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INTRODUCTION

After the discovery of the Jones polynomial, various quantum invari‐
ants of knots are introduced. R. Kashaev introduced knot invariants

by using the quantum dilogarithm function, and observed that the hy‐
perbolic volume of the knot complement can be obtained as a certain
limit of his invariants. Kashaev’s invariants turned out to be a special
version of the colored Jones invariants, and we got a new path to in‐
vestigate the geometric structure of a knot complement from quantum
invariants. The volume conjecture is this relation between the hyper‐
bolic volume and the colored Jones invariant. It is not proved yet, but
\mathrm{i}\grave{\mathrm{t}} looks very natural because the classical dilogarithm function has a
strong relation to the hyperbolic volume.

The colored Jones invariant is generalized to the Witten‐Reshetikhin‐
Turaev invariant of 3 manifolds, but the volume conjecture did not
extend to the Witten‐Reshetikhin‐Turaev invariant somehow. In 2015,
Q. Chen and T. Yang observed that, if r is odd, the hyperbolic volume
of certain closed 3 manifold is obtained by the Witten‐Reshetikhin‐
Turaev invariant like the volume conjecture if the quantum parameter
q , which is fixed as the first root of unity $\xi$_{r}=\exp(2 $\pi$ i/r) for some pos‐
itive integer r , is replaced by the second root of unity $\xi$_{r}^{2}=\exp(4 $\pi$ i/r) .

On the other hand, R. Kirby and P. Melvin introduced in [8] the
quantum SO(3) ‐invariant of 3 manifolds for odd r . The colored Jones
invariant corresponds to a highest weight representation of \mathcal{U}_{q}(sl_{2}) , and
the Witten‐Reshetikhin‐Turaev invariant is given for a positive integer
r by a linear combination of some colored Jones invariants where q

is specialized to the first r‐th root of unity $\xi$_{r} = \exp(2 $\pi$ i/r) . In the
construction of the Witten‐Reshetikhin‐Turaev invariant, by taking the
linear combination of the colored Jones invariants corresponding to the
odd dimensional representations of \mathcal{U}_{q}(sl_{2}) , which is factored by SO(3)
by the natural 2‐fold covering from SU(2) to SO(3) .

In this report, I would like to explain variations of the volume con‐
jecture corresponding to various quantum SO(3) invariants.

1. QUANTUM SO(3) INVARIANTS

For a knot K , the Jones invariant V_{K}(q) of K is determined induc‐
tively by the following skein relation. The three knots K_{+}, K_{-} and K_{0}

数理解析研究所講究録
第2062巻 2018年 108-123

108



are identical outside the region where they are given in Figure 1.

q^{-1} V_{K+}(q)-qV_{K_{-}}(q)=(q^{1/2}-q^{-1/2})V_{K_{0}}(q) ,

V q)=(-q^{\mathrm{i}/2}-q^{-1/2})^{k}

K_{+} K_{-} K_{0}

FIGURE 1. Three knots K_{+}, K_{-} and K_{0} in the skein relation

The Jones polynomial is also constructed by the quantum R ma‐
trix corresponding to the vector representation of the quantum group
\mathcal{U}_{q}(sl_{2}) . This construction is easily generalized to any irreducible rep‐
resentation of any quantum group obtained from a semisimple Lie alge‐
bra. The invariant coming from an irreducible representation of \mathcal{U}_{q}(sl_{2})
is called the colored Jones invariant, which is denoted by V_{K}^{(l)}(q) ,
where l is the dimension of the corresponding representation. For a
link L whose components are L_{1}, L_{2}, \cdots ,  L_{p} , we also have the colored

Jones invariant V_{L}^{(t_{1},l_{2},\cdots,l_{p})}(q) where the component L_{j} is attached by
the l_{j} dimensional representation.

Let M be a closed 3 manifold given by the surgery along a framed
link L=L_{1}\cup L_{2}\cup\cdots\cup L_{p} \subset  S^{3} . Then, for a positive integer r , the
Witten‐Reshetikhin‐Turaev invariant $\tau$^{(r)}(M) is given by the following.

\displaystyle \overline{ $\tau$}^{(r)}(M)=\sum_{l_{1}=1}^{r-1} . . . \displaystyle \sum_{l_{p}=1}^{r-1}d_{q}(l_{1}) . . . d_{q}(l_{p})V_{L}^{(l_{1},\cdots,l_{p})}(q)

where q=\exp(2 $\pi$ i/r) and d_{q}(l)=(-1)^{l-1}\displaystyle \frac{q^{l/2}-q^{-l/2}}{q^{1/2}-q^{-1/2}} , and

$\tau$^{(r)}(M)=\overline{ $\tau$}^{(r)}(U_{+})^{s+}\overline{ $\tau$}^{(r)}(U_{-})^{s-}\overline{ $\tau$}^{(r)}(M) ,

where U_{\pm} is a trivial knot with \pm 1 framing and s+ (s_{-}) is the number
of positive (negative) eigenvalues of the linking matrix of L.

