同じ曲率を持つ空間型の間の特異点を 許容する等長はめ込み*

横浜国立大学・大学院工学研究院 本田 淳史†

Atsufumi Honda Faculty of Engineering, Yokohama National University

概要

波面とは、特異点を許容する(超)曲面のクラスである。波面の内在的な 構造をモデルとした連接接束はリーマン多様体の特異点を許容する概念とみ なすことができる。本稿では、そのような連接接束に「空間形」の概念を導 入し、同じ曲率を持つ空間形の間の等長はめ込みを波面の枠組みで定式化し、 それらの分類や性質を調べた結果を紹介する[8,9]。

1 波面と連接接束

1.1 波面

向き付けられたリーマン多様体 (N^{n+1}, h) に対して、その単位接束を $T_1 N^{n+1}$ で表す. 可微分多様体 M^n からの滑らかな写像

$$f: M^n \longrightarrow (N^{n+1}, h)$$

が**波面** (wave front, **フロント**) であるとは、各点 $p \in M^n$ に対して、その近傍 U で定義された f に沿う滑らかな N^{n+1} の単位ベクトル場 ν が存在して

$$L := (f, \nu) : U \longrightarrow T_1 N^{n+1}$$

*RIMS 共同研究(公開型)「部分多様体論の潮流」(代表者:川上 裕(金沢大学)) [†]本研究は科研費 (課題番号:16K17605) の助成を受けたものである. が Legendre はめ込みとなるときをいう. ここで*L*が Legendre であることは,任 意の $X \in \mathfrak{X}(M^n)$ に対して $h(f_*X, \nu) = 0$ となることと同値である¹. このとき ν は単位法線ベクトル場と呼ばれる. また,*L*が単に Legendre 写像である場合に は *f* を波面的 (frontal, フロンタル) と呼ぶ. *f* がはめ込み (超曲面) ならば波面と なるが,波面ははめ込みでない点を許容する. *f* が $p \in M^n$ においてはめ込みで ないとき, pを**特異点**と呼ぶ.

図 1: 波面に現れる特異点 (n = 2 の場合).

単位法線ベクトル場 ν が M^n 上で矛盾なく定義されるとき,fは余向き付け可 能と呼ばれ, M^n が向き付け可能であるときfを向き付け可能と呼ぶ.fがはめ 込みである場合は,余向き付け可能性と向き付け可能は同値であるが,一般には それらは独立である.

1.2 連接接束

Saji-Umehara-Yamada は波面の内在的な構造の定式化として、連接接束を導入した.

定義 1 (Saji-Umehara-Yamada [22, 24]). $\mathcal{E} \in n$ 次元可微分多様体 M^n 上の階数 n のベクトル束とする. また, \mathcal{E} 上に計量 \langle , \rangle , それに両立する接続 Dが与えられ ているとする. ベクトル束準同型 $\varphi: TM \to (\mathcal{E}, \langle , \rangle, D)$ は

 $D_X \varphi(Y) - D_Y \varphi(X) - \varphi([X, Y]) = 0, \qquad X, Y \in \mathfrak{X}(M^n)$

を満たすとき、 $\mathcal{E} = (\mathcal{E}, \langle , \rangle, D, \varphi)$ を連接接束と呼ぶ.

 $^{{}^{1}\}mathfrak{X}(M^{n})$ で M^{n} 上の滑らかなベクトル場全体を表す.

ここで、リーマン多様体 (M,g) に対して、 $\mathcal{E} := TM^n$, $\langle , \rangle := g$, Dを Levi-Civita 接続、 $\varphi := \operatorname{Id}_{TM^n}$ と定めると $(\mathcal{E}, \langle , \rangle, D, \varphi)$ は連接接束となる. つまり、 連接接束はリーマン多様体の一般化にあたる概念である. さらに、波面、より一 般にフロンタルは連接接束を自然に誘導する.

