A STUDY OF BORSUK-ULAM TYPE INEQUALITIES

Ikumitsu NAGASAKI

Department of Mathematics Kyoto Prefectural University of Medicine

ABSTRACT. After recalling Borsuk-Ulam type theorems, we shall provide some families of Borsuk-Ulam groups. As an application, we shall show variants of the (isovariant) Borsuk-Ulam theorem for such families.

1. BORSUK-ULAM TYPE THEOREMS

K. Borsuk [2] proved the following result, called the Borsuk-Ulam theorem.

Theorem 1.1. Let S^n be the unit sphere centered at the origin of \mathbb{R}^{n+1} , $n \geq 1$.

- (1) For any continuous map $f: S^n \to \mathbb{R}^n$, there exists $x \in S^n$ such that f(x) = f(-x).
- (2) If there exists an antipodal map $f: S^m \to S^n$, then $m \leq n$.

This result was generalized in following way.

- **Theorem 1.2** (Free version). (1) Suppose that a finite group G acts freely on S^m , S^n . If there exists a G-map $f: S^m \to S^n$ then $m \leq n$.
 - (2) Let X be a path-connected free C_k -space and Y a Hausdorff free C_k -space, $k \ge 2$. If $H_q(X; \mathbb{Z}_k) = 0$ for $1 \le q \le m$ and $H_{m+1}(Y/C_k; \mathbb{Z}_k) = 0$ for some $m \ge 1$, then there is no continuous C_k -map $f: X \to Y$ ([7]).

Theorem 1.3 (Fixed-point-free version [5]). Suppose that $G = C_p^k$ acts fixed-point-freely acts on S^m , S^n . If there exists a G-map $f: S^m \to S^n$, then $m \leq n$.

Moreover, T. Bartsch [1] researched Borsuk-Ulam type theorems for G-maps between fixed-point-free representation spheres for any compact Lie group G. Consequently,

Theorem 1.4 ([1]). Let G be a finite group. The weak Borsuk-Ulam theorem holds for G if and only if G is a p-group.

²⁰¹⁰ Mathematics Subject Classification. Primary 57S17; Secondary 55M20.

Key words and phrases. Borsuk-Ulam type theorem; Borsuk-Ulam group; Borsuk-Ulam inequality; isovariant map; representation theory.

Here "weak" means that a weaker inequality for dimensions holds, see [1] for the detail.

2. ISOVARIANT VERSION

A G-map $f: X \to Y$ is called G-isovariant if $G_{f(x)} = G_x$ for any $x \in X$. Wasserman [9] studied an isovariant version of the Borsuk-Ulam theorem. Let V, W be orthogonal representations of G, and S(V), S(W) their unit spheres. The Borsuk-Ulam theorem for a free action leads to the following.

Proposition 2.1. Let C_p be a cyclic group of prime order p. If there is a C_p -isovariant map $f: S(V) \to S(W)$, then

$$\dim V - \dim V^{C_p} \le \dim W - \dim W^{C_p}.$$

Definition. G is called a Borsuk-Ulam group (BUG) if the isovariant Borsuk-Ulam theorem holds for G-representations; namely, if there is a G-isovariant map $f : S(V) \to S(W)$, then

$$\dim V - \dim V^G \leq \dim W - \dim W^G$$
(Borsuk-Ulam inequality)

holds.

A main problem is

Problem (unsolved). Which groups are Borsuk-Ulam groups?

There are some partial results on this problem.

Theorem 2.2 ([9]). If G satisfies the prime condition, then G is a Borsuk-Ulam group.

Here we say that G satisfies the prime condition if the following condition (PC): Let $1 = G_0 \triangleleft \cdots \triangleleft G_r = G$ be a composition series. For every simple factor $F_i := G_{i+1}/G_i$,

$$p(g) := \sum_{p: ext{ prime factor of } |g|} rac{1}{p} \leq 1$$

for any $g \in F_i$.

Example 2.3 ([9]). (1) Solvable groups.

(2) A_5, A_6, \ldots, A_{11} (but $A_n, n \ge 12$, do not satisfy (PC).)

There is another type of example.

Theorem 2.4 ([8]). PSL(2,q) is a Borsuk-Ulam group, where q is a prime power.

Remark. PSL(2, 59), PSL(2, 61), etc do not satisfy (PC).

This result is proved as the following way. Let G = PSL(2,q) and $f : S(V) \to S(W)$ be *G*-isovariant. Then $\operatorname{res}_C f : S(V) \to S(W)$ is *C*-isovariant for any $C \in Cy(G)$, where Cy(G) is the set of cyclic subgroups of *G*. Thus

$$\dim V - \dim V^C \le \dim W - \dim W^C, \ \forall C \in Cy(G)$$
$$(\because C \text{ is a BUG.})$$
$$\Downarrow (Q)$$
$$\dim V - \dim V^G \le \dim W - \dim W^G$$

Question. Which groups satisfy implication (Q) as above?