Now let us introduce the quantum SO(3) invariant $\tau$_{SO(3)}^{(r)} . Let r be
a positive odd integer and

\overline{ $\tau$}_{SO(3)}^{(r)}(M)=^{\frac{r-1}{\sum 2}\frac{r-1}{\sum 2}}d_{q}(2l_{1}-1)\cdots d_{q}(2l_{p}-1)V_{L}^{(2l_{1}-1,\cdots,2l_{p}-1)}(q)l_{1}=1\ldots l_{p}=1 ’
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and then define $\tau$_{SO(3)}^{(r)} from \overline{ $\tau$}_{SO(3)}^{(r)} as before. Then Kirby‐Melvin [8]
shows that $\tau$_{SO(3)}^{(r)}(M) is an invariant of M , and $\tau$_{SO(3)}^{(r)}(M) is called the

SO(3) quantum invariant since irreducible representations of odd di‐
mensions are factored by \mathcal{U}_{q}(so_{3}) . Such SO(3) invariant can be defined
not only for a closed 3 manifold but also for a spatial graph in any
closed 3 manifold.

We also have SO(3) version of the Turaev‐Viro invariant of a 3 man‐

ifold, which is constructed by a tetrahedral decomposition of the man‐
ifold and quantum 6\mathrm{j} symbols assigned to the each tetrahedron. Let

\left\{\begin{array}{lll}
a & b & c\\
d & e & f
\end{array}\right\} be the Racar‐Wigner form of the quantum 6j‐symbol

introduced by Kirillov and Reshetikhin in [9]. Then, for a positive in‐
teger r , the’ Turaev‐Viro invariant of a 3 manifold M with tetrahedral
decomposition T is given by

\displaystyle \mathrm{T}\mathrm{V}^{(r)}(M) = \sum
coloring of edges (\displaystyle \prod_{e}d(e) \prod_{t}\{t\}_{$\xi$_{r}}^{\mathrm{R}\mathrm{W}}) ,

where the coloring of edges means to assign a positive integer between
1 and r-2 to each edges of T satisfying the following condition for
colors a, b, c of three edges around any face of T,

a+b+c=\mathrm{o}\mathrm{d}\mathrm{d}, 0\leq|a-b| <c<a+b,

t runs over all tetrahedra in T, \{t\} is the quantum 6j‐symbol corre‐
sponding to the six colors around T, e runs over all edges and d(e) is
the quantum dimension, which is the quantum integer corresponding
to the color of e . For odd r , we can introduce the SO(3) version of
TV^{(r)} by restricting the coloring of edges to odd integers as follows.

\displaystyle \sum\mathrm{T}\mathrm{V}_{SO(3)}^{(r)}(M) =

odd coloring of edges (\displaystyle \prod_{e}d(e)\prod_{t}\{t\}_{$\xi$_{r}}^{\mathrm{R}\mathrm{W}})
2. VOLUME CONJECTURE FOR KNOTS AND LINKS

Kashaev introduced new knot invariant K_{r} for any positive integer
r and found that the hyperbolic volume of the complement of some
simple hyperbolic knots can be obtained from his invariants in [6]. H.
Murakami and the author found in [12] that Kashaev’s invariants are
equal to the colored Jones invariants V_{K}^{(r)}($\xi$_{r}) where $\xi$_{r} =\exp(2 $\pi$ i/r) ,
the first r‐th root of unity, and generalize Kashaev’s observation as
follows.
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Volume Conjecture. For a knot K in S^{3},

(1) \displaystyle \lim_{r\rightarrow\infty}\frac{2 $\pi$}{r}\log|V_{K}^{(r)}($\xi$_{r})|=v_{3}||S^{3}\backslash K||,
where ||M|| is Gromov’s simplicial volume of a 3 manifold M and v3 is
the hyperbolic volume of the regular ideal tetrahedron in the hyperbolic
3 space. If M is a hyperbolic manifold, then v_{3}||M|| is equal to the
hyperbolic volume of M.

4_{1} 5_{2} 6_{1}

FIGURE 2. The three simplest knots 4_{1}, 5_{2} and 6_{1}

Kashaev checked such relation for the three simplest hyperbolic knots
4_{1}, 5_{2} and 6_{1} as follows. The invariants of these knots are

V_{4_{1}}^{(r)}($\xi$_{r})=\displaystyle \sum_{j=0}^{r-1}|($\xi$_{r})_{j}|^{2}, (x)_{j}=\prod_{k=1}^{j}(1-x^{k}) ,

V_{5_{2}}^{(r)}($\xi$_{r})=\displaystyle \sum_{0\leq j\leq k\leq r-1}\frac{$\xi$_{r}^{-j(j+1)/2}($\xi$_{r})_{k}^{2}}{($\xi$_{r}^{-1})_{k}},
V_{6_{1}}^{(r)}($\xi$_{r})=\displaystyle \sum_{0\leq j+k\leq l\leq r-1}\frac{$\xi$_{r}^{(l-k-1)(l-k+1)/2}|($\xi$_{r})_{l}|^{2}}{($\xi$_{r})_{j}($\xi$_{r}^{-1})_{k}},

and numerical computation shows that

\displaystyle \lim_{\mathrm{r}\rightarrow\infty}\frac{2 $\pi$}{r}\log|V_{K}^{(r)}($\xi$_{r})|=2.02988321\ldots ,

\displaystyle \lim_{r\rightarrow\infty}\frac{2 $\pi$}{r}\log|V_{K}^{(r)}($\xi$_{r})|=2.82812208\ldots ,

\displaystyle \lim_{r\rightarrow\infty}\frac{2 $\pi$}{r}\log|V_{K}^{(r)}($\xi$_{r})|=3.16396322\ldots .

