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1 Introduction

The purpose of this survey paper is to mathematically discuss the formation of a
plasma sheath near the surface of materials immersed in a plasma, and to study qualitative

information of such a plasma sheath layer. In fact we summarize the results [3−5, 9−11]
investigating the asymptotic behavior and quasi‐neutral limit of solutions to the Euler‐
Poisson equations in a half space or three‐dimensional annular domain.
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The motion of positive ions in a plasma is governed by, after suitable nondimension‐
alization, the Euler‐Poisson equations:

$\rho$_{t}+\nabla . (p  u ) =0 , (1a)

( $\rho$ u)_{t}+\nabla\cdot( $\rho$ u\otimes u)+K\nabla $\rho$= $\rho$\nabla $\phi$ , (1b)

 $\epsilon$\triangle $\phi$= $\rho$-e^{- $\phi$} , (1c)

where the unknown functions  $\rho$(x, t) , u(x, t) and - $\phi$(x, t) represent the density, velocity
of the positive ion and the electrostatic potential, respectively. Moreover, K > 0 is a
constant of temperature of the positive ion, and \sqrt{ $\varepsilon$} is the ratio of the Debye length $\lambda$_{D}

to the reference spatial scale. The first equation describes the mass balance law, and the
second one is the equation of momentum in which the pressure gradient and electrostatic
potential gradient as well as the convection effect are taken into account. The third
equation is the Poisson equation, which describes the relation between the potential and
the density of charged particles. For this equation, the Boltzmann relation stating that
the electron density is given by $\rho$_{e}=e^{- $\phi$} is assumed.

The plasma sheath appears when a material is immersed in a plasma and the plasma
contacts with its surface. Since the thermal velocities of electrons are much higher than

those of ions, more electrons tend to hit the surface of the material than ions do, which
makes the material negatively charged with respect to the surrounding plasma. Then the
material with a negative potential attracts and accelerates ions toward the surface, while
repelling electrons away from it, and this results in the formation of non‐neutral poten‐
tial region near the surface, where a nontrivial equilibrium of the densities is achieved.
Consequently, positive ions outnumber electrons in this region and this ion‐rich layer near
the boundary is referred to as the plasma sheath. This boundary layer shields the plasma
from the negatively charged material. The thickness of this layer is the same order of the
Debye length $\lambda$_{D} . For the formation of sheath, Langmuir in [7] observed that positive ions
must enter the sheath region with a sufficiently large kinetic energy. Bohm in [1] derived
the original Bohm cnterion for the plasma containing electrons and only onc component
of mono‐valence ions, which states that the ion velocity u at the plasma edge must ex‐
ceed the ion acoustic speed for the case of planar wall. For more details of the sheath

formation, we refer the readers to [2, 8, 12].
This paper is organized as follows. In Section 2, we give an overview of mathematical

research [3, 4, 9−11] studying the Euler‐Poisson equations (1) in the half space. The
papers [9−11] show the asymptotic stability and unique existence of stationary solutions
to (1) by assuming the Bohm criterion. These mathematically justify the Bohm criterion
and ensure that the sheath corresponds to the stationary solution. Furthermore, we briefly
discuss the quasi‐neutral limit ( $\varepsilon$ \rightarrow 0) of time‐local solutions to (1) studied in [3, 4].
Section 3 provides our recent results [5] analyzing the Euler‐Poisson equations (1) in
the three‐dimensional annular domain, for which we propose the Bohm cmtemon for the
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annulus and prove the unique existence of stationary spherical symmetric solutions under
this Bohm criterion. We also study the quasi‐neutral limit behavior of this stationary

solution by establishing L^{2} and H^{1} estimates of the difference between the solutions

to (1) and its quasi‐neutral limiting equations, incorporated with the correctors for the
boundary layers. The pointwise estimate of correctors enables us to obtain the thickness

of boundary layers. In the last section, we give concluding remarks for the above results
and related issues. Before closing the introduction, we present several notations to be
used throughout the paper.