例 2 ([24, Example 2.4]). フロンタル $f: M^n \to (N^{n+1}, h)$ に対し,

- *E_f*を引き戻し束 *f***TNⁿ⁺¹*の *ν*の直交補空間で定る部分束,
- $\varphi_f: TM^n \to \mathcal{E}_f \not\cong \varphi_f(X) := df(X) \succeq L$,
- D を Nⁿ⁺¹ の Levi-Civita 接続の接成分,
- \langle , \rangle を N^{n+1} から \mathcal{E}_f へ誘導される計量

とする. このとき、 $\mathcal{E}_f = (\mathcal{E}_f, \langle, \rangle, D, \varphi_f)$ は連接接束である. \mathcal{E}_f をフロンタル fの誘導連接接束と呼ぶ.

連接接束が余向き付け可能であるとは、 \mathcal{E} がベクトル束として向き付け可能な ときをいう.誘導連接接束 \mathcal{E}_f が余向き付け可能であることと、フロンタルfが余 向き付け可能であることは同値である.

以後, (N^{n+1},h) を断面曲率が一定値 c である単連結な空間形 $\Sigma^{n+1}(c)$ とする. つまり,

- c = 1の場合は単位球面 $\Sigma^{n+1}(1) = S^{n+1}$,
- c = 0の場合はユークリッド空間 $\Sigma^{n+1}(0) = \mathbf{R}^{n+1}$,
- c = -1の場合は双曲空間 $\Sigma^{n+1}(-1) = H^{n+1}$

を表す.

事実 3 ([23, Proposition 2.4]). フロンタル $f: M^n \to \Sigma^{n+1}(c)$ に沿う単位法線ベクトル場をνとする. fの誘導連接接束を $(\mathcal{E}_f, \langle , \rangle, D, \varphi_f)$ とするとき,

$$\left\langle R^{D}(X,Y)\xi,\zeta\right\rangle = c \left| \begin{array}{cc} \left\langle \varphi_{f}(Y),\xi\right\rangle & \left\langle \varphi_{f}(Y),\zeta\right\rangle \\ \left\langle \varphi_{f}(X),\xi\right\rangle & \left\langle \varphi_{f}(X),\zeta\right\rangle \end{array} \right| + \left| \begin{array}{cc} \left\langle d\nu(Y),\xi\right\rangle & \left\langle d\nu(Y),\zeta\right\rangle \\ \left\langle d\nu(X),\xi\right\rangle & \left\langle d\nu(X),\zeta\right\rangle \end{array} \right|$$

が成り立つ (*Gauss* 方程式と呼ばれる). ただし, $X, Y \in \mathfrak{X}(M^n)$, ξ, ζ は \mathcal{E}_f の滑 らかな切断で, R^D は接続 D の曲率テンソル

$$R^D(X,Y)\xi := D_X D_Y \xi - D_Y D_X \xi - D_{[X,Y]}\xi$$

とする.

2 空間形タイプの連接接束

可微分多様体 M^n 上の連接接束 $\mathcal{E} = (\mathcal{E}, \langle , \rangle, D, \varphi)$ に対し, $g_{\varphi} := \varphi^* \langle , \rangle$ は 半正定値計量となる. 連接接束が完備であるとは, M^n 上の対称 (0, 2)-テンソル T で, コンパクトな台を持ち,

 $g_{\omega} + T$

が完備なリーマン計量を与えるようなものが存在するときをいう². さらに, 定曲 率リーマン多様体のリーマン曲率テンソルの形を参考にして, 次のように連接接 束に定曲率性を導入する.

定義 4 ([8]). 実数 k に対し,連接接束 (\mathcal{E} , (,), D, φ) が定曲率 k を持つとは,

 $R^{D}(X,Y)\xi = k\left(\langle\varphi(X),\xi\rangle\,\varphi(Y) - \langle\varphi(Y),\xi\rangle\,\varphi(X)\right)$

が成り立つときをいう (ただし, $X, Y \in \mathfrak{X}(M^n), \xi$ は \mathcal{E} の切断). 定曲率kを持つ 完備な連接接束を**空間型タイプ**と呼ぶ.

線形写像 $\varphi_p: T_p M^n \to \mathcal{E}_p$ が単射でないとき、 $p \in M^n$ を特異点と呼ぶ.特異点 集合 S_{φ} が空の場合には、空間型タイプの連接接束はリーマン多様体としての空間 形とみなすことができる.しかし、 $S_{\varphi} \neq \emptyset$ の場合には球面上に平坦³な連接接束 構造が入る.

