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1 Introduction

An optimal contribution selection (OCS) is a mathematical optimization problem that aims to
maximize the total benefit under a constraint for genetic diversity. Based on the contribution of
candidates, OCS problems can be classified into unequal and equal deployment problems. While
an unequal deployment problem (UDP) does not require the same contribution for the candidates,
an equal deployment (EDP) demands the chosen candidate contribute the same amount.

A mathematical optimization formulation for UDP is proposed by Meuwissen [7] that also can be
found on [14]. However, this research is concerned on EDP of form:

maximize : g^{T}x
subject to : e^{T}x=1,

(1)x^{T}Ax\leq 2 $\theta$,
 x_{i}\in \displaystyle \{0, \frac{1}{N}\} for i=1 , . . . , m.

The objective is to maximize the total benefit g^{T}x where g=\{g_{1}, g_{2}, . . . , g_{m}\} is an estimate breeding
value (EBV) representing the quality of each tree candidate x . The constraint e^{T}x=1 shows that
the total contribution of all candidates is unity due to the vector all of ones e\in \mathbb{R}^{m} . Our important
constraint x^{T}Ax \leq  2 $\theta$ requires the genetic diversity be under an appropriate level  $\theta$ \in \mathbb{R}++ in
which \mathbb{R}++ is the set of strictly positive real numbers ] 0, \infty[\mathrm{T}\mathrm{h}\mathrm{e} genetic diversity constraint is
proposed by [2] while the construction of numerical relationship matrix A\in \mathbb{R}^{m\times m} is proposed by
[13]. Moreover, [11] observed that the matrix A is always semi‐definite positive so that the problem
can be solved by semi‐definite programming (SDP) approaches. The last constraint defines 0 for
candidate x_{i} with no contribution, and \displaystyle \frac{1}{N} for that with the contribution. Here, N \in \mathbb{R}++ is the
parameter to indicate the number of candidate we will choose candidates, and m \in \mathbb{R}++ is the
number of whole candidates.

The OCS problem has been solved trough a software GENCONT [S] to control inbreeding in the
selection. GENCONT is based on Lagrangian multiplier method which fixes the solution that exceeds
lower or upper bounds (0\displaystyle \leq x_{i}\leq \frac{1}{N}) at only its lower and upper bound. Thus, even though GENCONT
outputs the solution in only a few seconds, it often outputs only suboptimal solution for OCS
problem rather an optimal solution. To resolve such a problem arising from GENCONT, different
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software, OPSEL [10], was proposed by Mullin. OPSEL is an implementation of branch and bound with
an outer approximation method. Using this implementation, they successfully computed optimal
solutions. However, OPSEL generates huge number of constraints in the framework of branch and
bound, therefore, computing the solution by OPSEL takes long computation time. Hence, it is
necessary to find a different approach to solve the problem efficiently.

The quadratic constraint in formulation (1) can be described with a second‐order cone. Through
the Cholesky factorization A=UU^{T} , the following condition can be derived:

x^{T}Ax\displaystyle \leq 2 $\theta$ N^{2}\Leftrightarrow\sum_{i}(U_{i}^{T}x_{i})^{2}\leq 2 $\theta$ N^{2}\Leftrightarrow (\sqrt{2 $\theta$}N, U^{T}) \in \mathcal{K}^{m},
where \mathcal{K}^{m} is the (m+1)‐dimensional second‐order cone defined by

\displaystyle \mathcal{K}^{m}:= \{(v_{0}, v)\in \mathbb{R}+\times \mathbb{R}^{r}:\sum_{k=1}^{m}v_{k}^{2}\leq v_{0}^{2}\}.
Introducing a new variable y=Nx , we get MI‐SOCP formulation of our OCS problem (1):

maximize : L_{N}^{\mathrm{T}}1
subject to : e^{T}y=N, (2)

(\sqrt{2 $\theta$}N, U^{T}y) \in \mathcal{K}^{m},
y_{i}\in\{0 , 1 \} for i=1 , . .. , m.

However, the non‐linearity on MI‐SOCP formulation leads to heavy computation time. Therefore,
we discuss approaches based on polyhedral programming relaxation, an implementation of lifted
polyhedral programming (LPP) relaxation and a cone decomposition relaxation, to reduce the long
computation time.

We conducted numerical experiment for the existing implementations: GENCONT and OPSEL. Since
we use CPLEX [5] can handle integer constraint on (2), we also implemented (1) on CPLEX to compare
the effectiveness with our proposed methods.