We here call such a group G a (Q)-group.

Remark. A (Q)-group is a Borsuk-Ulam group.

Proposition 2.5 ([6]). An abelian (Q)-group is cyclic or C_p^k for some prime p and $k \ge 0$.

3. Algebraic description of the Borsuk-Ulam inequality

We first recall the Möbius function. Let S(G) be the set of subgroups of G.

Definition (Möbius function $\mu : S(G) \times S(G) \to \mathbb{Z}$). For $H, K \in S(G)$ with $H \leq K, \mu$ is inductively defined by

$$\sum_{H \le L \le K} \mu(H, L) = \begin{cases} 0 & H < K \\ 1 & H = K \end{cases}$$

For $H \not\leq K$, set $\mu(H, K) = 0$.

As is well-known,

Proposition 3.1 (Möbius inversion).

$$\begin{split} f(K) &= \sum_{H \leq K} g(H) \ (\forall K \in S(G)) \\ & \updownarrow \\ g(K) &= \sum_{H \leq K} \mu(H,K) f(H) \ (\forall K \in S(G)) \end{split}$$

Let V, W be G-representations and χ_V, χ_W their characters. For $H \in S(G)$,

$$\dim W^H - \dim V^H = \frac{1}{|H|} \sum_{g \in H} (\chi_W(g) - \chi_V(g))$$

$$\dim W - \dim V = \chi_W(1) - \chi_V(1)$$
$$= \frac{1}{|H|} \sum_{g \in H} (\chi_W(1) - \chi_V(1))$$

 Set

$$e(g) = \chi_W(1) - \chi_W(g) - \chi_V(1) + \chi_V(g)$$

and

$$h(H) = \sum_{g \in H} e(g).$$

Lemma 3.2.

$$h(H) = |H|(\dim W - \dim W^H - \dim V + \dim V^H).$$

In particular, h(1) = 0 and the Borsuk-Ulam inequality is equivalent to $h(G) \ge 0$. For $H \in S(G)$, we see

$$h(H) = \sum_{D \in Cy(H)} \sum_{g \in D^*} e(g),$$

where D^* is the set of generators of D. Set

$$k(D) = \sum_{g \in D^*} e(g).$$

For $C \in Cy(G)$,

$$h(C) = \sum_{D \le C} k(D).$$

The Möbius inversion (on Cy(G)) says

$$k(C) = \sum_{D \le C} \mu(D, C)h(D).$$

On the other hand,

$$h(G) = \sum_{g \in G} e(g) = \sum_{C \in Cy(G)} k(C).$$

Thus we have

$$\begin{split} h(G) &= \sum_{C \in Cy(G)} \sum_{D \leq C} \mu(D,C) h(D) \\ &= \sum_{1 \neq D \in Cy(G)} \Big(\sum_{D \leq C \in Cy(G)} \mu(D,C) \Big) h(D) \end{split}$$

For $D \in Cy(G)$, set

$$m(D) = \sum_{D \le C \in Cy(G)} \mu(D, C).$$

Clearly we see

Lemma 3.3. If $m(D) \ge 0$ for $1 \ne D \in Cy(G)$, then (Q) holds.

86

The following are examples of (Q)-groups: C_n , D_n , C_p^k , PSL(2,q). On the other hand, the quaternion group Q_8 is not a (Q)-group. Furthermore, there is a class of finite groups with $m(D) \ge 0$ for any cyclic $D \ne 1$.

Definition. A (P)-group G is defined to be a finite group such that any nontrivial element has prime order.

Lemma 3.4. A(P)-group is a(Q)-group.

Proof. m(D) = 1 for cyclic $D \neq 1$.

Clearly, if a (P)-group G is abelian, then G is C_p^k for some p, k, but there are many nonabelian examples.

There are three types of (P)-groups, see [3] for the detail:

(1) p-groups with exponent p.

ex. C_p^{k} , $P_3 = \langle x, y, z | x^p = y^p = z^p = 1$, [x, y] = z, $[x, z] = [y, z] = 1 \rangle$. $(|P_3| = p^3)$.

(2) $1 \to P \to G \to C_q \to 1$ (ex) with some condition, where P is of type 1 above. (p, q are distinct primes.)

ex. $Z_{p,q}$ metacyclic group of order pq, A_4 .

(3) A_5 . This is only one nonsolvable (P)-group.