例 5 ([8]). 写像 $f_E: S^n \to \mathbb{R}^{n+1}$ を

 $f_E(x_1,\ldots,x_n,x_{n+1}) := (x_1,\ldots,x_n,0)$

とする. ただし, $S^n \subset \mathbf{R}^{n+1}$ としている (cf. 図 2). f_E の特異点集合 S_{f_E} は赤道 $S_{f_E} = \{ \mathbf{x} \in S^n ; x_{n+1} = 0 \}$ で与えられる. 定値写像 $\nu := (0, \ldots, 0, 1)$ は f_E に沿う 単位法線ベクトル場を与えるため, f_E は余向き付け可能なフロンタルである (波 面ではない). 例 2 のように定まる誘導連接接束 $\mathcal{E}_{f_E} = (\mathcal{E}_{f_E}, \langle , \rangle, D, \varphi_{f_E})$ は, 完 備かつ平坦となる. 平坦性は Gauss 方程式から確かめられる (cf. 補題 6).

より一般に、フロンタルに対する Gauss 方程式から次がわかる:

補題 6 ([8]). フロンタル $f: M^n \to \Sigma^{n+1}(c)$ に対し、 ν を単位法線ベクトル場と する. このとき、fの誘導連接接束 \mathcal{E}_f が定曲率cを持つことと、 $\operatorname{rank}(d\nu) \leq 1$ が M^n 上で成り立つことは同値である.

³定曲率 k = 0, つまり $R^D = 0$ のこと.

² フロンタル,より一般に可微分写像 $f: M^n \rightarrow (N^{n+1}, h)$ の完備性も第1基本形式 $ds^2 := f^*h$ に対する同様の条件を用いて定義される.このような完備性は、ミンコフスキー空間の極大曲面 [12, 25],平坦波面 (H^3 の場合 [13], \mathbf{R}^3 の場合 [16]) に用いられている.

図 2: フロンタル f_E の像 (cf. 例 5). S^n 上の誘導連接接束 \mathcal{E}_{f_E} は平坦である.

3 波面としての空間形の等長はめ込み

定曲率 cの単連結な n 次元空間型 $\Sigma^n(c)$ の $\Sigma^{n+1}(c)$ への等長はめ込みを考える. そのような等長はめ込みは

- c = 0の場合,完備な平面曲線上の柱面 (Hartman-Nirenberg の定理 [3]),
- *c* > 0 の場合, 全測地的 (O'Neill-Stiel の定理 [20])

に限る⁴. とくにn = 2, c = 0の場合, \mathbf{R}^2 の \mathbf{R}^3 への等長はめ込みは \mathbf{R}^3 の完備な 平坦曲面と同値である. つまり, 完備かつ平坦な正則曲面は柱面となるが, 特異 点を許容すると非自明な例が豊富に存在する.

図 3: **R**³の埋め込まれたエンドを持つ完備な平坦波面.カスプ辺でない特異点は 全てツバメの尾であり、その個数は4つである.したがって、事実7にある評価 は最良である.

 $^{{}^4}c < 0$ の場合,非自明な例が豊富に存在する [19]. 分類については Abe-Mori-Takahashi [1] を 参照 (cf. [6]).

Murata-Umehara は \mathbf{R}^3 の完備な平坦波面の分類を与え、向き付け可能性と余向き付け可能を示した。さらに、埋め込まれたエンドを持つものは4 頂点定理に類する性質を持つことを示した [16].

事実7 ([16]). 連結な 2 次元多様体 M^2 に対し, $f: M^2 \rightarrow \mathbb{R}^3$ を完備な平坦波面 で、特異点集合が空でないものとする. このとき、f は臍点を持たず向き付け可 能であり、かつ余向き付け可能である. また、ある変曲点を持たない正則閉曲線 $\xi: S^1 \rightarrow S^2 \geq S^1 \pm 0$ 1 次微分形式 $\alpha = a(t) dt$ で $\int_{S^1} \xi \alpha = 0$ を満たすものが存在 して、f は

$$f_{\alpha,\xi}(t,v) := v\,\xi(t) + \sigma(t) \qquad \left(\sigma(t) := \int_0^t a(t)\xi(t)\,dt\right)$$

で定まる写像 $f_{\alpha,\xi}: S^1 \times \mathbf{R} \to \mathbf{R}^3$ と合同である。逆に、このような $f_{\alpha,\xi}$ は特異点 集合が空でない完備な平坦波面を与える。さらに、f の全てのエンドが埋め込み であるならば、f のカスプ辺でない特異点は少なくとも4つ存在する。

これらの結果を通して、高次元の場合や平坦でない場合には何が起こるのかという自然な疑問が生じる.