The remaining of our paper is organized as follow. In Section 2 and 3, we explain our proposed ap‐
proaches based on LPP relaxation and cone decomposition, respectively. We present the numerical
result for all methods in Section 4. Finally, in Section 5, we conclude our research and discuss for
future studies.

2 Lifted Polyhedral Programming Relaxation

Lifted polyhedral programming relaxation [1][4][12] is an approach to solve SOCP problems by
employing polyhedral relaxation as illustrated in Figure 1. The second‐order cone \mathcal{K}^{2} on Figure
1(\mathrm{a}) is approximated by a construction of polyhedron, to generate linear constraints since the
nonlinearity of \mathcal{K}^{2} makes MI‐SOCP problems hard. More precisely, we generate many planes as in
Figure 1(b). Thus, we obtain a mixed‐integer linear programming problem as the resultant problem
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which can decrease the heavy computation time.

The paper [1] proposed to replace \mathcal{K}^{m} with a polyhedron \mathcal{K}_{ $\epsilon$}^{m} using a tightness  $\epsilon$>0 so that satisfies:

Sccond‐Ordcr \mathrm{C} one \displaystyle \frac{\mathrm{t}\mathrm{o}1\prime \mathrm{b}\mathrm{c}\mathrm{d}n1}{}RcIuation \displaystyle \mathrm{p},|\mathrm{y}\mathrm{h}\mathrm{e}\mathrm{M}|z\nearrow^{-}\int-\swarrow’

(a) (b)

Figure 1: Polyhedral Relaxation

\mathcal{K}^{m}\subsetneq \mathcal{K}_{ $\epsilon$}^{m}\subsetneq\{(v_{0}, v)\in \mathbb{R}+\times \mathbb{R}^{m}:||v||_{2}\leq(1+ $\epsilon$)v_{0}\}.

In addition, the polyhedral relaxation \mathcal{K}_{ $\epsilon$}^{m} is given as below [12]:

\mathcal{K}_{ $\epsilon$}^{m}:=\{(v_{0}, v)\in \mathbb{R}+\times \mathbb{R}^{m}:\exists($\delta$^{j})_{j=0}^{J}\in \mathbb{R}^{(T(m))} \mathrm{s}.\mathrm{t}.
v_{0}=$\delta$_{1}^{J},

$\delta$_{i}^{0}=v_{i} for i\in\{1, \cdots , m\},

($\delta$_{2i-1}^{j}, $\delta$_{2i}^{j}, $\delta$_{i}^{j+1}) \in \mathcal{W}_{s_{g}( $\epsilon$)} for  i\in \displaystyle \{1, \cdots ) \lfloor\frac{t_{j}}{2}\rfloor\}, j\in\{0, \cdots , J-1\},
$\delta$_{t_{J}}^{j} =$\delta$_{\lceil t,/2\rceil}^{j+1} for j\in\{0, \cdots , J-1\} s.t. t_{j} is odd}

with J= \lceil\log_{2}(m)\rceil , and \{t_{j}\}_{j=0}^{J} is defined recursively as follow:

\left\{\begin{array}{ll}
t_{0}=m, & \\
t_{j+1}= \lceil_{2}^{t}\lrcorner\rceil \mathrm{f}\mathrm{o}\mathrm{r} j\in\{0, & J-1\}.
\end{array}\right.
Using this definition, we also define T(m) = \displaystyle \sum_{j=0}^{J}t_{j} . In the definition of polyhedral relaxation,
\mathcal{W}_{s} expresses a polyhedron to approximate the second‐order cone \mathcal{K}^{m} defined by the following con‐
straints:

64



\mathcal{W}_{s}:=\{(v_{0}, v_{1}, v_{2})\in \mathbb{R}+\times \mathbb{R}^{2}:\exists( $\alpha$,  $\beta$)\in \mathbb{R}^{2s} s.t

v_{0}=$\alpha$_{s}\displaystyle \cos(\frac{ $\pi$}{2^{s}})+$\beta$_{s}\sin(\frac{ $\pi$}{2^{s}}) ,

$\alpha$_{1}=v_{1}\cos( $\pi$)+v_{2}\sin( $\pi$) ,

$\beta$_{1}\geq|v_{2}\cos( $\pi$)-v_{1}\sin( $\pi$)|,

$\alpha$_{i+1}=$\alpha$_{i}\displaystyle \cos(\frac{ $\pi$}{2^{i}})+$\beta$_{i}\sin(\frac{ $\pi$}{2^{i}}) ,