Notation. For a non‐negative integer l, H^{l}( $\Omega$) denotes the l‐th order Sobolev space in
the L^{2} sense. We note H^{0} = L^{2} and H^{\infty} = \displaystyle \bigcap_{l\geq 0}H^{l} . For a non‐negative integer k,

C^{k}([0, T];H^{l}( $\Omega$)) denotes the space of k‐times continuously differentiable functions on the
interval [0, T] with values in H^{l}( $\Omega$) . We note C^{\infty}([0, T];H^{\infty}( $\Omega$))=\displaystyle \bigcap_{l,k\geq 0}C^{k}([0, T];H^{l}( $\Omega$)) .

Furthermore, C and c are generic positive constants.

2 Half space problem

This section is devoted to discuss the previous researches of the Euler‐Poisson equa‐

tions (1) in the three‐dimensional half space

\mathbb{R}_{+}^{3} :=\{x=(x_{1}, x')=(x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3};x_{1}>0\}

with the initial and boundary data

( $\rho$, u)(0, x)=($\rho$_{0}, u_{0})(x) , \displaystyle \inf_{x\in \mathrm{R}_{+}^{3}} $\rho$(x)>0, \displaystyle \lim_{x1\rightarrow\infty}($\rho$_{0}, u_{0})(x_{1}, x')=(1, u_{+}, 0,0) , (2)

 $\phi$(t, 0, x')=$\phi$_{b}, \displaystyle \lim_{x_{1\rightarrow\infty}} $\phi$(t, x_{1}, x')=0 . (3)

The papers [9, 10] proved the uniquè existence and asymptotic stability of planer stationary
solutions (\tilde{ $\rho$},\overline{u},\tilde{ $\phi$}) to problem (1)-(3) by assuming the original Bohm criterion

u_{+}^{2}>K+1, u_{+}<0 . (4)

Here the planar stationary solution (\tilde{ $\rho$} , ũ, \tilde{ $\phi$})(x_{1}) = ( \tilde{ $\rho$}, ũl, 0,0,\tilde{ $\phi$}) (x_{1}) is a solution to (1)
independent of the time variable t and tangential variable x' . Therefore, it satisfies

(\tilde{ $\rho$}\tilde{u}_{1})_{x_{1}}=0 , (5a)

(\tilde{ $\rho$}\tilde{u}_{1^{2}}+K\tilde{ $\rho$})_{x_{1}} =\tilde{ $\rho$}\tilde{ $\phi$}_{x_{1}} , (5b)

 $\varepsilon$\tilde{ $\phi$}_{x_{1}x_{1}}=\overline{ $\rho$}-e^{-\overline{ $\phi$}} (5c)

with the same conditions as in (2) and (3), that is,

\displaystyle \inf_{x_{1}\in \mathrm{N}_{+}}\tilde{ $\rho$}(x_{1})>0, \displaystyle \lim_{x_{1\rightarrow\infty}} ( \tilde{ $\rho$} , ũl, \tilde{ $\phi$}) (x_{1})=($\rho$_{+}, u_{+}, 0) , \tilde{ $\phi$}(0)=$\phi$_{b} . (5d)
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In the analysis of stationary solutions, we employ the Sagdeev potential V defined by

V( $\phi$):=\displaystyle \int_{0}^{ $\phi$}f^{-1}( $\eta$)-e^{- $\eta$}d $\eta$, f( $\rho$):=K\log $\rho$+\frac{u_{+}^{2}}{2$\rho$^{2}}-\frac{u_{+}^{2}}{2},
where the domain of f is an interval I :=(0, |u_{+}|/\sqrt{K}].

The results in [9, 10] are summarized in the following three theorems.

Theorem 2.1 ([10]). Let (4) hold. The boundary data $\phi$_{b} satisfies V($\phi$_{b}) \geq  0 and
$\phi$_{b} \leq  f(|u_{+}|/\sqrt{K}) if and only if stationary problem (5) has a unique monotone solution
( \tilde{ $\rho$} , ũi, \tilde{ $\phi$}) \in C(\overline{\mathbb{R}_{+}})\cap C^{2}(\mathbb{R}_{+}) .