The righthand side numbers coincide with the hyperbolic volumes of
the complements of these knots. For the figure‐eight knot  4_{1} , the above
equality is actually proved by using the standard calculus. For other
knots, to prove this conjecture is not so easy, but it is proved for some
simple hypergolic knots in [14] and [16].
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The colored Jones invariant V_{K}^{(r)}($\xi$_{r}) is a complex number and it is
natural to consider about the meaning of the imaginary part or the
argument. On the other hand, in the study of the hyperbolic volume,
it turned out that the Chern‐Simons invariant must be the imaginary
part of the hyperbolic volume, and now we call \mathrm{V}\mathrm{o}\mathrm{l}(M)+i\mathrm{C}\mathrm{S}(M) the
complex volume of a hyperbolic manifold M . Actually, if we don’t take
the modulus in (1), we get the following conjecture which is proposed
in [13].

Complexified Volume Conjecture. For a hyperbolic knot K,

\displaystyle \lim_{r\rightarrow\infty}\frac{2 $\pi$}{r}\log V_{K}^{(r)}($\xi$_{r})=\mathrm{V}\mathrm{o}\mathrm{l}(S^{3}\backslash K)+i CS (S^{3}\backslash K) (\mathrm{m}\mathrm{o}\mathrm{d} i$\pi$^{2}\mathrm{Z}) .

Here we are interested in the growth rate of V_{K}^{(r)}($\xi$_{r}) and so the
imaginary part of the limit means

\displaystyle \lim_{r\rightarrow\infty}2 $\pi$\arg\frac{V_{K}^{(r+1)}($\xi$_{r+1})}{V_{K}^{(r)}($\xi$_{r})}.
3. CHEN-YANG ’ \mathrm{S} OBSERVATION

The colored Jones invariants of knots and links are extended to the

Witten‐Reshetikhin‐Turaev invariant of 3 manifolds. But, for a 3 man‐
ifold M , we have

\displaystyle \lim_{r\rightarrow\infty}\frac{2 $\pi$}{r}\log$\tau$^{(r)}(M)=0
and the analogy of the volume conjecture for knots and links does not
hold for the’ Witten‐Reshetikhin‐Turaev invariant. However, Q. Chen
and T. Yang found in [2] that the analogy of the volume conjecture
seems to hold for $\tau$^{(r)}(M) if r is odd and the parameter q is replaced by
the second r‐th root of unity $\xi$_{r}^{2} instead of the first r‐th root of unity
$\xi$_{r}=\exp(2 $\pi$ i/r) .

Chen‐Yang’s Conjecture. Let M be a 3 manifold. Then

\displaystyle \lim_{n\rightarrow\infty}\frac{4 $\pi$}{2n+1}\log$\tau$^{(2n+1)}(M)|_{$\xi$_{2r $\iota$+1}\rightarrow$\xi$_{2n+1}^{2}}=\mathrm{V}\mathrm{o}\mathrm{l}(M)+i CS(M)

(\mathrm{m}\mathrm{o}\mathrm{d} i$\pi$^{2}\mathrm{Z}) .

They numerically checked the above for 3 manifolds obtained by
some integral surgeries along the knots 4_{1} and 5_{2} . T. Ohtsuki an‐
nounced in [15] a proof for this conjecture for 3 manifolds obtained
from the integral surgeries along 4_{1}.
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Chen and Yang also investigated the Turaev‐Viro invariant [22],
which is defined by using a tetrahedral decomposition of a 3 mani‐
fold. For a closed 3 manifold M , let \mathrm{T}\mathrm{V}^{(r)}(M) be the Turaev‐Viro
invariant of M . Then, it is known by [19] that

\mathrm{T}\mathrm{V}^{(r)}(M)=|$\tau$^{(r)}(M)|^{2}
This relation is proved for the case q=$\xi$_{r} , but the proof works well for
the case q=$\xi$_{r}^{2} if r is odd since $\xi$_{r}^{2} is also a primitive r‐th root of unity.
Then Chen‐Yang’s conjecture implies that

\displaystyle \lim_{n\rightarrow\infty}\frac{2 $\pi$}{2n+1}\log|\mathrm{T}\mathrm{V}^{(2n+1)}(M)|_{$\xi$_{2n+1}\rightarrow$\xi$_{2n+1}^{2}}=\mathrm{V}\mathrm{o}\mathrm{l}(M) .

The Turaev‐Viro invariant is generalized by Benedetti and Petronio
[1] to a 3 manifold M with cusp boundary or totally geodesic bound‐
ary decomposed into ideal tetrahedra or truncated tetrahedra which
is based on the Pachner move [18] generalized for such decomposition
by J. Roberts. We denote this invariant by \mathrm{B}\mathrm{P}^{(r)}(M) . Detcyerry and
Yang pointed out the following in [23].

Theorem (Detcyerry‐Yang). Let M = S^{3}\backslash K for a knot K in S^{3}.
Then

\displaystyle \mathrm{B}\mathrm{P}^{(r)}(M)=$\mu$_{r}\sum_{n=0}^{r-2}|J_{K}^{(n)}($\xi$_{r})|^{2},
where $\mu$_{r} is a complex number which only depend on r and not on K.