3.1 高次元の平坦波面

筆者は論文 [9] において、n = 2の場合とは異なり、 $n \ge 3$ の場合には非自明な 完備平坦波面 $f: M^n \rightarrow \mathbf{R}^{n+1}$ は存在せず、それらは柱面に限ることを示した.

定理 8 ([9]). $n \ge 3$ のとき, \mathbf{R}^{n+1} の完備な平坦波面は特異点を許容しない. した がって, それらは柱面に限る.

したがって、Hartman–Nirenberg [3], Murata–Umehara [16] の結果と定理 8 を まとめると、以下のように **R**ⁿ⁺¹ の完備な平坦波面の分類表が得られる.

	特異点集合 = ∅	特異点集合 ≠ Ø
n=2	柱面	$\exists \infty (Murata-Umehara [16])$
$n \ge 3$	(Hartman–Nirenberg [3])	存在しない ([9])

表 1: **R**ⁿ⁺¹ の完備な平坦波面.

定理 8 の証明は、平坦波面の臍点でない点の近傍において、*Sⁿ*の正則曲線から 平坦波面を構成する以下の明示的な公式を用いる: **命題 9** ([9]). 平坦波面 $f: M^n \to \mathbb{R}^{n+1}$ は全臍的でなく,弱完備であるとする.各 非臍点に対し,ある開区間 I と局所座標系 ($I \times \mathbb{R}^{n-1}$; t, w_2, \ldots, w_n),単位速度を 持つ正則曲線 $\gamma: I \to S^n$ とその法束 (γ')[⊥] の正規直交フレーム { e_2, \ldots, e_n }, さ らに I 上の滑らかな関数 a(t) が存在して,f は $I \times \mathbb{R}^{n-1}$ 上で

(3.1)
$$f(t, w_2, \dots, w_n) = \hat{\sigma}(t) + \sum_{j=2}^n w_j \boldsymbol{e}_j(t) \qquad \left(\hat{\sigma}(t) := \int_0^t a(\tau) \gamma'(\tau) d\tau\right)$$

と表される. 逆に、開区間 *I*上の与えられた滑らかな関数 a(t) と,単位速度を持つ正則曲線 $\gamma: I \rightarrow S^n$ とその法束 $(\gamma')^{\perp}$ の正規直交フレーム $\{e_2, \ldots, e_n\}$ に対して式 (3.1) により定義される $f: I \times \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n+1}$ は臍点を持たない平坦波面である.

もし完備な平坦波面があったとすると、それは弱完備なので、表現公式 (3.1) を用いることができる.このとき、リフト計量 $ds_{\#}^{2}$ の測地線を計算することで、 $n \geq 3$ の場合には f の特異点集合は非有界な像を持つ測地線を含むことがわかる. これは完備性に矛盾するため、結果として $n \geq 3$ の場合には、完備な平坦波面で 特異点集合が空でないものは存在しないことがわかる.

3.2 正定曲率を持つ完備な波面の分類

筆者は論文 [8] において, O'Neill-Stiel の定理 [20] の波面の枠組みでの一般化 を与えた. つまり, 正曲率の空間形タイプの連接接束の球面への等長実現を分類 した:

定理 10 ([8]). 正定曲率 c > 0の球面を $S^{n+1}(c)$, M^n を連結な n 次元可微分多様体, $f: M^n \to S^{n+1}(c)$ を波面とする. もし誘導連接接束 \mathcal{E}_f が定曲率 c の空間型タイプならば, f は全測地的もしくは $S^{n+1}(c)$ の正則閉曲線の半径 $\pi/(2\sqrt{c})$ のチューブである. とくに, M^n は S^n もしくは $S^1 \times S^{n-1}$ と微分同相であり,向き付け可能である.