Theorem 2.2 ([9, 10 Let (4) hold. Suppose (e^{ $\alpha$ x_{1}/2}($\rho$_{0}-p e^{ $\alpha$ x_{1}/2} (u0—ũ) ) \in  H^{3}(\mathbb{R}_{+}^{3})
for some positive constant  $\alpha$ . Then there exist positive constants  $\beta$(\leq $\alpha$) and  $\delta$ such that
 if|$\phi$_{b}|+||(e^{ $\beta$ x_{1}/2}(p_{0}- $\rho$ e^{ $\beta$ x_{1}/2}(u_{0}-\tilde{u}))\Vert_{H^{3}} \leq  $\delta$ , initial‐boundary value problem (1) -(3)
has a unique time‐global solution

(e^{ $\beta$ x_{1}/2}( $\rho$- $\rho$  e^{ $\beta$ x_{1}/2} (u —ũ), e^{ $\beta$ x_{1}/2}( $\phi$- $\phi$ \displaystyle \in\bigcap_{j=0}^{3}C^{j}([0, \infty);H^{3-j}(\mathbb{R}_{+}^{3})) .

Moreover, it satisfies the decay estimate

\displaystyle \sup_{x\in \mathrm{R}_{+}^{3}}| ( $\rho$-\tilde{ $\rho$}, u-\~{u},  $\phi$-\tilde{ $\phi$})(t)|\leq Ce^{- $\gamma$ t},
where positive constants C and  $\gamma$ are independent of the time variable  t.

Theorem 2.3 ([9, 10]). Let (4) hold. Suppose ((1+ $\alpha$ x_{1})^{ $\lambda$/2}($\rho$_{0}-\tilde{ $\rho$}), (1+ $\alpha$ x_{1})^{ $\lambda$/2}(u_{0}-\tilde{u}))\in
 H^{3}(\mathbb{R}_{+}^{3}) for some  $\lambda$ \geq  2 and  $\alpha$ > 0 . Then there exist positive constants  $\beta$(\leq  $\alpha$) and  $\delta$

such that  if|$\phi$_{b}|+\Vert((1+ $\beta$ x_{1})^{ $\lambda$/2}($\rho$_{0}- $\rho$ (1+ $\beta$ x_{1})^{ $\lambda$/2}(u_{0}-\~{u}))\Vert_{H^{3}} \leq $\delta$ , initial‐boundary

value problem (1) -(3) has a unique time‐global solution

((1+ $\beta$ x_{1})^{ $\lambda$/2}( $\rho$- $\rho$ (1+ $\beta$ x_{1})^{ $\lambda$/2} (u—ũ), (1+ $\beta$ x_{1})^{ $\lambda$/2}( $\phi$- $\phi$ \displaystyle \in\bigcap_{j=0}^{3}C^{j}([0, \infty);H^{3-j}(\mathbb{R}_{+}^{3})) .

Moreover, it satisfies the decay estimate

\displaystyle \sup_{x\in \mathrm{R}_{+}^{3}}| ( $\rho$-\tilde{ $\rho$}, u-\~{u},  $\phi$-\tilde{ $\phi$})(t)| \leq C(1+ $\beta$ t)^{-( $\lambda$- $\zeta$)},
for any  $\zeta$\in(0,  $\lambda$], where positive constants  C is independent of the time variable t.

Some similar results are obtained in [11] for a multicomponent plasma containing
electrons and several components of ions under the generalized Bohm criterion derived
in [13]. These results give a mathematical validity for the Bohm criterion and ensure that
the sheath corresponds to the stationary solution.

140



The quasi‐neutral limit ( $\varepsilon$ \rightarrow 0) of time‐local solutions to (1) -(3) is studied by D.
Gérard‐Varet, D. Han‐Kwan and  $\Gamma$ . Rousset. This limit problem is considered under the

original Bohm criterion at the boundary \{x_{1} =0\} in [4], and some other cases without
the Bohm criterion are also studied in [3]. In particular, the former paper gives the
H^{k}‐estimates of the difference of the solutions to the Euler‐Poisson equations and its

quasi‐neutral limiting equations, incorporated with the correctors for the boundary layers.

