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CENTRAL ELEMENTS OF THE JENNINGS BASIS AND
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CERTAIN MORITA INVARIANTS

TARO SAKURAI
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ABSTRACT. From Morita theoretic viewpoint, computing Morita invari-
ants is important. We proved that the intersection of the center and the
nth socle ZS™(A) := Z(A) N Soc™(A) of a finite dimensional algebra A
is Morita invariant; This is a generalization of important Morita invari-
ants, the center Z(A) and the Reynolds ideal ZS'(A4).

As an example, we also studied ZS™(F'P) for the group algebra F'P
of a finite p-group P over a field F of positive characteristic p. Such
an algebra has a basis along the radical filtration, known as the Jen-
nings basis. We show sufficient conditions under which an element of
the Jennings basis is central and a lower bound for the dimension of
ZS™(FP) for every positive integer n. Equalities hold for 1 < n < p
if P is powerful. As a corollary we have Soc?(FP) C Z(FP) if P is
powerful.

This is a report of a talk based on [Sakurai, arXiv:1701.03799v2].
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1. INTRODUCTION
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From Morita theoretic viewpoint, computing Morita invariants is important
to distinguish algebras that are not Morita equivalent. We show that the
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intersection of the center and the nth right socle
(1.1) ZS™(A) := Z(A) N Soc™ (A)

is Morita invariant for a finite dimensional algebra A (Theorem 2.2) in Sec-
tion 2. This is a generalization of important Morita invariants, the center
Z(A) and the Reynolds ideal ZS'(A). The other way of generalization is
known as the Kiilshammer ideals or the generalized Reynolds ideals for a
symmetric algebra; For more details we refer the reader to the survey by
Zimmermann [17].

For the group algebra F'G of a finite group G over an algebraically closed
field F' of positive characteristic p, the dimension of the center Z(F'G) and
the Reynolds ideal ZS*(FG), respectively, equal the number of irreducible
ordinary characters k(G) and the irreducible modular characters £(G) (see
[9, Lemmas 3 and 4]). (See also (4.3) for n = 2.) Moreover the conjugacy
class sums form a basis for the center and the p-regular section sums form
a basis for the Reynolds ideal (see [5, Satz DJ; see also [9, Lemma 3] and
[11, Theorem 1]). These are summarized in Table 1.1 where ¢ denotes the
Loewy length of FG.

TABLE 1.1. What is known about ZS™(FG).

dimension (representation-theoretic) basis (group-theoretic)

ZS*(FG) k(G) conjugacy class sums
ZS™(FG) unknown unknown

ZS*(FG) £(G)+ s, qmple dimExt*(S, S) unknown*

ZSY(FG) £(G) p-regular section sums

As ZS™(FQ) is a generalization of such, we want to know what is the
dimension and what a basis can be. One of manageable examples to compute
socle series is the group algebra FP of a finite p-group P over a field F' of
positive characteristic p. Jennings constructed a basis of F'P along the
radical filtration (Theorem 3.5) and it follows that radical series coincides
with socle series (Theorem 3.6). Such basis is known as the Jennings basis
(Definition 3.7). To give a lower bound for the dimension of ZS™(F P) we ask
a question: When is an element of the Jennings basis central? In Section 4
we give sufficient conditions under which an element of the Jennings basis is
central and a lower bound for the dimension of ZS™(F P) for every positive
integer n (Theorem 4.1). This lower bound is sharp; We also proved that the
equalities hold for 1 < n < p if P is powerful (Theorem 4.4). As a corollary
we have Soc? (FP) C Z(FP) if P is powerful (Corollary 4.5). Examples in
Section 5 show that the corollary is best possible.

2. MORITA INVARIANTS

Inspired by the proof of Morita invariance of the Kiilshammer ideals by
Héthelyi et al. [2, Proposition 5.1] (see also [16, Theorem 1] for their derived

*Except finite p-groups; see Remark 4.7.
2
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invariance), we showed that the intersection of the center and the nth right
socle ZS™(A) = Z(A)NSoc™ (A), an ideal of the center, is a Morita invariant
for a finite dimensional algebra A over a field. Note that this is left-right
symmetric unlike socle. In the following Rad™ (A) denotes the nth Jacobson
radical of A.

Lemma 2.1. Let A be a finite dimensional algebra over a field and suppose
e € A is a full idempotent. Then Rad™ (eAe) = Rad™ (A) N eAe for every
positive integer n.

Theorem 2.2 (Sakurai [12]). Let A and B be Morita equivalent finite
dimensional algebras over a field. Then there is an algebra isomorphism
Z(A) — Z(B) such that the following diagram commutes for all positive
integer n. In particular, ZS™(A) are Morita invariants.

