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1 Introduction

The main purpose of this note is a progress report on the ongoing project whose
goal is to achieve the variations of the Jorgensen theory for certain cone manifolds.
The Jorgensen theory studies the punctured torus groups, and characterizes the
combinatorial structures of the Ford domains (see [3] and [2]). Here a punctured
torus group is a Kleinian group freely generated by two elements with parabolic
commutator; the space of punctured torus groups contains the quasifuchsian space
for the once‐punctured torus  T_{0} (see Figure 1). As a corollary to this, we can obtain
a practical algorithm for a subgroup of \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{C}) generated by two elements with
parabolic commutator to be discrete and free as well as it has infinite covolume.

There are several variations of the Jorgensen theory, though some of them is still
conjectural. They are introduced in Section 3. Briefly, one of them is to replace
the cusp of T_{0} with a cone point (Variation I), another one is to produce accidental
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Figure 1: Once‐punctured torus T_{0}
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cusps and further changing it to cone singularities (Variation II), and the other one
is the mixture of the two variations I and II (Variation III).

Variation II was introduced in [2] whose goal is to construct hyperbolic structures
on the two‐bridge knot and link complements, concretely. It gives a path from
punctured torus groups to two‐bridge knot groups via cone hyperbolic structures.
On the way, we can characterize the combinatorial structures of Ford domains for
groups in the Riley slice of Schottky slice. Our project concerning Variation III
also tries to establish a variation.of the result for “cone Riley slice” (see Section 4).
We believe that it will shed a new light on Martin’s project of searching for small
hyperbolic quotients.

In Section 5, we give a new proposal which is expected to connect coned torus
in Variation I and cone Riley slice.

2 Dirichlet and Ford domains

Throughout the paper we employ the upper half space model for the hyperbolic
3‐space \mathbb{H}^{3} , namely, \mathbb{H}^{3} = \{(z, t)|z \in \mathbb{C}, t > 0\} \subset \mathbb{C} \times \mathbb{R} . For  $\theta$ \in (0,2 $\pi$) , let
\mathrm{S}\mathrm{e}\mathrm{c}_{ $\theta$} = \{(z, t)|0 \leq \arg z \leq  $\theta$, t > 0\} \subset \mathbb{H}^{3} and \mathbb{H}_{ $\theta$}^{3} the quotient space obtained
from \mathrm{S}\mathrm{e}\mathrm{c}_{ $\theta$} by identifying its vertical boundary half planes by the  $\theta$‐rotation about
the vertical geodesic \langle\infty,  0\rangle . We call the image of \langle\infty,  0\rangle the cone singularity of
\mathbb{H}_{ $\theta$}^{3} . Let p:\mathrm{S}\mathrm{e}\mathrm{c}_{ $\theta$}\rightarrow \mathbb{H}_{ $\theta$}^{3} be the projection. For a horoball H centered at \infty , we call
 p(H\cap \mathrm{S}\mathrm{e}\mathrm{c}_{ $\theta$}) a horoball with cone singularity (of cone angle  $\theta$).

A  3\rightarrow dimensional cone manifold is a 3‐manifold  M with a collection of arcs  $\Sigma$,
called the singular locus, and an assignment of a positive number to each arc, called
the cone angle. A cone hyperbolic structure on a 3‐dimensional cone manifold M is
a metric such that for any point x in  M- $\Sigma$ (resp.  $\Sigma$ ) there is a neighborhood  U of
x such that the pair (U, x) is isometric to a pair (V, y) of an open set V in \mathbb{H}^{3} and
y \in  V (resp. an open set V in \mathbb{H}_{ $\theta$}^{3} and a singular point in V , where  $\theta$ is the cone
angle assigned to the component of  $\Sigma$ containing  x). In this paper, we call a cone
manifold equipped with a cone hyperbolic structure a cone hyperbolic manifold.

Let M be a complete, connected 3‐dimensional cone hyperbolic manifold such
that the cone angle assigned to each component of the cone singularity  $\Sigma$ is less
than  2 $\pi$.

First, we recall the notion of Dirichlet domains. Fix a point b in M . The Dir $\iota$ chlet

domain with re\mathcal{S}pect to b is defined to be the completion (with respect to the path
metric) of the complement in M of the cut locus Cut (b) with respect to b , where
Cut (b) is the closure of the set of points x \in  M such that there are at least two
shortest paths from x to b . For example, Dirichlet domains are effectively used in the
former study on cone hyperbolic structures in the proof of the “orbifold theorem”’
One of the most important property of Dirichlet domains would be that a Dirichlet
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domain is a contractible set whose interior embeds in M as a star shaped (resp.
convex) dense subset whenever all the cone angles are less than  2 $\pi$ (resp.  $\pi$ ).