The limiting equations are defined by setting  $\epsilon$=0 in (1) as

$\rho$_{t}^{0}+\nabla\cdot($\rho$^{0}u^{0})=0,
($\rho$^{0}u^{0})_{t}+\nabla\cdot($\rho$^{0}u^{0}\otimes u^{0})+K\nabla$\rho$^{0}=$\rho$^{0}\nabla$\phi$^{0},

$\rho$^{0}-e^{-$\phi$^{0}}=0.

We prescribe the initial data ($\rho$_{0}^{0}, u_{0}^{0})\in H^{\infty}(\mathbb{R}_{+}^{3}) satisfying

\displaystyle \inf_{x\in \mathrm{R}_{+}^{3}}$\rho$_{0}^{0}(x)>0, \sup_{x\in \mathbb{R}_{+}^{3}}u_{30}^{0}(x)<0, (\sup_{x\in \mathrm{N}_{+}^{3}}u_{30}^{0}(x))^{2}>K+1,
\displaystyle \lim_{x_{1\rightarrow\infty}}($\rho$_{0}, u_{0})(x_{1}, x')=(1, u_{+}, 0,0)

and no boundary condition. It is seen from Appendix of [6] that this initial‐boundary
value problem of limiting equations admits a unique time‐local solution

($\rho$^{0}-1, u_{1}^{0}-u_{+}, u_{2}^{0}, u_{3}^{0}) \in C^{\infty}([0, T];H^{\infty}(\mathbb{R}_{+}^{3}))

for some T>0.

Note that it is not acceptable to impose the boundary condition for ￠0 for the limiting
equations since it is determined by the one for $\rho$^{0} , whereas the boundary condition for  $\phi$ is

necessary for the problem (1) -(3) . In general, the boundary data $\phi$_{b} does not satisfy the
relation $\phi$^{0}(t, 1, x') = $\phi$_{b} . Hence, one can expect in the analysis of the quasi‐neutral
limit that this discrepancy of the boundary data would cause a steep change in the
solution near the boundary \{x_{1} =0\} . This sharp transition near the surface is referred
to as a boundary layer. To handle this, we need the correctors for the boundary layers

($\theta$_{ $\rho$}, $\theta$_{\mathrm{u}}, $\theta$_{ $\phi$})(t, x_{1}, x')=(R^{0}, U^{0},0,0, $\Phi$^{0})(t, x_{1}/\sqrt{ $\varepsilon$}, x')\in C^{\infty}([0, T];H^{\infty}(\mathbb{R}_{+}^{3})) , which are the

solutions of ordinary differential equations

\{( $\Gamma \rho$^{0}+R^{0})( $\Gamma$ u_{1}^{0}+U^{0})\}_{x_{1}}=0,

\displaystyle \frac{1}{2}\{( $\Gamma$ u_{1}^{0}+U^{0})^{2}\}_{x_{1}}+\frac{KR_{x_{1}}^{0}}{ $\Gamma \rho$^{0}+R^{0}}=$\Phi$_{x_{1}}^{0},
$\Phi$_{x_{1}x1}^{0}= $\Gamma \rho$^{0}+R^{0}-e^{ $\Gamma \phi$^{0}+$\Phi$^{0}}

with the boundary conditions

$\Phi$^{0}(0)=$\phi$_{b}, \displaystyle \lim_{x_{1\rightarrow\infty}}(R^{0}, U^{0}, $\Phi$^{0})(x_{1})=(0,0,0) ,
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where  $\Gamma$ is the trace operator at \{x_{1}=0\} . The solvability of this boundary value problem

can be proved similarly as Theorem 2.1.

