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1 Introduction

The purpose of our presentation was to apply the fimite topology theory to the subgroup
complex theory. \mathrm{A} finite T_{0} ‐space is a topological space having finitely many points with
the T_{0}‐separation axioms, that is, for each pair of distinct two points, there exists an open
set containing one but not the other. Many well‐known properties about finite T_{0}‐spaces
may be found in [I], [2] and [5]. Moreover we consider the finite space with a finite group
G‐action, called a finite T_{0}-G ‐space.

On the other hand, we are interested in homotopy properties on subgroup complexes
of a finite group. Let G be a finite group and p a prime factor of the order of G . Let
O_{p}(G) be the maximal normal p‐‐subgroup of G . The Bouc poset(= partially ordered set)
B_{p}(G) of a finite group G is the subposet of S_{p}(G) with O_{p}(N_{G}(P)) =P , where N_{G}(P)
is the normalizer of P and S_{p}(G) is the poset of the non‐trivial p‐subgroups of G ordered
by inclusion. We remark that the Bouc poset B_{p}(G) contains all Sylow p‐subgroups of G.

Let \triangle(B_{p}(G)) denote the order complex of B_{p}(G) , that is, the vertices are the elements
of B_{p}(G) and the n‐simplices are the chains of p‐subgroups of B_{p}(G) of length n . This
simplicial complex is called the Bouc complex of G at p.

Quillen examined the simplicial complex \triangle(S_{p}(G)) associated with the poset S_{p}(G) .
In particular, let us take a finite solvable group G . The main theorem of his paper [4] is
that \triangle(S_{p}(G)) is contractible if and only if there is a non‐trivial normal p‐subgroup. Our
study is motivated by this result.

McCord’s result [3, Theorem 2] provides deep insight into understanding relations
between finite T_{0}‐spaces and finite simplicial complexes. For a fimite T_{0}‐space X , we can
define the order complex \triangle(X) . Let |\triangle(X)| be the geometric realization of \triangle(X) .

Proposition 1.1. There exists a weak homotopy equivalence $\mu$_{X} : |\triangle(X)| \rightarrow X . More‐
over, each map  $\varphi$ :  X \rightarrow  Y between finite T_{0} ‐spaces defines a simplicial map \triangle( $\varphi$) :
\triangle(X) \rightarrow\triangle(Y) by \triangle( $\varphi$)(x) = $\varphi$(x) , and  $\varphi$ 0$\mu$_{X}=$\mu$_{Y}\circ| $\Delta$( $\varphi$)| where |\triangle( $\varphi$)| : |\triangle(X)| \rightarrow

|\triangle(Y)| is a continuous map induced by \triangle( $\varphi$) .

Corollary 1.2. Let  $\varphi$ :  X \rightarrow  Y be a map between finite T_{0} ‐spaces. Then  $\varphi$ is a weak
homotopy equivalence if and only  if| $\Delta$( $\varphi$)| : |\triangle(X)|\rightarrow |\triangle(Y)| is a homotopy equivalence.

Then we show the following:

Theorem A. Let G be a finite nilpotent group and p any prime factor of the order of
G. Then \triangle(B_{p}(G)) is contractible.

We apply McCord’s theorem to give a very short, purely topological proof of the above
result.
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2 Some examples of Bouc posets

For the convenience of the reader, we present some examples of Bouc posets.

Example 2.1. Take G= D_{12} , the dihedral group of order 12, and p= 2 . We can give
the abstract presentation of G by the generators and relations:

G=\langle a, b|a^{6}=b^{2}=1, b^{-1}ab=a^{-1}\} ;

where these represent a rotation and a reflection, when G is regarded concretely as the
group of a regular hexagon. We find three Sylow 2‐subgroups of order 4: \{a^{3}, b\}, \langle a^{3}, ab\rangle,
\langle a^{3},  a^{2}b\rangle , and the minimal members are generated by 7 involutions: \{a^{3}\rangle, \{b\}, \{ab\rangle, \{a^{2}b\rangle,
\langle a^{3}b\rangle, \{a^{4}b\rangle, \{a^{5}b\} . Thus the poset diagram for S_{2}(D_{12}) is given by:

b\}

Observe that each of three Sylow 2‐subgroups is not the normal subgroup of G and
the center Z(G) of G equals \langle a3}. Therefore  B_{2}(G)=\{\{a^{3},  b\rangle , {  a^{3} , ab}, \{a^{3}, a^{2}b\rangle, \langle a^{3}\rangle\}.

Example 2.2. Take G=Q_{8} , the quaternion group of order 8, and p=2 . We can give
the abstract presentation of G by the generators and relations:

G=\langle a, b|a^{4}=1, b^{2}=a^{2}, b^{-1}ab=a^{-1}\rangle.