Our interest is in the Ford domains and its relation with Dirichlet domains for

cone manifolds. Before giving.our definition of Ford domains for cone hyperbolic
manifolds, we give a quick review on it for the case without cone singularity. In
that case the manifold is obtained as the quotient space of \mathbb{H}^{3} by a certain Kleinian
group, say  $\Gamma$ . By fixing an identification of \mathbb{H}^{3} with the upper half space model, the
Ford domain for M =\mathbb{H}^{3}/ $\Gamma$ is obtained as the common exterior to the isometric

hemispheres for the elements of  $\Gamma$ which does not fix \infty.

The Ford domain is not a fundamental domain for  $\Gamma$ in general, however, its
intersection with a fundamental domain for the stabilizer of \infty is. Compared with
Dirichlet domains, sometimes it is easier to let Ford domains to be canonical: For
instance, if the manifold has precisely one cusp, then the Ford domain with respect to
the fixed point of a parabolic element corresponding to the cusp. Furthermore, if the
manifold is moreover of finite volume, then the “geometric dual”’ of the Ford domain
is the canonical decomposition for the manifold in the sense of Epstein‐Penner and
Weeks.

In the case with cone singularity, we do not have a canonical universal covering
space; in fact, the topological universal covering space does not seem to be useful
enough, because possibly there are more than one shortest paths connecting two
points in the covering space. In order to avoid the problems, we employ the equiva‐
lent intrinsic characterization of Ford domains. To this end, we need an additional
condition that  M contains an “admissible subset”:

Definition 2.1. A subset C of M is said to be admissible if it is isometric to one

of the following spaces:

1. A horoball with cone singularity in \mathbb{H}_{ $\theta$}^{3} for  $\theta$\in (0,2 $\pi$) .

2. The quotient of a horoboll H in \mathbb{H}^{3} by a discrete subgroup of \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C}) con‐
sisting of parabolic transformations stabilizing H.

Suppose that M contains an admissible subset C . The cut locus Cut(C) with
respect to C is defined to be the closure of the set of points x\in M such that there are
at least two shortest paths from x to C . As a corollary to the Hopf‐Rinow theorem,
we see that the cut locus Cut(C) is a locally finite union of totally geodesic pieces.

Definition 2.2. For a cone hyperbolic manifold M which contains an admissible
subset C , the Ford domain for M with respect to C is defined to be the completion
of M-\mathrm{C}\mathrm{u}\mathrm{t}(C) with respect to the path metric.

We remark that the intrinsic characterization is based on the property of isomet‐
\mathrm{r}\mathrm{i}\mathrm{c} spheres: The isometric hemisphere of an element  $\gamma$ of \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{C}) with  $\gamma$(\infty)\neq\infty
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Figure 2: Variations of Jorgensen theory

is equal to the equidistant locus from  H and $\gamma$^{-1}(H) for any horoball H with center
\infty.

Let S be a complete cone hyperbolic surface with a single cone point q of angle
at most  2 $\pi$ . The hyperbolic structure is canonically extended to a complete cone
hyperbolic structure on the product  M=S\times I . We can see that the cone hyperbolic
manifold M contains an admissible subset C isometric to a horoball with cone

singularity.

Proposition 2.3. Let D be the Dintchlet domain for S with respect to q , and F the
Ford domain for M with re\mathcal{S}pect to C. Then C is isometric to the product D \times I

which is endowed with the canonical hyperbolic structure induced from D.

3 Several variations of the Jorgensen theory

There are several variations of the Jorgensen theory. The original theory deals with
punctured torus groups, which correspond to hyperbolic structures on the manifold,
M_{0} , obtained as the product of T_{0} and the open interval I . As Variation I, which is
expected to be obtained by an author’s ongoing project, the cusp of M_{0} is changed to
cone singularity of cone angle  $\theta$\in(0,2 $\pi$) . The cone manifold is denoted by M_{ $\theta$} . One
can apply the original Jorgensen theory for four‐times punctured sphere Kleinian
groups by using the commensurability illustrated in Figure 3. As Variation II, we
create an additional cusp at one of the ends, then pass through the boundary of the
deformation space of complete hyperbolic structures via cone hyperbolic structures.
Variation II is obtained by a joint project with Sakuma, Wada and Yamashita,
which is outlined in [2]. The expected Variation III is the combination of Variations
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Figure 3: Fricke surfaces

I and II, where the main cusp is changed to cone singularity and pass through the
boundary of the deformation space of cone hyperbolic structures via cone hyperbolic
structures with additional cone singularity.