4. VARIANTS OF THE BORSUK-ULAM THEOREM

Proposition 4.1. Let G be a (Q)-group and V, W G-representations. If there is a C-isovariant map

$$f_C: S(V) \smallsetminus S(V)^C \to S(W) \smallsetminus S(W)^C$$

for every $C \in Cy(G)$, then

$$\dim V - \dim V^G \le \dim W - \dim W^G.$$

Proof. Note that $S(V) \setminus S(V)^C$ is C-isovariantly homotopy equivalent to $S(V - V^C)$. Thus there exists a C-isovariant map

$$\bar{f}_C: S(V-V^C) \to S(W-W^C).$$

By the isovariant Borsuk-Ulam theorem for C, we obtain

$$\dim V - \dim V^C \le \dim W - \dim W^C$$

for every $C \in Cy(G)$. The property (Q) shows

 $\dim V - \dim V^G \le \dim W - \dim W^G.$

Remark. In this case, there is not necessarily a G-isovariant map $f: S(V) \to S(W)$.

Corollary 4.2. Let G be a (P)-group and V, W G-representations. If there is a C-map $f_C: S(V) \smallsetminus S(V)^C \to S(W) \smallsetminus S(W)^C$

for every $C \in Cy(G)$, then

$$\dim V - \dim V^G \le \dim W - \dim W^G.$$

Proof. Indeed, since C has a prime order, f_C is automatically C-isovariant.

We finally consider the nonlinear case.

Theorem 4.3. Let G be a (P)-group of type 1, i.e., a p-group of exponent p. Let Σ_1 and Σ_2 be mod p homology spheres with smooth G-actions. If there is a C-map

$$f_C: \Sigma_1 \smallsetminus \Sigma_1^C \to \Sigma_2 \smallsetminus \Sigma_2^C$$

for every $C \in Cy(G)$, then

$$\dim \Sigma_1 - \dim \Sigma_1^G \le \dim \Sigma_2 - \dim \Sigma_2^G.$$

Proof (Sketch). Note the following facts.

- **Facts.** (1) Σ_i^H is a mod p homology sphere (possibly empty) for any $H \leq G$ by Smith theory.
 - (2) $\Sigma_i \setminus \Sigma_i^C$ is a mod p homology sphere with homological dimension dim $\Sigma_i \dim \Sigma_i^C 1$.
 - (3) Σ_i has a linear dimension function, i.e., there is a G-representation V_i such that $\dim \Sigma_i^H = \dim S(V_i)^H$ for any $H \leq G$ ([4]).

Since $C \cong C_p$ acts freely on $\Sigma_i \smallsetminus \Sigma_i^C$, it follows that

$$\dim \Sigma_1 - \dim \Sigma_1^C \le \dim \Sigma_2 - \dim \Sigma_2^C.$$

by a Borsuk-Ulam type theorem.

By Fact (3), we obtain

$$\dim V_1 - \dim V_1^C \le \dim V_2 - \dim V_2^C.$$

This implies

$$\dim V_1 - \dim V_1^G \le \dim V_2 - \dim V_2^G.$$

Thus

$$\dim \Sigma_1 - \dim \Sigma_1^G \le \dim \Sigma_2 - \dim \Sigma_2^G$$

References

- [1] T. Bartsch, On the existence of Borsuk-Ulam theorems, Topology **31** (1992), 533–543.
- [2] K. Borsuk, Drei Sätze über die n-dimensionale Sphäre, Fund. Math. 20 (1933), 177– 190.
- [3] K. N. Cheng, M. Deaconescu, M. L. Lang and W. J. Shi, Corrigendum and addendum to: "Classification of finite groups with all elements of prime order", Proc. Amer. Math. Soc. 117 (1993), 1205–1207.
- [4] R. M. Dotzel and G. C. Hamrick, p-Group actions on homology spheres, Invent. Math. 62 (1981), 437–442.
- [5] E. Fadell and S. Husseini, An ideal-valued cohomological index, theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergod. Th. and Dynam. Sys. 8 (1988), 73-85.
- [6] I. Nagasaki, The Borsuk-Ulam inequality for representations, Studia Humana et Naturalia 49 (2015), 21–30.
- [7] I. Nagasaki, T. Kawakami, Y. Hara and F. Ushitaki, The Borsuk-Ulam theorem in a real closed field, Far East J. Math. Sci. (FJMS) 33 (2009), 113–124.
- [8] I. Nagasaki and F. Ushitaki, New examples of the Borsuk-Ulam groups, RIMS Kôkyûroku Bessatsu B39 (2013), 109–119.
- [9] A. G. Wasserman, Isovariant maps and the Borsuk-Ulam theorem, Topology Appl. 38 (1991), 155–161.

DEPARTMENT OF MATHEMATICS, KYOTO PREFECTURAL UNIVERSITY OF MEDICINE, 1-5 SHIMO-GAMO HANGI-CHO, SAKYO-KU, KYOTO 606-0823, JAPAN

E-mail address: nagasaki@koto.kpu-m.ac.jp