定理 10 において相似変換により c = 1 として一般性を失わず,定理 10 は単 位球面 S^{n+1} の全測地的でない定曲率 1 の完備な波面は正則閉曲線の半径 $\pi/2$ の チューブであることを主張する. Murata-Umehara の結果により n = 2, c = 0 の 場合は余向き付け可能性も成り立つが,定理 10 からは n = 2, c = 1 の場合は余 向き付け可能かどうかは不明である.実際,そのような波面で余向き付け不可能 な例が存在し (図 4 参照),余向き付け不可能である必要十分条件は中心曲線が半

図 4: S^3 の余向き付け不可能な定曲率1の完備な波面. 中心曲線は曲率 $\kappa = 4/3$, 捩率 $\tau = 5/3$ の常螺旋であり、半周期的となる. 特異曲線の像も常螺旋となり、特 異点は全てカスプ辺である.

図 5: S³の向き付け不可能な定曲率1の波面 (cf. [26, 14, 17]).

周期的であることもわかる [8]. また,完備性を外すと向き付け不可能な例も存在 する (図 5, Naokawa [18] を参照).

完備な正則曲線 $\gamma(s)$: $\mathbf{R} \to S^{n+1}$ (s は弧長パラメータ) に対し,その半径 $\pi/2$ のチューブ $T(\gamma)$:= { $p \in S^{n+1}$; dist_{Sn+1}(p, γ) = $\pi/2$ } は次の写像で計数付けられる:

$$f(s,\boldsymbol{x}) := x_1 \boldsymbol{e}_1(s) + \cdots + x_n \boldsymbol{e}_n(s).$$

ここで、 $s \in \mathbf{R}$ で、 $\mathbf{x} = (x_1, \ldots, x_n) \in S^{n-1} \subset \mathbf{R}^n$, さらに、 e_1, \ldots, e_n は $\gamma(s)$ の 法束の正規直交フレーム、つまり { $\gamma, \gamma', e_1, \ldots, e_n$ } が $\gamma(s)$ に沿う SO(n + 2) の正 規直交フレームとなるように定める。 $T(\gamma) = T(-\gamma)$ から、 $\gamma(s)$ もしくは $-\gamma(s)$ のことを中心曲線と呼ぶ。Bishop フレーム [2] をとることで、各 $s \in \mathbf{R}$ に対して ある $\mathbf{x} \in S^{n-1}$ が存在して $p = (s, \mathbf{x})$ が f の特異点となることを示すことができ る。これを用いると以下が成り立つ。

命題 11 ([8]). 完備な正則曲線 $\gamma(s) : \mathbf{R} \to S^{n+1}$ の半径 $\pi/2$ のチューブは, 臍点

を持たない弱完備⁵ な定曲率1の波面となる。もし、f が完備ならば中心曲線は閉 曲線となり、余向き付け不可能ならば半周期的⁶ となる。

以下,定理 10 の証明の概略を紹介する.補題 6 により,単位球面 S^{n+1} の全測 地的でない rank($d\nu$) ≤ 1 を満たす完備な波面が正則閉曲線の半径 $\pi/2$ のチューブ であることを示せばよい.以後, $f: M^n \to S^{n+1}$ を全測地的でない完備かつ余向 き付け可能な波面で rank($d\nu$) ≤ 1 を満たすものとする.

波面 f の臍点 $p \in M^n$ とは、ある同時に 0 にならない実数の組 (δ_1, δ_2) が存在し、 $\delta_1(df)_p = \delta_2(d\nu)_p$ となるときをいう. もし特異点 p が臍点ならば、 $(df)_p = 0$ となる. 一方、 $rank(d\nu) \leq 1$ が成り立つことから、点 p が臍点である必要十分条件は $(d\nu)_p = 0$ となる. したがってこの場合、全測地的であることと全臍的であること は同値である. つまり、次がわかる.

補題 12. Sⁿ⁺¹の定曲率1の波面の臍点は正則点である。

いま, $f: M^n \to S^{n+1}$ は全測地的, つまり全臍的でないので, 臍点集合を U_f と するとき, 非臍点集合 $M^n \setminus U_f$ は空でない.