3.1 Original theory

The original Jorgensen theory characterizes the combinatorial structures of Ford do‐
mains for punctured torus groups. For the once‐punctured torus T_{0} , fix a pair of gen‐
erators a, b\in$\pi$_{1}(T_{0}) as depicted in Figure 1. A representation  $\rho$ :  $\pi$_{1}(T_{0})\rightarrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{C})
with parabolic  $\rho$([a, b]) is always normalized by a conjugation so that  $\rho$([a, b]) =

\left(\begin{array}{ll}
1 & 2\\
0 & \mathrm{l}
\end{array}\right).
The simplest example of the Ford domain is depicted in the left hand side of

Figure 4. The visible isometric hemispheres are those of  $\rho$(a^{\pm 1}) ,  $\rho$(b^{\pm 1}) ,  $\rho$((ab)^{\pm 1})
and their conjugates by  $\rho$([a, b]^{k}) (k \in \mathbb{Z}) . By gluing the pairs of faces of Ford
domain, we can obtain a 2‐dimensional complex embedded in M_{0} , which is called
the Ford complex. For the simplest example, the Ford complex is equal to the
product of a spine of T_{0} and the interval. A generic Ford domain is depicted in the
left hand side of Figure 5. In general, two terminal spines for T_{0} are determined
corresponding to the upper and lower most sequences of faces, and the intermediate
faces are described by using the shortest path in the complex of spine of T_{0} which
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Figure 4: Simplest examples of Ford domains for original and coned case

Figure 5: Generic Ford domains for original case and the case for  $\theta$=4 $\pi$/7
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connects the terminal spines.
The following theorem is stated in the unfinished manuscript due to Jorgensen

[3] (see [2] for the complete proof).

Theorem 3.1. For any quasifuchsian punctured torus group, the combinatorial
structure of its Ford domain is characterized as above.

The theory gives a practical algorithm for a given representation  $\rho$ :  $\pi$_{1}(T_{0}) \rightarrow

\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{C}) with parabolic  $\rho$([a, b]) to be discrete or not.

3.2 Variation I

There is a variation corresponding to cone hyperbolic structures on the cone mani‐
fold, M_{ $\theta$} , which is obtained by replacing the cusp of M_{0} with cone singularity. We
remark that it is still conjectural, though there are many numerical results support‐
ing the variation (cf. [1]). We also remark that a certain family of cone hyperbolic
structures are concretely constructed by Jorgensen [4]: Each of them has discrete
holonomy representation and a fundamental domain is determined. It is used to
construct a hyperbolic structure on a closed surface bundle.

The (conjectural) characterization for the Ford domains for cone hyperbolic
structures on M_{ $\theta$} under .an appropriate finiteness condition is parallel to that for
the original case. We only need to modify the description corresponding to the re‐
placement of the cusp with cone singularity (see the right hand sides of Figures 4
and 5). The fundamental polyhedron for M_{ $\theta$} with such combinatorial structure is
said to be good. There are several conjectures for cone hyperbolic structures on M_{ $\theta$}

to have a good fundamental polyhedron (see [1]).

Proposition 3.2. Suppose that a cone hyperbolic manifold M_{ $\theta$} has a good funda‐
mental polyhedron F. Then F is equal to the Ford domain for M_{ $\theta$}.

3.3 Variation II

Another variation is introduced in the author’s joint work with Sakuma, Wada and
Yamashita, whose goal is to construct the hyperbolic structures on hyperbolic two‐
bridge knot and linkcomplements. For that purpose, we started with the quasifuch‐
sian hyperbolic structures on the product N_{0} of four‐times punctured sphere S_{0} , and
the interval I . Then observed the characterization is valid even for the cusp groups
for N_{0} , which have accidental parabolics at one or two ends. The middle figure in
the first row of Figure 6 is a schematic picture of \mathrm{a}^{(} double cusp” manifold, the left
figure in the second row is a schematic picture of a “single cusp” manifold. A slight
modification near the cusp, the Ford domain can be deformed to a polyhedron which
produces a complete cone hyperbolic structure on the cone manifold N_{ $\theta$} obtained
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Figure 6: Paths to a two‐bridge knot complement

by changing the accidental cusps to cone singularities as depicted in the adjacent
pictures. It is proved that the deformation is valid until the cone angles become
 2 $\pi$ . The bottom picture illustrates the terminal cone manifold of the deformation
from a single cusp manifold: the hyperbolic structure is not singular anymore, as
the cone angle becomes  2 $\pi$ . The space of hyperbolic structures obtained in such a
way is equal to the Riley slice of Schottky space. We omit a detailed explanation of
the deformation of Ford domains, for which please see [2].