The result of D. Gérard‐Varet, D. Han‐Kwan and  $\Gamma$ . Rousset is stated in Theorem

2.4. They make use of the approximate expansion in powers of \sqrt{ $\varepsilon$} up to order m :

($\rho$_{app}^{m}, u_{app}^{m}, $\phi$_{app}^{m})(t, x)=\displaystyle \sum_{i=0}^{m}f $\varepsilon$($\rho$^{i}, u^{i}, $\phi$^{i})(t, x)+\sum_{i=0}^{m}f $\varepsilon$(R^{i}, U^{i}, $\Phi$^{i})(t, \frac{x_{1}}{\sqrt{ $\varepsilon$}}, x')
for any non‐negative integer m , where ($\rho$^{i}, u^{i}, $\phi$^{i}) and (R^{i}, U^{i}, $\Phi$^{i}) are the outer and inner

solutions, respectively, (the definitions of the outer and inner solutions are omitted in [4]
since they are standard), and they also justify this approximate expansion for higher
orders m\geq 1 in Theorem 3 of [4].

Theorem 2.4 ([4]). Let the initial data ($\rho$_{0}, u_{0}) satisfy ($\rho$_{0}, u_{0})(x) = ($\rho$_{app}^{3}, u_{app}^{3})(0, x)+
$\epsilon$^{2} (h_{1}, h_{2})(x) for some (h_{1}, h_{2}) \in  H^{3}(\mathbb{R}_{+}^{3}) independent of e . There exits some positive
constants $\delta$_{0} and $\varepsilon$_{0} such that if  $\epsilon$ \in (0, $\varepsilon$_{0}] and \displaystyle \sup_{x\in \mathrm{R}^{2}}|$\rho$_{0}^{0}(0, x') -e^{-$\phi$_{b}}| \leq $\delta$_{0} , initial‐

boundary value problem (1) -(3) admits a unique time‐local solution

($\rho$^{ $\varepsilon$}-1, u_{1}^{ $\varepsilon$}-u_{+}, u_{2}^{ $\varepsilon$}, u_{3}^{ $\varepsilon$})\displaystyle \in\bigcap_{j=0}^{3}C^{j}([0, T];H^{3-j}(\mathbb{R}_{+}^{3})) ,

where T>0 is a positive constant independent of  $\varepsilon$ . Moreover, it satisfies

\displaystyle \sup_{0\leq t\leq T}\Vert($\rho$^{\mathrm{e}}-$\rho$^{0}-$\theta$_{ $\rho$}, u^{ $\varepsilon$}-u^{0}-$\theta$_{\mathrm{u}}, $\phi$^{ $\varepsilon$}-$\phi$^{0}-$\theta$_{ $\phi$})(t)\Vert_{L}\infty\rightarrow 0.
We emphasize that the thickness of sharp transition of the corrector for the boundary

layer ($\theta$_{ $\rho$}, $\theta$_{u}, $\theta$_{ $\phi$}) is of order of \sqrt{ $\varepsilon$} since (R^{0}, U^{0}, $\Phi$^{0}) decays exponentially fast as x_{1}\rightarrow\infty.

This thickness corresponds to the physical observation of sheaths. Furthermore, it is seen
by formal computations that the corrector ($\theta$_{ $\rho$}, $\theta$_{\mathrm{u}}, $\theta$_{t}) converges to the planer stationary
solution (\tilde{ $\rho$} , ũ, \tilde{ $\phi$}) in Theorem 2.1 as t \rightarrow \infty . Therefore, the boundary layer, referred in

the mathematical sense, of the stationary problem is just given by the planer stationary

solution. This validates that the sheaths are the stationary solutions to (1).

3 Annular domain problem

In this section, we consider the stationary problem associated with (1) in the three‐
dimensional annular domain

 $\Omega$:=\{x= (x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3}|1<|x|<1+L\}, L>0.