補題 13. 各非臍点 $q \in M^n \setminus \mathcal{U}_f$ に対して、その座標近傍 $(U; u_1, \ldots, u_n)$ と滑らか な関数 $\rho: U \rightarrow \mathbf{R}$ が存在して

$$-\rho\nu_{u_1} = f_{u_1}, \quad \nu_{u_1} \neq 0, \quad \nu_{u_j} = 0, \quad \langle \nu_{u_1}, f_{u_j} \rangle = 0$$

が各j = 2, ..., nに対して成り立つ.

これにより, 臍点のない定曲率1波面は (n-1) 次元の大球面による葉層構造を 持つことがわかり, したがって f は臍点のないところでは半径 $\pi/2$ のチューブと なることがわかる. さらに, f の正則点集合上での主曲率は $1/\rho$, 0, ..., 0 となる こともわかる. ρ は曲率半径関数と呼ばれる.

正則曲線 $\sigma(t) : \mathbf{R} \supset I \rightarrow M^n$ は、 $d\nu(\sigma'(t)) = 0$ となるとき、漸近線と呼ばれる. 波面であることから $d\nu(\sigma'(t)) \neq 0$ となるため、tを弧長パラメータに取り替えることができる。補題 13 を用いると、次が成り立つ.

⁵波面 $f: M^n \to S^{n+1}$ に対して、その Legendre リフト L による誘導計量 $ds_{\#}^2 := ds^2 + \langle d\nu, d\nu \rangle$ は Riemann 計量となる。 $ds_{\#}^2$ が完備のとき、fを弱完備と呼ぶ。完備な波面は弱完備であること が知られている (Murata-Umehara [16]).

⁶ 周期 L > 0 の閉曲線 γ が半周期的であるとは, $\gamma(s + L/2) = -\gamma(s)$ が全ての s に対して成 り立つときをいう.

補題 14. 各非臍点 $q \in M^n \setminus U_f$ を通る漸近線 $\sigma(t) : I \to M^n$ に対して, $\rho''(t) = -\rho(t) (\rho(t) := \rho|_{\sigma(t)})$ が成り立つ. さらに, $\sigma(t)$ は U_f には集積しない.

補題 14 により、各漸近線上で曲率半径関数 ρ はある定数 $a, b \in \mathbf{R}$ を用いて $\rho(t) = a \cos t + b \sin t$ と表すことができる. ここで、各漸近線はリフト計量 $ds_{\#}^2$ の 測地線であることがわかり、(弱) 完備性から $\sigma(t)$ は全ての $t \in \mathbf{R}$ に対して定義さ れる. したがってとくに、 $\rho(t_0) = 0$ となる t_0 が存在することがわかる.

補題 15. f は臍点を持たない.

この補題を示すことができれば、定理 10 はほぼ証明される.補題 15 の証明の 概略を紹介する. 臍点を持つと仮定する. $U_f \neq \emptyset$ かつ U_f が閉集合であることか ら $q \in \partial U_f$ をとることができる. このとき、非臍点集合内の点列 $\{q_n\}_{n=1,2,3,...}$ で $\lim_{n\to\infty}q_n = q$ となるものがとれる. $\sigma_n(t)$ を各 q_n を通る漸近線とする.補題 14 により、各 $\sigma_n(t)$ 上で $\rho(\sigma_n(t_n)) = 0$ となる t_n がとれる. つまり、 $Q_n := \sigma_n(t_n)$ は 特異点である. $\{Q_n\}$ の適当な部分列をとることで、 $Q_\infty := \lim_{n\to\infty}Q_n \in \partial U_f$ と なるが、 Q_∞ は特異点かつ臍点となり、補題 12に矛盾する. したがって、f は臍 点を持たないことがわかる.

定理 10 の系として,完備な定曲率 c の波面の焦面の性質を調べることができる.ここで焦面とは,平行波面の特異点の軌跡として与えられる.

定理 16 ([8]). M^n を連結な n 次元可微分多様体, $f: M^n \to S^{n+1}(c)$ を全測地的 でない完備な定曲率 c の波面とする. このとき, f の焦面 C_f も全測地的でない連 結かつ完備な定曲率 c の波面となる. さらに, f が余向き付け可能ならば, C_f も そうである.