\leftrightarrow

FIGURE 3. The 2‐3 Pachner move

The first example of such decomposition is the complement of the
figure‐eight knot  4_{1} decomposed into two regular ideal hyperbolic tetra‐
hedra. Let M_{4_{1}} denote such complement. Then

\displaystyle \mathrm{B}\mathrm{P}^{(r)}(M_{4_{1}})=\sum_{a,b=0}^{(r-3)/2}d(2a+1)d(2b+1) \left\{\begin{array}{lll}
a & a & b\\
b & b & a
\end{array}\right\}\left\{\begin{array}{lll}
a & a & b\\
b & b & a
\end{array}\right\}
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FIGURE 4. Decomposition of the figure‐eight knot complement

The second example is the smallest hyperbolic 3 manifold with to‐
tally geodesic boundary M_{\min} , which is classified by Fujii [5]. This
manifold is obtained by two truncated regular tetrahedra whose dihe‐
dral angles are all equal to  $\pi$/6 . All edges are glued to one edge and
\mathrm{B}\mathrm{P}^{(r)}(M_{\min}) is given by

\displaystyle \mathrm{B}\mathrm{P}^{(r)}(M_{\min})=\sum_{a=0}^{(r-3)/2}d(2a+1) (\left\{\begin{array}{lll}
a & a & a\\
a & a & a
\end{array}\right\})^{2}
For Benedetti‐Petronio invariant, Chen and Yang observed its re‐

lation to the complex volume, and propose the following conjecture.

Volume Conjecture for Benedetti‐Petronio invariant (Chen‐
Yang). Let M be a hyperbolic manifold with cusp or totally geodesic
boundary and r be an odd positive integer, then

\displaystyle \lim_{n\rightarrow\infty}\frac{2 $\pi$}{2n+1}\log \mathrm{B}\mathrm{P}^{(2n+1)}(M)|_{$\xi$_{2n+1}\rightarrow$\xi$_{2r $\iota$+1}^{2}}=\mathrm{V}\mathrm{o}\mathrm{l}(M)+i CS(M)

(\mathrm{m}\mathrm{o}\mathrm{d} i$\pi$^{2}\mathrm{Z})

4. VARIOUS CONJECTURES

Chen‐Yang’s conjecture is generalized to various quantum SO(3) in‐
variants.

4.1. SO(3)‐version of the Witten‐Reshetikhin‐Turaev invari‐

ant. Let M be a closed oriented three manifold. For a positive odd
integer r greater than or equal to 3, let $\tau$_{SO(3)}^{(r)}(M) be the SO(3)‐version
of the Witten‐Reshetikhin‐Turaev invariant of M introduced in [8], and
let \overline{ $\tau$}_{SO(3)}^{(r)}(M) = $\tau$_{SO(3)}^{(r)}(M)|_{$\xi$_{r}\rightarrow$\xi$_{r}^{2}} be its modified SO(3) ‐version. Then

the following may holds.
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Conjecture 1 (SO(3) ‐version of Chen‐Yang’s conjecture). Let M be
a closed oriented hyperbolic three manifold. Then

4  $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{\log\overline{ $\tau$}_{SO(3)}^{(2n+1)}(M)}{2n+1}=\mathrm{V}\mathrm{o}\mathrm{l}(M)+i CS(M) . (\mathrm{m}\mathrm{o}\mathrm{d} i$\pi$^{2}\mathrm{Z}) .

Now we compute the modified Witten‐Reshetikhin‐Turaev invariant
of a three manifolds M^{f} which is obtained from the Dehn surgery of the
figure eight knot K with framing f . We use the following notations.

\{n\}=$\xi$_{r}^{n}-$\xi$_{r}^{-n}, \{n, k\}=\{n\}\{n-1\}\cdots\{n-k+1\}, \{n\}!=\{n, n\}.

Then the invariant \overline{ $\tau$}_{SO(3)}^{(r)}(M^{f}) is given as follows.

\triangleleft_{$\tau$_{SO(3)}^{r)}(M^{f})=\sum_{n=0}^{(r-3)/2}q^{n^{2}+n}V_{n}^{(r)}(K)}\{2n+1\}\{1\}
(2)

=\displaystyle \sum_{n=0}^{(r-3)/2}q^{n^{2}+n}\{2n+1\}\{1\} \sum_{k=0}^{2j}\frac{\{2n+1+k,2k+1\}}{\{1\}}.
By using this formula, values of \displaystyle \frac{4 $\pi$}{r}\log|\overline{ $\tau$}_{SO(3)}^{(r)}(M^{f})| are given by the

graph in Figure 5. The Chern‐Simons part of the conjecture is checked

by computing the values 2 $\pi$\displaystyle \arg\frac{\tilde{ $\tau$}_{SO(3)}^{(r)}(M^{f})}{\tilde{ $\tau$}_{SO(3)}^{(r-2)}(M^{f})} \mathrm{m}\mathrm{o}\mathrm{d} $\pi$^{2} , which are given by