142



Here one can set the radii of the inner and outer balls as R_{\triangleleft} = 1 and R_{o} = 1+L by
choosing the original radius of the inner ball as the reference spatial scale. The boundary
conditions are prescribed as

( $\rho$, u,  $\phi$)(t,x)=(1, u_{+}x/|x|, 0) for x\in\{x\in \mathbb{R}^{3} : |x|=1+L\} , (6)

 $\phi$(t, x)=$\phi$_{b} for x\in\{x\in \mathbb{R}^{3} : |x|=1\} , (7)

where u_{+} < 0 and $\phi$_{b} \in \mathbb{R} are given constants. For given these spherical symmetric
boundary conditions, we seek the corresponding spherical symmetric solutions using the
ansatz: Let \tilde{ $\rho$}(r) =  $\rho$(x) , \~{u}(r)= u(x) . x/|x| and \tilde{ $\phi$}(r) =  $\phi$(x) , where r = |x| , be the

solutions to the boundary value problem of (1), (6) and (7). Here and hereafter f' denotes
df/dr . Then the system leads to

(  $\rho$\tilde{}ũ)’ =-\displaystyle \frac{2}{r} pũ, (8a)

(\displaystyle \tilde{ $\rho$}\tilde{u}^{2}+K $\rho$ =\tilde{ $\rho$}\tilde{ $\phi$}'-\frac{2}{r}\tilde{ $\rho$}\tilde{u}^{2} , (8b)

 $\varepsilon$\displaystyle \frac{1}{r^{2}}(r^{2}\tilde{ $\phi$}')'=\tilde{ $\rho$}-e^{-\tilde{ $\phi$}} (8c)

for r\in I :=(1,1+L) with the conditions

\displaystyle \inf_{r\in I}\tilde{ $\rho$}(r)>0 , (8d)

( \tilde{ $\rho$} , ũ) (1+L)=(1, u_{+}) , (8e)

\tilde{ $\phi$}(1)=$\phi$_{b}, \tilde{ $\phi$}(1+L)=0 . (8f)

To discuss the unique existence and quasi‐neutral limit behavior of solutions to the

stationary problem (8), we first consider the quasi‐neutral limiting equations obtained
from (8) by setting  $\varepsilon$=0 :

(\displaystyle \tilde{ $\rho$}^{0}\tilde{u}^{0})'=-\frac{2}{r}\tilde{ $\rho$}^{0}\tilde{u}^{0} , (9a)

(\displaystyle \overline{ $\rho$}^{0}(\tilde{u}^{0})^{2}+K\tilde{ $\rho$}^{0})'=\tilde{ $\rho$}^{0}\tilde{ $\phi$}^{0'}-\frac{2}{r}\tilde{ $\rho$}^{0}(\~{u}^{0})^{2} , (9b)

\tilde{p}^{0}-e^{-\overline{ $\phi$}^{0}}=0 . (9c)

It is shown that the limiting problem of (9), (8d) and (8e) has a unique solution if and
only if either

u_{+}^{2}\leq(K+1)a_{*} or u_{+}^{2}\geq(K+1)a^{*} (10)

holds, where a_{*} and a^{*} are two roots of the equation 1+4\log(1+L)-x+\log x=0 with
a_{*}< 1<a^{*} . Throughout this section, we assume that

u_{+}^{2}>(K+1)a^{*}, u_{+}<0 (11)
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hold. Note that this condition is stronger than the Bohm criterion u_{+}^{2} > K+1 for

the planar wall case. We refer to (11) as the Bohm critemon for the annulus. It is
reasonable to propose this criterion since, under the former condition in (10), the time
dependent problem to (1) with (6) and (7) is ill‐posed and some research groups of plamsa
physics define the Bohm criterion by excluding the equality. The solvability of the limiting
problem is summarized in the next lemma.

Lemma 3.1 ([5]). Let (11) hold. Then boundary value problem of (9), (8d) and (8e) has a
unique solution (\tilde{ $\rho$}^{0} , ũ0, \tilde{ $\phi$}^{0})\in C(\overline{I})\cap C^{\infty}(I) . Moreover, \tilde{ $\rho$}^{0} , ũ0 and-\tilde{ $\phi$}^{0} are monotonically
decreasing functions.

