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Abstract. We deal with an essential mathematical model for self‐organizing
maps referred to as Kohonen type algorithm. Self‐organizing map algorithm
has been widely used as a useful tool in many practical problems on extensive
fields. By repeating learning, some model functions in self‐organizing maps
have some properties of mathematical interest such as regularity between the
nodes and their values. We mainly describe a learning late factor and extent
of ordering in essential self‐organizing maps with one‐dimensionally indexed
array. We present some numerical examples and make a comparison of the
degree of converging for some learning processes in a basic self‐organizing map.

1. SELF‐ORGANIZING MAP MODELS AND THEIR FORMULATION

We consider mathematical models of self‐organizing maps referred to as Koho‐
nen [8] type algorithm, which is very practical and has many useful applications,
such as a semantic map, a diagnosis of speech voicing, the traveling‐salesman
problem, and so on. We can observe some interesting phenomena between the
array of nodes and the values of nodes on iterative processes in these models.
On that respect, a mathematical argument of the learning process in the one‐
dimensional node case with one‐dimensional inputs was given by Cottrell and
Fort [1]. Subsequently, convergence properties of learning processes are some‐
what generally studied, e.g., in Erwin, Obermayer, and Schulten [2][3][4]. How‐
ever some problems on this problem still remain without sufficient arguments on
models with general conditions.

The purpose of our work is to make a study of closed classes of states and their
characterization in the model. In this paper, we concentrate on a consideration
of ordering of node values on learning process by several numerical examples and
their calculations from various angles. One of our aim is to construct a theory on
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basis of wide‐ranging experiments in learning processes on basic self‐organizing
maps with essential structures.

We consider to characterize a model (I, V, X, \{m_{k}(\cdot)\}_{k=0}^{\infty}) with four elements

which consist of the nodes, the value \mathcal{S} of node \mathcal{S} , inputs and model functions with
some learning processes, in this paper. There are several types of models with
various spaces of nodes, spaces of their values and ways of learning for nodes. We
suppose the following in this paper.

(i) We suppose an array of nodes. Let I denote the set of all nodes, which
is called the node set. We assume that I is a countable set metrized by a
metric d.

(ii) We suppose that each node has its value. V is the space of values of nodes.
We assume that V is a real linear normed space with a norm \Vert \mathrm{A}

mapping m:I\rightarrow V transforming each node i to its value m(i) is called a
model function. Let M be the set of all model functions.

(iii) X is the input set. Let X be. a subset of V. x\in X is called an input.

(iv) The learning process is defined by the following. If an input is given, then
the value of each node is renewed to a new value by the input. If an
initial model function m_{0} and a sequence x_{0}, x_{1}, x_{2} , . . . \in X of inputs are
given, then the model functions m_{1}, m_{2} , m3, . . . are generated sequentially
according to

m_{k+1}(i)=(1-$\alpha$_{mx}k,k(i))m_{k}(i)+$\alpha$_{m_{k},x_{k}}(i)x_{k}, k=0 , 1, 2, . . . ,

where $\alpha$_{m_{k},x_{k}} is the learning rate which satisfies 0\leq$\alpha$_{m_{k},x_{k}} \leq 1.

2. AN ABSORBING CLASS OF A FUNDAMENTAL SELF‐ORGANIZING MAP

In this paper, we restrict our considerations to a basic self‐organizing map
with real‐valued nodes and a one‐dimensional array of nodes. We suppose that a
set V of values of nodes is identified with \mathbb{R} which is the set of all real numbers.

We consider a model

(I=\{1,2, \ldots, n\}, V=\mathbb{R}, X\subset \mathbb{R}, \{m_{k}(\cdot)\}_{k=0}^{\infty}) .

(i) Let I=\{1, 2, . . . , n\} be the node set with metric d(i, j)=|i-j| . (ii) Assume
V=\mathbb{R} , that is, each node is \mathbb{R}‐valued. (iii) x_{0}, x_{1}, x_{2} , . . . \in  X \subset \mathbb{R} is an input
sequence. (iv) we assume a learning process defined by the following procedures.

Learning process \mathrm{L}_{\mathrm{A}} with a learning radius r=1 is as follows.
(a) Areas of learning:

I(m_{k}, x_{k})=\displaystyle \{i^{*}\in I| |m_{k}(i^{*})-x_{k}|=\inf_{i\in}|m_{k}(i) -x_{k}|\} (1)
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and N_{1}(i)= \{j \in I | |j-i| \leq 1\} . (b) Learning‐rate factor: 0 \leq  $\alpha$ \leq  1 . (c)
Learning: let N_{1}(I(m_{k}, x_{k})) = \displaystyle \bigcup_{i^{*}\in I(m_{k},x_{k})^{N_{1}(i^{*})}} and \{m_{k}\} is defined by the
following, for each k=0 , 1, 2, . . ., if i\in N_{1}(I(m_{k}, x_{k})) then

m_{k+1}(i)=(1- $\alpha$)m_{k}(i)+ $\alpha$ x_{k} , (2)

otherwise m_{k+1}(i)=m_{k}(i) .

By repeating learning, some model functions have properties such as mono‐
tonicity and a certain regularity which may appear in the relation between the
array of nodes and the values of nodes. Self‐organizing maps apply to many
practical problems by using this property.

The following is a well‐known property [8].