the graph in Figure 6. The signature of the Chern‐SImons invariant is
ambiguous because the the relation of the orientation of the manifold
and the choice of q or q^{-1} is not fixed commonly, and here the signa‐
ture of CS and cs are opposite. The argument of such ratio seems to
estimate the Chern‐Simons invariant well for hyperbolic manifolds (Cf.
computation in [13] also estimate the Chern‐Simons invariant well for
knots).
4.2. Turaev‐Viro invariant. Let M be a closed oriented 3‐manifold
and \mathrm{T}\mathrm{V}_{\mathcal{S}O(3)}^{(r)}(M) be the SO(3)‐version of the Turaev‐Viro invariant

in [22] given by the quantum 6j symbol in the last section. Let
-(r)
\mathrm{T}\mathrm{V}_{SO(3)}(M) be the modified invariant which is obtained by replac‐

ing $\xi$_{r} by $\xi$_{r}^{2} . Then, from the relation |^{\triangleleft_{$\tau$_{SO(3)}^{r)}(M)}}|^{2}=\overline{\mathrm{T}\mathrm{V}}_{SO(3)}^{(r)}(M) and

Conjecture 1, we have

Conjecture 2. For a hyperbolic closed oriented three manifold M,

2  $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{\log|\overline{\mathrm{T}\mathrm{V}}_{SO(3)}^{(2n+1)}(M)|}{2n+1}=\mathrm{V}\mathrm{o}\mathrm{l}(M) .
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\bullet : \displaystyle \frac{4 $\pi$}{501}\log|\overline{ $\tau$}_{SO(3)}^{(501)}(M^{f})|
\bullet : \displaystyle \frac{4 $\pi$}{2001}\log $\tau$_{SO(3)}^{2001)}\dashv(M^{f})|
+ : V3 ||M^{f}|

\bullet : \displaystyle \frac{4 $\pi$}{501}\log|\overline{ $\tau$}_{SO(3)}^{(501)}(M^{f})|
\bullet : \displaystyle \frac{4 $\pi$}{2001}\log $\tau$_{SO(3)}^{2001)}\dashv(M^{f})|
+ : V3 ||M^{f}|

\bullet : \displaystyle \frac{4 $\pi$}{501}\log|\overline{ $\tau$}_{SO(3)}^{(501)}(M^{f})|
\bullet : \displaystyle \frac{4 $\pi$}{2001}\log $\tau$_{SO(3)}^{2001)}\dashv(M^{f})|
+ : V3 ||M^{f}|

\bullet : \displaystyle \frac{4 $\pi$}{501}\log|\overline{ $\tau$}_{SO(3)}^{(501)}(M^{f})|
\bullet : \displaystyle \frac{4 $\pi$}{2001}\log $\tau$_{SO(3)}^{2001)}\dashv(M^{f})|
+ : V3 ||M^{f}|

\bullet : \displaystyle \frac{4 $\pi$}{501}\log|\overline{ $\tau$}_{SO(3)}^{(501)}(M^{f})|
\bullet : \displaystyle \frac{4 $\pi$}{2001}\log $\tau$_{SO(3)}^{2001)}\dashv(M^{f})|
+ : V3 ||M^{f}|

\bullet : \displaystyle \frac{4 $\pi$}{501}\log|\overline{ $\tau$}_{SO(3)}^{(501)}(M^{f})|
\bullet : \displaystyle \frac{4 $\pi$}{2001}\log $\tau$_{SO(3)}^{2001)}\dashv(M^{f})|
+ : V3 ||M^{f}|

\bullet : \displaystyle \frac{4 $\pi$}{501}\log|\overline{ $\tau$}_{SO(3)}^{(501)}(M^{f})|
\bullet : \displaystyle \frac{4 $\pi$}{2001}\log $\tau$_{SO(3)}^{2001)}\dashv(M^{f})|
+ : V3 ||M^{f}|

\bullet:\bullet: \displaystyle \frac{4 $\pi$}{5001}\log\frac{4 $\pi$}{1001}\log\left|\begin{array}{l}
\overline{ $\tau$}_{SO(3)}^{(\mathrm{l}00\mathrm{l})}(M^{f})\\
\dashv_{$\tau$_{SO(3)}^{500\mathrm{l})}(M^{f})}
\end{array}\right|
FIGURE 5. Absolute values of 7 of the Dehn surgery
space M^{f} obtained from the figure eight knot with fram‐
ing f. ||M^{f}|| is Gromov’s simplicial volume, v3 is the
hyperbolic volume of the ideal regular tetrahedron, and
v_{3}||M^{f}||=\mathrm{V}\mathrm{o}\mathrm{l}(M^{f}) if M^{f} is hyperbolic.

Please note that the Turaev‐VIro invariant is a real number, and
here we take the absolute value of it.

4.3. Kirillov‐Reshetikhin invariant. Kirillov and Reshetikhin ex‐

tended the colored Jones invariant to knotted graphs with trivalent
vertices in [9]. This is also constructed by using the Kauffman bracket
and Jones‐Wenzl idempotent in [7], which is called the quantum spin
network. Here we consider the unitary version of the quantum spin
network in [3]. Let  $\Gamma$ be a trivalent knotted graph with edges  E_{1}, E_{2},
\ldots, E_{e} . Let j_{1}, j_{2}, \cdots, j_{e} be an SO(3) ‐admissible coloring for corre‐
sponding edges of  $\Gamma$ , and we denote the coloring by  c. SO(3) ‐admissible
means that each j_{k} is a positive odd integer and, for the three colors
a, b, c of edges around a vertex, a+b+c is an odd integer and they
satisfy the triangle inequalities 0 < a < b+c, 0 < b < c+a and
0<c<a+b . Let \{ $\Gamma$, c\rangle_{SO(3)} denote the SO(3) version of the unitary
spin network in [4], which is an invariant of knotted graphs. For this
invariant, following may holds.