Z(A) —— Z(B)

] J

ZS™MA) — ZS™(B)

3. JENNINGS THEORY

As we established Morita invariance of ZS™(A) in Theorem 2.2, we want
to determine the invariants for special cases. We hereafter study a group
algebra F'P of a finite p-group P over a field F of positive characteristic p.
In this section we collect results of the Jennings theory.

Definition 3.1. For a positive integer 7 we define the ith dimension subgroup
(or Jennings subgroup) of P by

D;:={u€P|u—1¢€cRad (FP)}.

100

Remark 3.2. Although the dimension subgroups are defined ring-theoretically,

those can be computed group-theoretically by Theorem 3.6(iv).

Lemma 3.3.

(i) Every dimension subgroup is a characteristic subgroup.
(ii) Every successive quotient of the dimension subgroups is an elemen-
tary abelian p-group.

Notation 3.4. Let D; be the dimension subgroups of P. For a successive
quotient of the dimension subgroups D;/D;y; of p-rank r;, we fix elements
Uily - - -y Uir, € D; such that

D;/Di1 = (uinDi1) X - -+ X (Uir, Diy1)-
Set £:=min{i>1|D; =1} A:={(4,j)|1<i<¥ 1<j<ri}, and
M :={0,1,...,p— 1}, For p = (1i5) € M define
(3.1) w(p) = Z ipij and 2M = HI zfj”,

(3,5)€A 3 (i,5)EA
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!
where z;; := u;; — 1 and the product H is taken in lexicographic order.
For an integer k define

(3.2) My:={peM|i>k = p=p—1forall (1,j) €A}
and ux € My by

_Jp—1 (i=2k)
(3.3) (br)i = {0 (i < k).

Theorem 3.5 (Jennings [3]). For every non-negative integer n we have

Rad" (FP)= @ Fz*.
pneEM
w(p)>n
Theorem 3.6 (Jennings [3]).
(i) The Loewy length ¢4(FP) of FP equals 1+ w(u1).
(ii) FP is rigid: Soc™ (FP) = Rad“¥P)="(FP) for every 0 < n <
U(FP).

(iii) Soc™ (FP) = @ F2z* for every n > 0.

HEM
w(p1)—w(p)<n
(iv) Dy = P and D; = (Dy;/p))P[Di-1, P] for every i > 1.

Definition 3.7. The basis { z# | p € M } of FP is said to be the Jennings
basis.

4. MAIN THEOREMS

As promised, we give sufficient conditions under which an element of the
Jennings basis is central and a lower bound for the dimension of the Morita
invariant ZS™(FP) = Z(FP) N Soc™ (FP) for every positive integer n in
Theorem 4.1.

Theorem 4.1 (Sakurai [12]). Let F be a field of positive characteristic p and
P a finite p-group. Suppose k is a positive integer that satisfies Dy > [P, P]
where Dy denotes the kth dimension subgroup of P (recall Definition 3.1).
Then, with Notation 3.4 and (1.1), we have

(4.1) zS™(FP)2> @ Fz*
HEM

where ng := 1+ w(p1) — w(uk). In particular, for every positive integer n
we have
(4.2) ZS™(FP) 2 (B F2*.
HeE M
w(py)—w(p)<n

Remark 4.2. Note that such k always exists: Dy > [P, P]. Note also that
the dimension of the right hand side of (4.1) equals |Mj| = |P/Dy|.
4
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See Section 5 for concrete examples. We can show that those coincide
under the following conditions.

Definition 4.3. A finite p-group P is said to be powerful if [P, P] < PP
and p>2,or [P,P] < P*and p=2.

Theorem 4.4 (Sakurai [12]). If P is powerful then for every 1 < n < p we
have
ZS™(FP) =P F.
HeEM;
w(p1)—w(p)<n
Corollary 4.5 (Sakurai [12]). If P is powerful then we have
Soc? (FP) C Z(FP).

We give some remarks concerning these theorems in the rest of this sec-
tion.

Remark 4.6. It is known that Soc? (4) C Z(A) for a finite dimensional
split-local symmetric algebra A. This can be traced back to Miiller (7,
Proof of Lemma 2]. (For a simple proof see, for example, [1, Lemma 2.2].)

Remark 4.7. Note that ZS™(FP) can be written down explicitly for n =
1,2:

ZSYFP) = Fz"

ZS*(FP)=Fz"® P Fz2%
1<j<n

where 6; € M is an element with 1 at (1, ) and 0 otherwise. This is due to
the Jennings theory and Remark 4.6.