Theorem 1 We consider a self‐organizing map model

(\{1,2, \ldots, n\}, \mathbb{R}, X\subset \mathbb{R}, \{m_{k}(\cdot)\}_{k=0}^{\infty})

with Learning process L_{A}(r=1) . For model functions m_{1}, m_{2} , . . ., the following
statements hold. If m_{k} is increasing on I , that is m_{k}(i) \leq  m_{k}(i+1) for all i,
then m_{k+1} is increasing on I , If m_{k} is decreasing on I , that is m_{k}(i)\geq m_{k}(i+1)
for all i , then m_{k+1} is decreasing on I. Moreover, if m_{k} is strictly increasing on
I , that is m_{k}(i) < m_{k}(i+1) for all i , then m_{k+1} is strictly increasing on I. If
m_{k} is strictly decreasing on I , that is m_{k}(i) >m_{k}(i+1) for all i , then m_{k+1} is
strictly decreasing on I.

The set of states with monotone in this self‐organizing map is a closed class.
Such properties as monotone are called absorbing \mathcal{S}tates of self‐organizing map
models.

We give a results for preserving monotone of model functions.

Theorem 2 We consider a self‐organizing map model

(\{1,2, \ldots, n\}, \mathbb{R}, X, \{m_{k}(\cdot)\}_{k=0}^{\infty}) .

Assume Learning process L_{A} (r= 1,2, \ldots) with learning rates $\alpha$_{i} depending on
node i . For learning, let N_{r}(I(m_{k}, x_{k})) =\displaystyle \bigcup_{i^{*}\in I(m_{k},x_{k})}\{i \in I | |i-i^{*}| \leq r\} and
suppose that

mk+1(i)= \left\{\begin{array}{ll}
(1-$\alpha$_{i})m_{k}(i)+$\alpha$_{i}x, & if i\in N_{r}(I(m_{k,k}x\\
m_{k}(i) , & otherwise,
\end{array}\right.
where we assume that \{$\alpha$_{i}\}\subset [0 , 1) satisfies, for each i^{*}\in I(m_{k}) , x_{k} ),

$\alpha$_{i}\leq$\alpha$_{i+1}, i=i^{*}-r, i^{*}-r+1 , . . . , i^{*}-1

and

$\alpha$_{i}\geq$\alpha$_{i+1}, i=i^{*}, i^{*}+1 , . . . , i^{*}+r-1.
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Then, for model functions m_{1}, m_{2} , . . ., if m_{k} is increasing on I , then m_{k+1}

is increasing on I. If m_{k} is decreasing on I , then m_{k+1} is decreasing on I,

Moreover, if m_{k} is strictly increasing on I , then m_{k+1} is strictly increasing on I.

If m_{k} is strictly decreasing on I , then m_{k+1} is strictly decreasing on I.

A proof of Theorem 2 is in [7].

3. NUMERICAL CALCULATIONS AND TRANSITION OF MODEL FUNCTIONS

By Theorem 2, model functions m_{k} turn to monotone state from non‐monotone
state after sufficiently many times of iterations.

Example 1

Figure 1: Histogram of input values.
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Figure 2: The horizontal and vertical axes show the node index and the value of each
node, respectively.

We give some numerical examples of self‐organizing map process models. Fig‐
ure 2 illustrates a transition of the values of nodes in a 150 nodes model with

a learning process from random inputs generated by the exponential distribu‐
tion shown in Figure 1 which has mean 2 and variance 4. The initial values of

150



nodes shown in a legend, step  0 of Figure 2, are given uniform randomly. We
can observe that the values of nodes turn to ordering state gradually. The upper
trajectory is Figure 3 shows a transition of the index of the node which has the
maximum value. The lower one shows a transition with respect to the minimum
node.

node number

. minimun node

1 maximun node

rp

Figure 3: The horizontal and vertical axes show iteration steps and the maximum or
minimum node index, respectively.

\square 

Example 2 On the other hand, in a learning processes on the self‐organizing
map model shown in Figure 4, the node values turn to ordering state gradually,
however, is still not monotone state at 600, 000 steps. Figure 5 shows that the
node index which has the minimum value in this example does not turn to the
index of either side node throughout.

value

— step 0

— step 6000

\sim step 150000

— step 600000

de

Figure 4: A transition of the node values in a 200 nodes model with the same
exponential inputs as inputs in Example 1.

\square 
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node number

\bullet minimun node

\bullet maximun node

\mathrm{c}\mathrm{p}

Figure 5: Transitions of the maximum and minimum node index.

Example 3 Figure 6 is given by the date which consists of the numbers of re‐
newal times up to a monotone state by 135 experiments under 15 different initial
values of nodes, 3 different input sequences from normal distribution N(0,2^{2}) ,
exponential distribution with mean 0 and variance 4 and mixed distribution with

probability density function \displaystyle \frac{3e^{-\mathrm{z}^{(x-1)^{2}}}9}{2\sqrt{2 $\pi$}}+\frac{3e^{-z^{(x+1)^{2}}}9}{2\sqrt{2 $\pi$}} , respectively. The three hori‐

zontal lines of the rectangle indicate the mean‐SD (the standard deviation), the
mean, and the mean +\mathrm{S}\mathrm{D} , respectively. The ends of lower and upper vertical lines
either side of the rectangle show the maximum and the minimum, respectively.

Figure 6: Box‐and‐whisker plot (the minimum, the mean‐SD, the mean, the
mean +\mathrm{S}\mathrm{D} , the maximum). The three pictures on the right show input distributions,
a normal distribution, an exponential distribution and a mixed distribution from the
top.

This figure illustrates a comparison of the number of renewal times up to
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a monotone state. The mean renewal times up to monotone state by normal
inputs is less than the mean by exponential one, statistically, p‐‐value of T‐test is
0.0404863.

\square 
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