Conjecture 3. Let M\mathrm{b}\mathrm{e}_{\wedge} a hyperbolic cone manifold obtained from
a knotted graph  $\Gamma$ in  S^{3} with the cone angles $\alpha$_{1}, \cdots, $\alpha$_{e} at edges E_{1},
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f

\bullet :  2 $\pi$\displaystyle \arg\frac{\overline{ $\tau$}_{SO(3)}^{(501)}(M^{f})}{\overline{ $\tau$}_{SO(3)}^{(499)}(M^{f})} \mathrm{m}\mathrm{o}\mathrm{d} $\pi$^{2}

\bullet :  2 $\pi$\displaystyle \arg\frac{\overline{ $\tau$}_{SO(3)}^{(2001)}(M^{f})}{\tilde{ $\tau$}_{SO(3)}^{(1999)}(Mf)} \mathrm{m}\mathrm{o}\mathrm{d} $\pi$^{2}

+ : -2$\pi$^{2} cs (M^{f}) \mathrm{m}\mathrm{o}\mathrm{d} $\pi$^{2}

\bullet :  2 $\pi$\displaystyle \arg\frac{\tilde{ $\tau$}_{SO(3)}^{(1001)}(M^{f})}{\overline{ $\tau$}_{so(3)}^{(5001}\overline{ $\tau$}_{SO(3}^{(999)}\}_{(M^{f})}^{(M^{f})}} \mathrm{m}\mathrm{o}\mathrm{d} $\pi$^{2}

\bullet :  2 $\pi$\arg_{\overline{\overline{ $\tau$}_{SO(3)}^{\langle 4999)}(M)}}f \mathrm{m}\mathrm{o}\mathrm{d} $\pi$^{2}

FIGURE 6. The arguments of \displaystyle \frac{\tilde{ $\tau$}_{SO(3)}^{(r)}(M^{f})}{\tilde{ $\tau$}_{SO(3)}^{(r-2)}(MJ)} and the Chern‐

Simons invariant \mathrm{c}\mathrm{s}(M^{f}) of M^{f} which is obtained by
the software SnapPy. Many points are hidden by the
overlap. Especially, for f \geq  5, M^{f} is hyperbolic, and

2 $\pi$\displaystyle \arg\frac{\tilde{ $\tau$}_{SO\langle 3)}^{(r)}(M^{f})}{\overline{ $\tau$}_{SO(3)}^{(r-29)}(Mf)} is almost equal to -2$\pi$^{2}\mathrm{c}\mathrm{s}(M^{f}) \mathrm{m}\mathrm{o}\mathrm{d} $\pi$^{2}

for r=501 , 1001, 2001, 5001.

\ldots, E_{e} of  $\Gamma$ . Let  c^{(r)} be a sequence of coloring s_{k}^{(r)} (1 \leq  k \leq  e, r =

3 , 5, 7, ) for edges E_{1}, \cdots, E_{e} of  $\Gamma$ such that

 4 $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{s_{k}^{(2n+1)}}{2n+1}=2 $\pi-\alpha$_{k},
then

4  $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{\log\langle $\Gamma$,c^{(2n+1)}\rangle_{SO(3)}1_{$\xi$_{2n+1}\rightarrow$\xi$_{2n+1}^{2}}}{2n+1}=\mathrm{V}\mathrm{o}\mathrm{l}(M)+i CS(M)

\mathrm{m}\mathrm{o}\mathrm{d} i$\pi$^{2}\mathrm{Z}
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where \langle $\Gamma$, c^{(2n+1)}\rangle_{SO(3)} is the SO(3) version of the Kirillov‐Reshetikhin

invariant, which is a restriction of the original Kirillov‐Reshetikhin in‐
variant to odd colors, and \mathrm{V}\mathrm{o}\mathrm{l}(M) and \mathrm{C}\mathrm{S}(M) are the hyperbolic vol‐
ume and the Chern‐Simons invariant of M_{$\alpha$_{1}} $\alpha$_{l} respectively as before.

As a special case of this conjecture, we also have a conjecture for
hyperbolic polyhedra.

Conjecture 3’. Let P be a hyperbolic polyhedron with edges E_{1}, \cdots,

E_{e} whose dihedral angles at E_{1}, \cdots, E_{e} are $\alpha$_{1}, \cdots, $\alpha$_{e} , and  $\Gamma$ be the
planar graph obtained by the edges of  $\Gamma$ . Let  c^{(r)} be a sequence of
coloring s_{k}^{(r)} (1\leq k\leq e, r=3,5,7, \cdots) for edges E_{1}, \cdots, E_{e} of  $\Gamma$ such

that  2 $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{s_{k}^{(2n+1)}}{2n+1}= $\pi-\alpha$_{k} , then

2  $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{\log\langle $\Gamma$,c^{(r)}\rangle_{SO(3)}1_{$\xi$_{2n+1}\rightarrow$\xi$_{2n+1}^{2}}}{2n+1}=\mathrm{V}\mathrm{o}\mathrm{l}(P) .