As for the fundamental polyhedron introduced in [2], we can show the following.

Proposition 3.3. The fundamental polyhedron introduced in [2] is the Ford domain
for the cone hyperbolic manifolds.

3.4 Variation III

We expect that there is a variation of the theory for cone manifolds obtained as the
mixture of Variations I and II, namely, the cone manifolds obtained by changing
the main cusp with cone singularity of cone angle  $\theta$ and creating accidental cusps
then modifying it to additional cone singularity of cone angle  $\alpha$ . We denote the
cone manifold by  N_{ $\theta$}( $\alpha$) . As a naive expectation, there will be a variation for any
 $\theta$\in (0,2 $\pi$) and  $\alpha$\in(0, $\alpha$_{ $\theta$}) for  $\alpha$_{ $\theta$}=2 $\pi$- $\theta$ . The maximum angle  $\alpha$_{ $\theta$} is crucial for our
approach because of the following observation: Figure 7 illustrates the developed
image of lifts in \mathrm{S}\mathrm{e}\mathrm{c}_{ $\theta$} to \mathbb{H}^{3} if a generic Ford domain for M_{ $\theta$} introduced in Variation
I (cf. Figure 5). The picture in the right hand side illustrates the dual cell complex
to the Ford domain, whose vertices are centers of isometric hemispheres supporting
the Ford domain, and two vertices are connected by an edge if the corresponding
faces of Ford domain share an edge. Figures 8 and 9 illustrates deformation of
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Figure 7: Ford domain for M_{ $\theta$} and N_{ $\theta$} ; the developed image of lifts in \mathrm{S}\mathrm{e}\mathrm{c}_{ $\theta$} to \mathbb{H}^{3}

Figure 8: Creation of a cusp and cone singularity; from a limit of N_{ $\theta$} to N_{ $\theta$}( $\alpha$)

Figure 9: Deformation of N_{ $\theta$}( $\alpha$) with  $\alpha$\rightarrow$\alpha$_{ $\theta$}
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Figure 10: Outermost isometric hemispheres become inside out when  $\alpha$>$\alpha$_{ $\theta$}

Ford domain where an accidental cusp is created, changed to cone singularity, and
then the cone singularity touches \infty at  $\alpha$=$\alpha$_{ $\theta$} . In the figures, we omit the detailed
information as illustrated in the middle picture of Figure 7. By a deformation, we
can produce a cusp as a limit of Variation I as depicted in the two pictures in the left
hand side of Figure 8: Pairs of circles contained in the family of outermost circles
are tangent to each other, and the points of tangency are fixed points of parabolic
isometries corresponding to the new cusp. In the two pictures in the right hand
side of Figure 8, each pair of circles become intersect transversely at two points,
which are the endpoints of the axis of an elliptic isometry which projects onto the
cone singularity. As illustrated in Figure 9, the combinatorial structure of the Ford
domain does not change until the radii of outermost circles diverge. The change in
combinatorial structure at the limit can be described in a parallel way that is given
in [2]. We can show that the cone angle at the limit is equal to $\alpha$_{ $\theta$} (< 2 $\pi$) . The
rack of angle is related to the cone angle  $\theta$ , and so it seems that we cannot arrive at
the “cone Riley slice” (see the next section 4) by using Ford domains only; in fact,
the outermost isometric hemispheres become inside out when the cone angle  $\alpha$>$\alpha$_{ $\theta$}

(see Figure 10). An approach to overcome this problem will be proposed in Section
5.