一般には、連結な波面の焦面は連結になるとは限らないが、今回の場合は焦面 をとる操作で連結性や完備性、余向き付け可能性が保たれることがわかる。

参考文献

- [1] K. Abe, H. Mori and H. Takahashi, A parametrization of isometric immersions between hyperbolic spaces, Geom. Dedicata 65 (1997), 31-46.
- R.L. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly 82 (1975), 246-251.
- [3] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920.

- [4] M. Hasegawa, A. Honda, K. Naokawa, M. Umehara and K. Yamada, Intrinsic invariants of cross caps, Selecta Mathematica 20 (2014), 769–785.
- [5] M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara and K. Yamada, *Intrinsic properties of surfaces with singularities*, Internat. J. Math. 26 (2015), 1540008, 34 pp.
- [6] A. Honda, Isometric immersions of the hyperbolic plane into the hyperbolic space, Tohoku Math. J. (2) 64 (2012), 171–193.
- [7] A. Honda, Weakly complete wave fronts with one principal curvature constant, Kyushu J. Math. 70 (2016) 217–226.
- [8] A. Honda, Isometric immersions with singularities between space forms of the same positive curvature, J. Geom. Anal. 27 (2017), 2400-2417.
- [9] A. Honda, Complete flat fronts as hypersurfaces in Euclidean space, preprint (arXiv:1709.02178).
- [10] S. Izumiya, T. Nagai and K. Saji, Great circular surfaces in the three-sphere, Differential Geom. Appl. 29 (2011), 409–425.
- [11] Y. Kitagawa and M. Umehara, Extrinsic diameter of immersed flat tori in S³, Geom. Dedicata 155 (2011), 105–140.
- [12] O. Kobayashi, Maximal surfaces with conelike singularities, J. Math. Soc. Japan 36 (1984), 609-617.
- [13] M. Kokubu, M. Umehara and K. Yamada, An elementary proof of Small's formula for null curves in PSL(2,C) and an analogue for Legendrian curves in PSL(2,C), Osaka J. Math. 40 (2003), 697–715.
- [14] Y. Kurono and M. Umehara, Flat Möbius strips of given isotopy type in R³ whose centerlines are geodesics or lines of curvature, Geom. Dedicata 134 (2008), 109–130.
- [15] William S. Massey, Surfaces of Gaussian curvature zero in Euclidean 3-space, Tôhoku Math. J. (2) 14 (1962), 73–79.
- [16] S. Murata and M. Umehara, Flat surfaces with singularities in Euclidean 3-space, J. Differential Geom. 82 (2009), 279–316.

- [17] K. Naokawa, Singularities of the asymptotic completion of developable Möbius strips, Osaka J. Math. 50, 425–437 (2013).
- [18] K. Naokawa, Extrinsically flat Möbius strips on given knots in 3-dimensional spaceforms, Tohoku Math. J. (2) 65 (2013), 341–356.
- [19] K. Nomizu, Isometric immersions of the hyperbolic plane into the hyperbolic space, Math. Ann. 205 (1973), 181–192.
- [20] B. O'Neill and E. Stiel, Isometric immersions of constant curvature manifolds, Michigan Math. J. 10 (1963), 335–339.
- [21] P. Roitman, Flat surfaces in hyperbolic space as normal surfaces to a congruence of geodesics, Tohoku Math. J. (2) 59 (2007), 21–37.
- [22] K. Saji, M. Umehara and K. Yamada, *The geometry of fronts*, Ann. of Math.
 (2) 169 (2009), 491–529.
- [23] K. Saji, M. Umehara and K. Yamada, A₂-singularities of hypersurfaces with non-negative sectional curvature in Euclidean space, Kodai Math. J. 34 (2011), 390–409.
- [24] K. Saji, M. Umehara and K. Yamada, Coherent tangent bundles and Gauss-Bonnet formulas for wave fronts, J. Geom. Anal. 22 (2012), 383–409.
- [25] M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35 (2006), 13–40.
- [26] W. Wunderlich, Uber ein abwickelbares Möbiusband, Monatsh. Math. 66 (1962), 276–289.