We find three Sylow 2‐subgroups of order 4: \langle a }, \langle b\rangle, \langle ab\rangle , and each of these three Sylow
2‐subgroups contains the unique cyclic subgroup {a2}. Thus the poset diagram for  S_{2}(Q_{8})
is given by:

Since any subgroup of G is normal, so that B_{2}(G)= {Q8}.
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Example 2.3. Take G = \mathfrak{A}_{4} , the alternative group of letter 4. We find one Sylow 2‐
subgroup of order 4 and four Sylow 3‐subgroups of order 3. The subgroups diagram for
\mathfrak{A}_{4} is given by:

Here V is a Klein group, each C_{3}^{i} (i= 1,2,3,4) is a distinct cyclic group of order 3,
and each C_{2}^{j} (j = 1,2,3) is a distinct cyclic group of order 2. Then B_{2}(G) = \{V\} and
B3 (G)=\{C_{3}^{1}, C_{3}^{2}, C_{3}^{3}, C_{3}^{4}\}.

Example 2.4. Take G = \mathfrak{A}_{5} , the alternative group of letter 5, and p = 2 . By easy
observation, we find five Sylow 2‐subgroups of order 4, and each Sylow 2‐subgroup contains
three cyclic groups of order 2. Thus the poset diagram for S_{2}(\mathfrak{A}_{5}) is given by:

Here each V_{4}^{i} (1 \leq i \leq 5) is a distinct Klein group, each C_{2}^{j}(1 \leq j \leq 15) is a distinct
cyclic group of order 2. Then B_{2}(\mathfrak{A}_{5}) ) =\{V_{4}^{1}, V_{4}^{2}, V_{4}^{3}, V_{4}^{4}, V_{4}^{5}\}.

3 Proof of Theorem \mathrm{A}

We address to the article written by Barmak and cited in Bibliography. Stong studied
equivariant homotopy theory for finite T_{0}‐spaces [6]. Let G be a fimite group. A finite
T_{0}‐space with a G‐action is called a finite T_{0}-G ‐space. Any finite T_{0}-G‐space X has a core
which is G‐invariant and an equivariant strong deformation retract of X . Such a core is
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called a G‐core. See our general reference Barmak [1, p106] for details. Note that a fimite
T_{0}-G‐space is contractible if and only if its G‐core consists of a point. We remark that
B_{p}(G) is a finite T_{0}-G‐space by conjugation.

Proof of Theorem A If G is a finite nilpotent group, then G has a unique Sylow
p‐subgroup S_{p} . The poset diagram for B_{p}(G) is given by:

By this diagram, the G‐core of B_{p}(G) is {Sp}, and so B_{p}(G) is contractible. By
McCord’s theorem (Proposition 1.1), there exists the following commutative diagram:

|\triangle(B_{p}(G))| \rightarrow^{| $\Delta$(f)|} |\triangle(\{S_{p}\})|

$\mu$_{B_{\mathrm{p}}(G)\downarrow} \downarrow$\mu$_{\{S_{p}\}}
B_{p}(G) \rightarrow^{f} \{S_{p}\}

where f : B_{p}(G) \rightarrow \{S_{p}\} is homotopy equivalent. By Corollary 1.2, map |\triangle(f)| :
|\triangle(B_{p}(G))| \rightarrow |\triangle(\{S_{p}\})| is also homotopy equivalent. Therefore |\triangle(B_{\mathrm{p}}(G))| is con‐
tractible, that is, \triangle(B_{p}(G)) is contractible. \square 

Corollary B. Let pq be the order of G such that p and q are distinct primes with p>q.

Then \triangle(B_{p}(G)) is contractible.

Proof. The number of Sylow p‐subgroups of G is equivalent to 1 mudulo p . Moreover it
is also the devisor of pq. Therefore the number of Sylow p‐subgroups of G is 1, and so
the Sylow p‐subgroup is normal. \square 

For example, take G = \mathfrak{S}_{3} , the symmetric group of letter 3. Then \triangle(B_{3}(\mathfrak{S}_{3})) is
contractible.

4 Concluding remarks

Lemma 4.1. A contractible finite T_{0} ‐G‐space has a point which is fixed by the action of
G.

Proof. A contractible finite T_{0}-G‐space has a G‐core, i.e. a point, which is G‐invariant. \square 

We showed the followig result in [2].
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Lemma 4.2. Let X be a finite T_{0} ‐G‐space. Then |\triangle(X)|/G is homotopy equivalent to
|\triangle(X)/G|.

Suppose that B_{p}(G) is contractible. Then lemma 4.1 claims that G has a normal
p‐subgroup. Moreover the orbit space B_{p}(G)/G of B_{p}(G) is a finite T_{0}‐space and also
contractible.

Proposition 4.3. Let |\triangle(B_{p}(G))/G| be the geometric realization of \triangle(B_{p}(G))/G . If
B_{p}(G) is contractible, |\triangle(B_{p}(G))/G| is also contractible.
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