This conjecture comes from Conjecture 3 since the corresponding cone
manifold is the double of P.

Now let us compare the volume of the regular hyperbolic cube C_{ $\alpha$}
with dihedral angle  $\alpha$ and the Kirillov‐Reshetikhin invariant of the
graph  $\Gamma$ formed by the edges of a cube whose edges are all colored by the
same spin  k . For the admissible condition, k must be an odd integer.

FIGURE 7. Cube graph  $\Gamma$

We denote this coloring by  c(k) . Then \langle $\Gamma$, c(k)\rangle_{SO(3)} is evaluated as
follows.

\displaystyle \{ $\Gamma$, c(k)\rangle_{\mathcal{S}O(3)}=\sum_{j}\frac{\{2j+1\}}{\{1\}} (\left\{\begin{array}{llll}
k & k &  & k\\
k & k & 2j & +1
\end{array}\right\})^{4}
The cube C_{ $\alpha$} is spherical for  $\alpha$> $\pi$/2 , Euclidean for  $\alpha$= $\pi$/2 , hyper‐
bolic for  $\pi$/3< $\alpha$< $\pi$/2 , ideal for  $\alpha$= $\pi$/3 , truncated (ultra‐ideal) for
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\overline{r} ’  7 $\Gamma$- $\alpha$

\displaystyle \bullet:\frac{2}{1}\mathrm{t}^{{\rm Re}\log}\langle $\Gamma$, c(k)\displaystyle \rangle_{SO(3)}|_{q=\exp\frac{4 $\pi$ i}{103}}\bullet:\frac{2 $\pi$}{303}{\rm Re}\log( $\Gamma$, c(k)\rangle_{SO(3)}|_{q=\exp\frac{4 $\pi$ i}{303}}
\displaystyle \bullet:\frac{2 $\pi$}{1003}{\rm Re}\log\{ $\Gamma$, c(k)\rangle_{SO(3)}|_{q=\exp\frac{4 $\pi$ i}{1003}} --- : \mathrm{V}\mathrm{o}\mathrm{l}(C_{ $\pi$- $\alpha$})

FIGURE 8. Values of the Kirillov‐Reshetikhin invariants

of cubic graphs and the volumes of C_{ $\alpha$}.

0\leq $\alpha$\leq $\pi$/3 and it becomes the right‐angled ideal regular cuboctahe‐
dron for  $\alpha$=0 whose volume is 12.046 \cdots .

Now we show the second example. Let  K_{3,3} be the complete bipar‐
tite graph with six vertices and : be the knotted graph which is the
embedding of K_{3,3} as in Figure 9. We give the coloring k for all edges
and denote this coloring by c(k) . Then c(k)\rangle_{SO(3)} is given by

c(k)\rangle_{SO(3)}=

\displaystyle \sum_{j}(-1)^{k}q^{(k^{2}+k-j^{2}-j)/2}\frac{\{2j+1\}}{\{1\}} (\left\{\begin{array}{llll}
k & k &  & k\\
k & k & 2j & +\mathrm{l}
\end{array}\right\})^{3}
Some values of | c(k)\rangle_{SO(3)}| and some volumes of the corresponding

cone manifolds are given in Figure 10. The arguments of c(k)\}_{SO(3)}
are investigated in Figure 11. The author don’t know the definition
of the Chern‐Simons invariant of the corresponding cone manifold and
relation to the Chern‐Simons invariant is not checked yet.

4.4. Yokota invariant. The Kirillov‐Reshetikhin invariant is defined

for spatial graphs with trivalent vertices, while the Yokota invariant in
[24] is defined for spatial graphs with multivalent vertices. Let  $\Gamma$ be
a colored spatial graph with odd colors and  v be a vertex of  $\Gamma$ whose
valency is  k . We expand the vertex v as in Figure 12, and let \overline{ $\Gamma$} be the
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\displaystyle \bullet:\frac{4 $\pi$}{123}{\rm Re}\log  c(k)\rangle_{SO(3)}|_{q=\exp\frac{4 $\pi$ i}{123}}
\displaystyle \bullet:\frac{4 $\pi$}{483}{\rm Re}\log  c(k)\rangle_{SO(3)}|_{q=\exp\frac{4 $\pi$ i}{483}}

FIGURE 10. Values of the

aph: which is a embedding

\overline{r} ’
 2 $\pi$- $\alpha$

\displaystyle \bullet:\frac{4 $\pi$}{243}{\rm Re}\log  c(k)\rangle_{\mathcal{S}O(3)}|_{q=\exp\frac{4 $\pi$ i}{243}}
+ : V3 ||M_{2 $\pi$- $\alpha$}||

Kirillov‐Reshetikhin invari‐

ants of : and the volumes of corresponding come mani‐
fold M_{ $\alpha$} with the cone angle  $\alpha$ for all edges where  $\alpha$=0,
 $\pi$/5, 2 $\pi$/7,  $\pi$/3, 2 $\pi$/5,  $\pi$/2, 2 $\pi$/3 , which are computed by
the software Orb [17].

resulting graph. Now we define the Yokota invariant \langle\{ $\Gamma$, c\}\rangle_{SO(3)} by
using the Kirillov‐Reshetikhin invariant. Here c denote the coloring of
 $\Gamma$.