Remark 4.8. Huppert raised a question that are the dimensions of Loewy
layers of FP unimodal? Negative answer is given by Manz-Staszewski [6]
and Stammbach-Stricker [15], independently. Nevertheless positive answer
is known under certain condition; Shalev proved that the dimensions of
Loewy layers are unimodal for powerful p-group if p > 2 (see [13, Proposi-
tion 4.1]). Hence it is reasonable to assume powerful as the Loewy series is
well-behaved.

Remark 4.9. Let A be a block of a finite group algebra (or a finite di-
mensional symmetric algebra) over an algebraically closed field. Okuyama
obtained the dimension of ZS?%(A) that

(4.3) dim Z$?(A) = dim 25" (A) + » _ dim Ext}y(S, S)
S

where the sum is taken over a set of representatives of isoclasses of simple
A-modules [8]. (See also [4, Theorem 2.1] which is written in English.)
5
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Recently Otokita obtained an upper bound for the dimension of ZS™(A)
that

(4.4) dim ZS™(A) < > ¢(Ps/Rad™ (Ps), S)

S
where the sum is taken over a set of representatives of isoclasses of simple
A-modules and ¢(Ps/Rad™ (Ps),S) denote the composition multiplicity of
a simple module S in the factor module Ps/Rad™ (Ps) of the projective
cover Pg of S [10, Theorem 1.1].

5. EXAMPLES

In this section we illustrate our results by examples. In particular, the
examples show that Corollary 4.5 is best possible. In the following we con-
sider group algebras of extra-special p-groups of order p® for odd prime p
over a field F of characteristic p.

5.1. Extra-special p-group pif". Let P be an extra-special p-group of
order p3 and exponent p defined by

P :=pi+2 = M(p) = {a,b,c|a? = =P = [a,c] = [b,c] = 1,[b,a] = ¢)
for odd prime pandset z:=a—1,y:=b—1, and z := ¢— 1. Then we can
show that

(5.1) Rad"(FP)= @ Faiy/sr
0<i,j,k<p
i+j+2k>n
(5.2) Z(FP)= P Flreo @ Faiyr '
0<k<p-1 0<i,j<p
In particular, for p = 3, we have
_ 1
T Y
x? xy y? z
o’y  xy? xz Yz
(5.3) FP~ |22y 2?2 =zyz o2 22
22yz  zy’2z  x2? yz?
2?2 x22? xyz?  yl2?
x2yz? zy?z?
x?y?2?

which mean that ith row consists of the elements of the Jennings basis lying
in Rad*~! (FP) \ Rad‘ (FP) and bold letters show that the elements are
central. Note that P is not powerful and z2y?z € Soc® (FP) \ Z(FP).
Hence the assertion of Corollary 4.5 does not hold without the assumption

that P is powerful.
6
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TABLE 5.1. Relevant numbers of the main theorems for P = 3#"‘2.
n 1 2 3 4 5 6 7 8 9
dimSoc™(FP) 1 3 7 11 16 20 24 26 27
dimZS™(FP) 1 3 6 8 9 9 10 10 11
#HueM|wp)-wp)<n} 1 3 6 8 9 9 9 9 9

5.2. Extra-special p-group p!'™2. Let P be an extra-special p-group of

order p3 and exponent p? defined by
P:=p!*? = M3(p) = (a,b| a? = V¥ = 1,b° = b!*P)

for odd prime p and set z :=a — 1,y :=b— 1, and z := ¢ — 1 where c = b”.
Then we can show that

(5.4) Rad™ (FP)= (P Fa'y's*
0<i,5,k<p
i+j+pk>n
(5.5) Z(FP)= @ Ftreo @ Fo'yzr '
0<k<p—1 0<14,5<p

In particular, for p = 3, we have

1
z y
z? Ty y?
2y zy? z
2?2z Yz
(5.6) FP~ | 222  ayz Y2z
2yz  xy’z 22
2y’z  x2? yz?
222? gyz?  y2z?
x2yz? xy?2?
o2y?22

where the convention is the same as (5.3). Note that P is powerful and
z?y?z € Soc®™! (FP) \ Z(FP). Hence even if P is powerful a stronger
assertion of Corollary 4.5 that SocP*! (FP) C Z(FP) is false in general.

TABLE 5.2. Relevant numbers of the main theorems for P = 31*2,

n 1 23 4 5 6 7 8 9 10 11

dimSoc® (FP) 1 3 6 9 12 15 18 21 24 26 27

dimZS*(FP) 1 3 6 8 9 9 9 10 10 10 11
#H{preMs|wp)—wpy<n} 1 3 6 8 9 9 9 9 9 9 9
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