The stationary problem (8) is also solvable under (11). For the analysis, we employ a
function

G(r,\displaystyle \tilde{ $\rho$}):=\frac{1}{2}\frac{(1+L)^{4}u_{+}^{2}}{r^{4}\tilde{ $\rho$}^{2}}+K\log\tilde{ $\rho$}-\frac{1}{2}u_{+}^{2}.
Here the domain of G is restricted into D(G) :=\overline{I}\times(0,\tilde{ $\rho$}_{*}(r)], where

\tilde{ $\rho$}_{*}(r) :=\sqrt{(1+L)^{4}u_{+}^{2}r^{-4}K^{-1}}
is a critical point of G for each r\in\overline{I} . We also make use of the inverse function of G as

\tilde{ $\rho$}=g(r,\tilde{ $\phi$}) for (r,\tilde{ $\phi$})\in D(g) :=\overline{I}\times[G(r,\tilde{ $\rho$}_{*}(r)), \infty )

by solving the equation  G(r,\tilde{ $\rho$})=\tilde{ $\phi$} for \tilde{ $\rho$} . We present the unique existence of the station‐
ary solution in the next theorem.

Theorem 3.2 ([5]). Let (11) hold. Then there exist positive constants $\epsilon$_{1} and $\delta$_{1} such that
if  $\varepsilon$\leq$\varepsilon$_{1} and $\phi$_{b}\in [G(1,\tilde{ $\rho$}_{*}^{0}(1)), \overline{ $\phi$}^{0}(1)+$\delta$_{1} ), then boundary value problem (5) has a unique
solution (\tilde{ $\rho$} , ũ, \tilde{ $\phi$})\in C(\overline{I})\cap C^{\infty}(I) satisfying

\tilde{ $\phi$}(r)\geq G(r,\tilde{ $\rho$}_{*}^{0}(r)) for r\in\overline{I},

where \tilde{ $\rho$}_{*}^{0}(r) :=\sqrt{(1+L)^{4}u_{+}^{2}(K+1)^{-1}r^{-4}} is a cntical point of F(r,\tilde{ $\rho$}) :=G(r,\tilde{ $\rho$})+\log\tilde{ $\rho$}.

We are now in a position to analyze the quasi‐neutral limit of the stationary spherical
symmetric solution constructed in Theorem 3.2. As we mentioned in Section 2, the
boundary layers are present in this case. Let us define a corrector of the boundary layer

for \tilde{ $\phi$} , denoted by $\theta$_{ $\phi$}^{0} , by solving the boundary value problem

 $\varepsilon$($\theta$_{ $\phi$}^{0})''=g(r,\tilde{ $\phi$}^{0}+$\theta$_{ $\phi$}^{0})-e^{-\overline{ $\phi$}^{0}-$\theta$_{ $\phi$}^{0}}, $\theta$_{ $\phi$}^{0}(1)=$\phi$_{b}-\tilde{ $\phi$}^{0}(1) , $\theta$_{ $\phi$}^{0}(1+L)=0,
where \tilde{ $\phi$}^{0} is the solution to limiting problem (9). Note that this boundary value problem
is solvable under the same assumptions as in Theorem 3.2. The corresponding correctors
for \tilde{ $\rho$} and ũ are given by

$\theta$_{ $\rho$}^{0}:=g(r,\displaystyle \tilde{ $\phi$}^{0}+$\theta$_{ $\phi$}^{0})-g(r,\tilde{ $\phi$}^{0}) , $\theta$_{u}^{0}:=-\frac{\tilde{u}^{0}$\theta$_{ $\rho$}^{0}}{\tilde{p}^{0}+$\theta$_{ $\rho$}^{0}},
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where \tilde{ $\rho$}^{0} and ũ0 are the density and velocity for limiting problem (9). We now present
the pointwise estimates for $\theta$_{ $\phi$}^{0}, $\theta$_{ $\rho$}^{0} and $\theta$_{u}^{0} and the convergence result.