\langle\langle $\Gamma$, c\displaystyle \rangle\}_{SO(3)}=\sum_{i_{1},i_{p}}\prod_{r=1}^{p}\frac{\{2i_{r}+1\}}{\{1\}}<\overline{ $\Gamma$}, \tilde{C}>s \tilde{c}>so(3)

= $\Gamma$ is the mirror image of \overline{ $\Gamma$} and \tilde{c} is the coloring of \overline{ $\Gamma$} which is a extension
of c by adding the coloring i_{1}, \cdots, i_{p} for the newly added edges by the
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1

+ : \displaystyle \frac{2 $\pi$}{123}{\rm Im}\log\frac{\langle---,c(k)\rangle_{SO(3)}|_{q=$\xi$_{123}^{2}}}{\langle---,c(k)\rangle_{\mathcal{S}O(3)}|_{q=$\xi$_{125}^{2}}}
\bullet : \displaystyle \frac{2 $\pi$}{483}{\rm Im}\log\frac{\langle^{\underline{=}},\mathrm{c}(k)\rangle_{SO(3)}|_{\mathrm{q}=$\xi$_{483}^{2}}}{\langle---,\mathrm{c}(k)\}_{SO(3)}|_{q=$\xi$_{485}^{2}}}

\displaystyle \frac{4 $\pi$ k}{r}

\bullet : \displaystyle \frac{2 $\pi$}{243}{\rm Re}\log\frac{\langle^{\underline{=}},\mathrm{c}(k)\}_{SO(3)}|_{\mathrm{q}=$\xi$_{243}^{2}}}{(---,c(k)\}_{SO(3)}|_{\mathrm{q}=$\xi$_{245}^{2}}}

FIGURE 11. Arguments of the Kirillov‐Reshetikhin in‐
variants of :

c

\rightarrow

 c

 $\Gamma$

 i_{1} i_{2} i_{3} . . . i_{k-3}
k

\mathcal{C}_{2} C_{3} c_{4} c_{k-1}

\overline{ $\Gamma$}

FIGURE 12. Expansion at k‐valent vertex

expansion of the multivalent vertices. This does not depend on the
expansion of the multivalent vertices and this is actually an invariant
of the spatial graph. For this invariant, following may holds.

Conjecture 4. Let M be a hyperbolic cone manifold obtained from
a knotted graph  $\Gamma$ in  S^{3} with the cone angles $\alpha$_{1} , ) $\alpha$_{e} at edges E_{1},
\ldots, E_{e} of  $\Gamma$ . Let  c^{(r)} be a sequence of coloring s_{k}^{(r)} (1 \leq  k \leq  e, r =

3 , 5, 7, ) for edges E_{1}, \cdots, E_{e} of  $\Gamma$ such that 4  $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{s_{k}^{(2n+1)}}{2n+1} =
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2  $\pi-\alpha$_{k} , then

2  $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{\log\{\langle$\Gamma$',c^{(2n+1)}\}\rangle_{SO(3)}|_{$\xi$_{2n+1}\rightarrow$\xi$_{2n+1}^{2}}}{2n+1}=\mathrm{V}\mathrm{o}\mathrm{l}(M) .

Conjecture 4’. Let P be a hyperbolic polyhedron with edges E_{1}, \cdots ,
 E_{e} whose dihedral angles at E_{1}, \cdots, E_{e} are $\alpha$_{1}, \cdots, $\alpha$_{e} , and  $\Gamma$ be the
planar graph obtained by the edges of  $\Gamma$ . Let  c^{(r)} be a sequence of
coloring s_{k}^{(r)} (1\leq k\leq e, r=3,5,7, \cdots) for edges E_{1}, \cdots, E_{e} of  $\Gamma$ such

that  2 $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{s_{k}^{(2n+1)}}{2n+1}= $\pi-\alpha$_{k} , then

 $\pi$\displaystyle \lim_{n\rightarrow\infty}\frac{\log\langle\langle $\Gamma$,c^{(2n+1)}\rangle\}_{SO(3)}|_{$\xi$_{2r $\iota$+1}\rightarrow$\xi$_{2n+1}^{2}}}{2n+1}=\mathrm{V}\mathrm{o}\mathrm{l}(P) .

For example, let  $\Pi$ be a square pyramid with all dihedral angles  $\alpha$ . If
 $\alpha$< $\pi$/2 , then  $\Pi$ is realized as a truncated hyperbolic pyramid which is
a half of the hyperbolic cube. The Yokota invariant of  $\Pi$ with coloring
 c(k) which assigns a positive odd integer k to all edges is given by

\displaystyle \langle\langle $\Gamma$, c(k)\rangle\rangle_{SO(3)}=\sum_{j}\frac{\{2j+1\}}{\{1\}} (\left\{\begin{array}{llll}
k & k &  & k\\
k & k & 2j & +1
\end{array}\right\})^{4}
This is equal to the Kirillov‐Reshetikhin invariant of the cube graph,
and the Conjecture 4 seems to holds for this graph according to the
computation in Figure 8.

5. CONCLUSION

By replacing the first primitive root of unity $\xi$_{r} =\exp(2 $\pi$ i/r) with
the second primitive root of unity $\xi$_{r}^{2} , the volume conjecture for the
quantum knot invariant is extended to various cases. I hope that the
observations in this note will help to prove the conjecture generally.
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