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On the finite space with a finite group action II
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1 Introduction

The purpose of our presentation was to apply the finite topology theory to the subgroup
complex theory. A finite Ty-space is a topological space having finitely many points with
the Ty-separation axioms, that is, for each pair of distinct two points, there exists an open
set containing one but not the other. Many well-known properties about finite Ty-spaces
may be found in [1], [2] and [5]. Moreover we consider the finite space with a finite group
G-action, called a finite Ty-G-space.

On the other hand, we are interested in homotopy properties on subgroup complexes
of a finite group. Let G be a finite group and p a prime factor of the order of G. Let
O,(G) be the maximal normal p-subgroup of G. The Bouc poset(= partially ordered set)
B,(G) of a finite group G is the subposet of S,(G) with O,(Ng(P)) = P, where Ng(P)
is the normalizer of P and S,(G) is the poset of the non-trivial p-subgroups of G ordered
by inclusion. We remark that the Bouc poset B,(G) contains all Sylow p-subgroups of G.
Let A(B,(G)) denote the order complex of B,(G), that is, the vertices are the elements
of B,(G) and the n-simplices are the chains of p-subgroups of B,(G) of length n. This
simplicial complex is called the Bouc complex of G at p.

Quillen examined the simplicial complex A(S,(G)) associated with the poset S,(G).
In particular, let us take a finite solvable group G. The main theorem of his paper [4] is
that A(S,(G)) is contractible if and only if there is a non-trivial normal p-subgroup. Our
study is motivated by this result.

McCord’s result [3, Theorem 2] provides deep insight into understanding relations
between finite Ty-spaces and finite simplicial complexes. For a finite Ty-space X, we can
define the order complex A(X). Let |A(X)| be the geometric realization of A(X).

Proposition 1.1. There exists a weak homotopy equivalence px : |A(X)| — X. More-
over, each map ¢ : X — Y between finite Ty-spaces defines a simplicial map A(p) :
A(X) = A(Y) by Ap)(z) = (), and p o px = py o |A(p)| where |A(p)| : |A(X)] —
|A(Y)] is a continuous map induced by A(p).

Corollary 1.2. Let ¢ : X — Y be a map between finite Ty-spaces. Then ¢ is a weak
homotopy equivalence if and only if |A(p)] : |A(X)| = |A(Y)] is a homotopy equivalence.
Then we show the following:

Theorem A. Let G be a finite nilpotent group and p any prime factor of the order of
G. Then A(B,(QG)) is contractible.

We apply McCord’s theorem to give a very short, purely topological proof of the above
result.
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2 Some examples of Bouc posets

For the convenience of the reader, we present some examples of Bouc posets.

Example 2.1. Take G = D5, the dihedral group of order 12, and p = 2. We can give
the abstract presentation of G by the generators and relations:

G={abla®=b"=1, b-lab=a"');

where these represent a rotation and a reflection, when G is regarded concretely as the
group of a regular hexagon. We find three Sylow 2-subgroups of order 4: (a3 b), (a3, ab),
(a®,a®b), and the minimal members are generated by 7 involutions: (a®), (b), (ab), (a®b),
(a®b), (a*b), (a®b). Thus the poset diagram for S>(D;2) is given by:

(a®,b) (a3, ab) (a3, a®b)

@)~ ()

Observe that each of three Sylow 2-subgroups is not the normal subgroup of G and
the center Z(G) of G equals (a®). Therefore By(G) = {{a®,b), (a®, ab), (a®,a’b), (a®)}.

(@) (ab) (i) () (@)

Example 2.2. Take G = Qg, the quaternion group of order 8, and p = 2. We can give
the abstract presentation of G by the generators and relations:

G={(abla*=1, 0" =d% b lab=a"").

We find three Sylow 2-subgroups of order 4: (a), (b), (ab}, and each of these three Sylow
2-subgroups contains the unique cyclic subgroup (a?). Thus the poset diagram for S2(Qs)
is given by:

Qs

)  {ab)

<a>\
(a?)

Since any subgroup of G is normal, so that B2(G) = {Qs}.
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Example 2.3. Take G = 24, the alternative group of letter 4. We find one Sylow 2-
subgroup of order 4 and four Sylow 3-subgroups of order 3. The subgroups diagram for
24 is given by:

A4
v%@
of a2
{e}

Here V is a Klein group, each C% (i = 1,2,3,4) is a distinct cyclic group of order 3,
and each Cj (j = 1,2,3) is a distinct cyclic group of order 2. Then By(G) = {V} and

Example 2.4. Take G = 25, the alternative group of letter 5, and p = 2. By easy
observation, we find five Sylow 2-subgroups of order 4, and each Sylow 2-subgroup contains
three cyclic groups of order 2. Thus the poset diagram for So(2s;) is given by:

V:ll V42 V;S

o/ S N NN BVe S JENo Ao S

Vi Vi

c/ cu P

Here each V(1 <1 < 5) is a distinct Klein group, each Cg (1 £ j £ 15) is a distinct
cyclic group of order 2. Then By(As)) = {V}, V2, V3, Vi, Vi1

020 011 C212

2

3 Proof of Theorem A

We address to the article written by Barmak and cited in Bibliography. Stong studied
equivariant homotopy theory for finite 7j-spaces [6]. Let G be a finite group. A finite
To-space with a G-action is called a finite Ty-G-space. Any finite Ty-G-space X has a core
which is G-invariant and an equivariant strong deformation retract of X. Such a core is



4'7

called a G-core. See our general reference Barmak [1, p106] for details. Note that a finite
To-G-space is contractible if and only if its G-core consists of a point. We remark that
B,(G) is a finite Ty-G-space by conjugation.

Proof of Theorem A If G is a finite nilpotent group, then G has a unique Sylow
p-subgroup S,. The poset diagram for B,(G) is given by:

Sp

By this diagram, the G-core of B,(G) is {S,}, and so B,(G) is contractible. By
McCord’s theorem (Proposition 1.1), there exists the following commutative diagram:

IAB,(@)] 29 a(s, )
”BP(G)J, Jf‘{s,,}
B,(@) 1w {s}

where f : B,(G) — {S,} is homotopy equivalent. By Corollary 1.2, map |A(f) :
|[A(B,(G))] — |A({S,})| is also homotopy equivalent. Therefore |A(B,(G))| is con-
tractible, that is, A(B,(G)) is contractible. O

Corollary B. Let pg be the order of G such that p and q are distinct primes with p > q.
Then A(B,(Q)) is contractible.

Proof. The number of Sylow p-subgroups of G is equivalent to 1 mudulo p. Moreover it
is also the devisor of pg. Therefore the number of Sylow p-subgroups of G is 1, and so
the Sylow p-subgroup is normal. O

For example, take G = &3, the symmetric group of letter 3. Then A(Bs3(S3)) is
contractible.

4 Concluding remarks

Lemma 4.1. A contractible finite Ty-G-space has a point which is fized by the action of
G.

Proof. A contractible finite T,-G-space has a G-core, i.e. a point, which is G-invariant. O

We showed the followig result in [2].



Lemma 4.2. Let X be a finite Ty-G-space. Then |A(X)|/G is homotopy equivalent to
|A(X)/G.

Suppose that B,(G) is contractible. Then lemma 4.1 claims that G has a normal
p-subgroup. Moreover the orbit space B,(G)/G of B,(G) is a finite Ty-space and also
contractible.

Proposition 4.3. Let |A(B,(G))/G| be the geometric realization of A(B,(G))/G. If
B,(G) is contractible, |A(By(G))/G| is also contractible.
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