Proposition 3.3 ([5]). Under the same assumptions as in Theorem 2.1, for any r\in\overline{I},
there hold

|$\phi$_{b}-\tilde{ $\phi$}^{0}(1)|(e^{-\sqrt{C_{0}/ $\varepsilon$}(r-1)}-e^{-\sqrt{C_{0}/ $\varepsilon$}L}) \leq|$\theta$_{ $\phi$}^{0}(r)| \leq|$\phi$_{b}-\tilde{ $\phi$}^{0}(1)|e^{-\sqrt{\mathrm{c}\mathrm{o}/ $\epsilon$:}(r-1)},

c|$\phi$_{b}-\tilde{ $\phi$}^{0}(1)|(e^{-\sqrt{C_{0}/ $\varepsilon$}(r-1)}-e^{-\sqrt{C_{0}/ $\varepsilon$}L}) \leq|($\theta$_{ $\rho$}^{0}, $\theta$_{\mathrm{u}}^{0})(r)|\leq C|$\phi$_{b}-\tilde{ $\phi$}^{0}(1)|e^{-\sqrt{c\mathrm{o}/ $\varepsilon$}(r-1)},
where c, C, c_{0} and C_{0} are positive constants independent of  $\varepsilon$.

Theorem 3.4 ([5]). Under the same assumptions as in Theorem 2.1, the difference (\overline{ $\rho$}-
\tilde{ $\rho$}^{0}-$\theta$_{ $\phi$}^{0}, \~{u}-\~{u}^{0}-$\theta$_{u}^{0}, \tilde{ $\phi$}-\tilde{ $\phi$}^{0}-$\theta$_{ $\phi$}^{0}) satisfies the decay estimates

$\epsilon$^{i/2}\Vert(\tilde{ $\rho$}-\tilde{ $\rho$}^{0}-$\theta$_{ $\rho$}^{0},\tilde{u}-\tilde{u}^{0}-$\theta$_{\mathrm{u}}^{0},\tilde{ $\phi$}-\tilde{ $\phi$}^{0}-$\theta$_{ $\phi$}^{0})\Vert_{H^{i}} \leq C$\varepsilon$^{3/4} for i=0 , 1,

\Vert(\tilde{ $\rho$}-\tilde{ $\rho$}^{0}-$\theta$_{ $\rho$}^{0}, \~{u}-\tilde{u}^{0}-$\theta$_{\mathrm{u}}^{0},\tilde{ $\phi$}-\tilde{ $\phi$}^{0}-$\theta$_{ $\phi$}^{0})\Vert_{L^{\infty}} \leq C$\epsilon$^{1/2},
where C>0 is a constant independent of  $\varepsilon$.

Proposition 3.3 implies that the correctors in the region away from the inner boundary
decay exponentially fast (of order e^{-\sqrt{1/ $\varepsilon$}}) in the pointwise sense as  $\varepsilon$\rightarrow 0 , by which one
can deduce that the thickness of the boundary layer is of order \sqrt{ $\varepsilon$} . This justifies the
heuristic explanation in the context of physics stating that the sheath is of several Debye
lengths thick.

4 Concluding remarks
Let us mention some concluding remarks by comparing the Theorems in Sections 2

and 3. We first infer from Theorems 2.1 and 3.1 that the Bohm criterion may vary with
the geometry of domain. It is expected that the Bohm criterion for the annuals (11)
converges to the original Bohm criterion (4) as  $\varepsilon$\rightarrow 0 since the inner ball of the annulus
can locally be regarded as a planer wall when  $\varepsilon$\ll 1 . However, this expectation turns out

to be incorrect since (11) is independent of  $\epsilon$ . Therefore, these two criteria are essentially
different.

Theorems 2.4 and 3.4 demonstrate that the thickness of the boundary layer is order
of \sqrt{ $\varepsilon$} for both the planer wall case and the ball‐shaped wall case. The thickness is inde‐
pendent of the geometry of domain. On the other hand, the correctors for the boundary
layers which are employed in Theorems 2.4 and 3.4, are defined differently. Therefore,
it is not straightforward to compare these two correctors, and it is not clear how their
properties are different. This is an interesting question to be investigated for our future
work.
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