4 Cone Riley slice

In [6], Series, Tan and Yamashita study \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{C}) ‐representations of the group
\langle P, Q, R | P^{2} = Q^{2} = R^{2} = (PQ)^{2} = (RQP)^{3}\} . In particular, they describe
the shape of Dirichlet domains for the faithful discrete image of such a representa‐
tion  $\rho$ under a specific normalization: The fixed points in \mathbb{C} of  $\rho$(RQP) (resp.  $\rho$(P)
and  $\rho$(Q)) are \pm\sqrt{3} (resp. contained in the unit circle centered at the origin), and
the basepoint is chosen to be the point of intersection of the axes of  $\rho$(PQ) and

55



Figure 11: An example of Dirichlet domain studied in [6]; the picture is produced
following the algorithm of “PQR.py” by using Mathematica

 $\rho$(RQP) . Moreover, Yamashita produced a python code
(

PQR.py” [7] for viewing
many examples; the software works as a simple version of “OPTi” [8] produced by
Wada for the original Jorgensen theory. Figure 11 illustrates an example of Dirichlet
domain which is displayed by “PQR.py”

In 2014, as a comment to Martin’s talk (cf. [5] and Yamashita’s picture of the
cover page of the volume containing the paper) about searching for small hyperbolic
quotients at the seminar in Hiroshima University, Yamashita pointed out that their
project concerning [6] is closely related to Martin’s ongoing project. In particular,
he said that the combinatorial structure of their Dirichlet domain seems (almost)
the same as that of the Ford domain for a group in the Riley slice of Schottky space.

For n\geq 3 , let \mathcal{R}_{n} be the space of faithful discrete \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{C}) ‐representations of the
group \{P, Q, R|P^{2}=Q^{2}=R^{2}=(PQ)^{2}=(RQP)^{n}\} . We call \mathcal{R}_{n} a cone Riley slice.
We can check that a variation of the “chain rule” (cf. Chapter 4 of [2], which is a
fundamental property of the original theory) for the bisecting planes. The author
is studying \mathcal{R}_{n} collaborating with Yamashita for solving the following conjecture.
We believe that it provides a practical sufficient condition for a given representation
being discrete, faithful and with infinite covolume.

Conjecture 4.1. Any element  $\rho$ in the interior of \mathcal{R}_{n} is good, in the sense that the
combinatorial structure of the Dirichlet domain for the image of  $\rho$ with basepoint
at the intersection of the axes of  $\rho$(PQ) and  $\rho$(RQP) is the same after a natural

modification as that of a group in the Riley slice of Schottky slice.
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accidental cone axis

Figure 12: Schematic pictures near  $\alpha$=$\alpha$_{ $\theta$}

Figure 13: Modification by ignoring vertical planes

5 Path from coned torus to cone Riley slice

As mentioned in Section 3.4, the outermost isometric hemispheres become inside
out when the cone angle of accidental cone singularity exceeds $\alpha$_{ $\theta$} (recall Figures
9 and 10). Figure 12 contains three pictures, which schematically illustrate the
configuration of the main and accidental cone singularity in a lift in \mathrm{S}\mathrm{e}\mathrm{c}_{ $\theta$} of the Ford
domain; from left to right they correspond to the cases  $\alpha$ < $\alpha$_{ $\theta$},  $\alpha$ = $\alpha$_{ $\theta$},  $\alpha$ > $\alpha$_{ $\theta$},

respectively. When  $\alpha$>$\alpha$_{ $\theta$} , the two axes intersect at a point, b_{ $\theta$}.
We propose to employ the Dirichlet domain with respect to b_{ $\theta$} , for the case

 $\alpha$>$\alpha$_{ $\theta$} . To be precise, the limit of the Ford domains for N_{ $\theta$}( $\alpha$) as  $\alpha$\rightarrow$\alpha$_{ $\theta$} is not the
Ford domain for the geometric limit N_{ $\theta$}($\alpha$_{ $\theta$}) , in the sense of our definition, because
the limit does not contain an admissible subset. We must extend the definition of

Ford domain so that it is well defined even for cone hyperbolic manifolds whose
cone singularity contains components that “share an endpoint”’ For now, we simply
ignore the vertical planes which appear in the limit (see Figure 13). Then the
polyhedra changes as in Figure 14; from left to right, the first picture is the “modified
Ford domain” for N_{ $\theta$}($\alpha$_{ $\theta$}) , the remaining pictures are the Dirichlet domains with
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Figure 14: Modified Ford domain and deformation of Dirichlet domain

respect to b_{ $\theta$} for  $\alpha$>$\alpha$_{ $\theta$} , and the fourth picture is for  $\alpha$=2 $\pi$ . We remark that the
final picture coincides with the Dirichlet domain for a group in the cone Riley slice
introduced in [6]. The pictures in Figures 11 and 14 seem quite different, because
the normalizations are different. We can check we can obtain one picture from the
other by changing the normalization properly.

We close the note with a question.

Question 5.1. Is there a natural path which connects cone Riley slices and cone
manifolds whose singular locus is the two‐bridge knots and links?
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