases}\left\{A_{1}:=12 \cdots n a b, A_{2}:=34 \cdots n a b\right\}, & \text { if } n \text { is even; } \\ \left\{A_{3}:=134 \cdots n a b, A_{4}:=234 \cdots n a b\right\}, & \text { if } n \text { is odd }\end{cases}
$$

Proposition 3.2 (Proposition 6.3 and Tablc 2 in [12]). If n is even, then

$$
\Delta\left(\overline{\overline{\mathcal{P}}_{\tilde{P}_{n, 2}, A_{1}}^{\text {even }}}\right) \simeq \bigvee_{C_{k-1}} S^{k-3} \text { and } \Delta\left(\overline{\overline{\mathcal{P}}} \overline{\bar{P}_{n, 2}, A_{2}}\right) ~ \simeq \bigvee_{C_{k}} S^{k-1}
$$

for $k=\frac{n-2}{2}$. If n is odd, then

$$
\Delta\left(\overline{\mathcal{P}_{\tilde{P}_{n, 2}, A_{3}}^{\text {even }}}\right) \text { is contractible and } \Delta\left(\overline{\mathcal{P}_{\tilde{P}_{n, 2}, A_{4}}^{\text {even }}}\right) \simeq \bigvee_{C_{k+1}-C_{k}} S^{k-1}
$$

for $k=\frac{n-3}{2}$. Here, C_{k} is the k th Catalan number.
Note that $\Delta\left(\overline{\mathcal{P}_{2 k,[2 k]}}\right)$ is homotopy equivalent to $\bigvee_{C_{k}} S^{k-2}$. Since each connected component of a PI-graph of $\tilde{P}_{n, 2}$ is a simplc path graph or $\tilde{P}_{m, 2}$ for some $m \leq n$. By using $\tilde{H}^{v}\left(\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {odd }}}\right)\right) \cong$ $\tilde{H}_{\operatorname{dim}\left(P_{H}\right)-i-2}\left(\Delta\left(\overline{\mathcal{P}_{H, A}^{\text {even }}}\right)\right)$, we can plug Proposition 3.2 into Theorem 1.1 and computc the rational Betti numbers of $M_{\tilde{P}_{n, 2}}$.

SEONJEONG PARK

Proposition 3.3 (Section 6.2 in [12]). The ith rational Betti number of $M_{\tilde{P}_{n, 2}}$ is

$$
\beta^{\imath}\left(M_{\tilde{P}_{n, 2}}\right)=\beta^{\imath}\left(M_{P_{n}}\right)+\sum_{\ell=0}^{\imath-1} \sum_{m=2}^{n-2} b_{m}^{\ell} \beta^{\imath-\ell-1}\left(M_{P_{n-m-1}}\right)+b_{n-1}^{\imath-1}+b_{n}^{\imath-1}
$$

where

$$
\beta^{\imath}\left(M_{P_{n}}\right)= \begin{cases}\binom{n}{i}-\binom{n}{\imath-1}, & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
b_{k}^{i}:= \begin{cases}C_{\frac{k}{2}}, & \text { if } i=\frac{k}{2} \text { or } \frac{k}{2}-1 \text { for even } k \\ C_{\frac{k+1}{2}}^{2}-C_{\frac{k-1}{2}}, & \text { if } i=\frac{k-1}{2} \text { for odd } k \\ 0 & \text { otherwise }\end{cases}
$$

For some $i, \beta^{i}\left(M_{\tilde{P}_{n, 2}}\right)$ can be written in a simple form. For instance, $\beta^{1}\left(M_{\tilde{P}_{n, 2}}\right)=n, \beta^{2}\left(M_{\tilde{P}_{n, 2}}\right)=\binom{n}{2}$, and $\beta^{k}\left(M_{\tilde{P}_{2 k, 2}}\right)=\beta^{k+1}\left(M_{\tilde{P}_{2 k+1,2}}\right)=\frac{6 k}{k+2} C_{k}$, which is known as the total number of noncmpty subtrees over all binary trees having $k+1$ internal vertices, sce [16, A071721].

Remark. It would be interesting if one figures out that the i th rational Betti number $\beta^{i}\left(M_{G}\right)$ counts other combinatorial objects for every $G \in \mathcal{G}$.

References

[1] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), no. 1, 159-183.
[2] A. Björner and M. L. Wachs, On lexicographıcally shellable posets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 323-341.
[3] A. Björner and M. L. Wachs, Shellable non pure complexes and posets I, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299-1327.
[4] A. Björner and M. L. Wachs, Nonpure shellable complexes and posets II, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3945-3975.
[5] M. Carr and S. L. Devadoss, Coxeter complexes and graph-associahedra, Topology Appl., 153 (2006), no. 12, 2155-2168.
[6] M. Carr, S. L. Devadoss and S. Forcey, Pseudograph associahedra, J. Combin. Theory Ser. A 118 (2011), no. 7, 2035-2055.
[7] S. Choi and H. Park, A new graph invariant arises in toric topology, J. Math. Soc. Japan, 67 (2015), no. 2, 699-720.
[8] S. Choi and H. Park, On the cohomology and their torsion of real toric objects, Forum Math. 29 (2017), no. 3, 543553.
[9] S. Choi, B. Park and S. Park, Pseudograph and its associated real toric manifold, J. Math. Soc. Japan 69 (2017), no. 2, 693-714.
[10] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk, 33 (1978), no. 2(200), 85-134.
[11] J. Jurkiewicz, Chow ring of projective nonsingular torus embedding, Colloq. Math., 43 (1980), no. 2, 261-270.
[12] B. Park and S. Park, Shellable posets arising from even subgraphs of a graph, arXiv:1705.06423, 2017.
[13] S. Seo and H. Shin, Signed a-polynomials of graphs and Poincaré polynomıals of real toric manifolds, Bull. Korean Math. Soc. 52 (2015), no. 2, 467-481.
[14] A. Suciu and A. Trevisan, Real toric varieties and abelian covers of generalized Davis-Januszkiewicz spaces, preprint, 2012.
[15] A. Trevisan, Generalized Davis-Januszkiewicz spaces and their applıcations in algebra and topology, Ph.D. thesis, Vrije University Amsterdam, 2012.
[16] The on-line encyclopedia of integer sequences, available at https://oeis.org/.
Department of Mathematics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
E-mail address: seonjeong1124@gmail.com

[^0]: ${ }^{1}$ In［5］，G is assumed to be simple and P_{G} is called a graph associahedron，but in［6］，G is not necessarily simple and P_{G} is called a pseudograph associahedron．Note that G having a loop defines an unbounded polyhedron．

[^1]: ${ }^{2} \mathrm{~A}$ poset \mathcal{P} is said to be bounded if it has a unique minimum, denoted by $\hat{0}$, and a unique maximum, denoted by $\hat{1}$. We denote by $\overline{\mathcal{P}}=\mathcal{P}-\{\hat{0}, \hat{1}\}$.
 ${ }^{3}$ Each bundle of a graph has at least two elements.
 ${ }^{4}$ The reader can find the detailed construction of P_{G} in $[6,9]$.