$\beta$_{i+1}\displaystyle \geq |$\beta$_{i}\cos(\frac{ $\pi$}{2^{i}}) -$\alpha$_{i}\sin(\frac{ $\pi$}{2^{i}})|,
for i\in\{1, s-1\}\}

where s is the number of the attached planes. When we use \mathcal{W}_{s_{J}( $\epsilon$)} s_{j}( $\epsilon$) is defined with

s_{j}( $\epsilon$)= \displaystyle \lceil\frac{j+1}{2}\rceil - \displaystyle \lceil\log_{4}(\frac{16}{9}$\pi$^{-2}\log(1+ $\epsilon$))| for j\in\{0, \cdots, J-1\}.
Using the relation we can have a good approximation with small  $\epsilon$>0 as illustrated in Figure 2.

Small number of polyhedron Large number of polyhedron

Figure 2: Effect of choosing different  $\epsilon$

We implemented this approach for different parameter values  2 $\theta$ and small  $\epsilon$ > 0 using Matlab
\mathrm{R}2016\mathrm{a} . We also set the duality gap 10% as the stopping criterion in CPLEX, so the accuracy of the
obtained objective value is 10%.

Table 1 shows the numerical results of LPP relaxation for  2 $\theta$ = \{0.03 , 0.05, 0.08 \} with different
(1+ $\epsilon$)2 $\theta$ . The first column in the table is the problem size  m , the second is the parameter for the
diversity constraint  2 $\theta$ , the third indicates  $\epsilon$ to generate the LPP constraints. The  $\epsilon$ is expressed by
the change of group coancestry threshold from  2 $\theta$ to (1+ $\epsilon$)2 $\theta$ . For example, when we relax  2 $\theta$=0.03

to (1+ $\epsilon$)2 $\theta$=0.0301 , it means that we set  $\epsilon$=0.33\times  10^{2} . The four, fifth, and six columns show
the computation time to build the mathematical model, the time to solve the mathematical model
and the total computation time, respectively. The last two columns show the obtained results: the
group coancestry x^{T}Ax and the objective value g^{T}x.
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The result on Table 1 was generated on different environment due to out of memory (OOM) while
solving the problem with 2 $\theta$=0.03 . More precisely, we used a Debian Linux server on Opteron 4386
(3.10 GHz) and 128 GB memory space for the problem with 2 $\theta$=0.03 . The remaining problem was
solved by a 64‐‐bit Windows 10 PC on Xeon CPU E2‐1231 (3.40 GHz) with 8 GB memory space.

Table 1: LPP results for 2 $\theta$=\{0.03 , 0.05, 0.08 \}

From Table 1, we observed that LPP cannot obtain the solution for some problems with very tight
 2 $\theta$ due to OOM. The utilization of the tight  2 $\theta$ makes its polyhedral relaxation (1+ $\epsilon$)2 $\theta$ generate
large number of LPP constraints. Besides, LPP does not obtain optimal solution for larger  $\epsilon$ . As
example, the problem with (1+ $\epsilon$) =0.0306 is not optimal since the solution of group coancestry
 x^{T}Ax>2 $\theta$ which violates our quadratic constraint. Thus, we need to determine another tighter
 $\epsilon$ that will consume times. Therefore, we need another implementation to reduce the large number
of the constraints.

We combine the implementation of LPP approach with an active constraint selection method to
select important constraint for our OCS problem.
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Definition 2.1 (Active Constraint) Let  a_{i}^{T}x\leq b_{i} (i=1, \ldots,p) be inequality constraints in an
optimal optimization problem with a_{i} \in \mathbb{R}^{q} and b_{i} \in \mathbb{R} (i = 1, \ldots,p) , and let x^{*} be an optimal
solution of the optimization problem. We set a threshold  $\epsilon$>0.

The inequality constraint a_{i}^{T}x \leq  b_{i} is said to be active at x^{*} if |a_{i}^{T}x^{*}-b_{i}| <  $\epsilon$ . Otherwise, the
constraint  a_{i}^{T}x\leq b_{i} is called inactive.

Algorithm 2.2 (Active constraint selection method) If an inequality constraint a_{i}^{T}x\leq b_{i} is
active at some optimal solution x^{*} obtained in a preliminary experiment, we replace a_{i}^{T}x\leq b_{i} with
the equality constraint a_{i}^{T}x=b_{i}.

Using such method, we conducted preliminary experiments and found that the constraint

$\beta$_{1}\geq-v_{2}\cos( $\pi$)+v_{1}\sin( $\pi$)

in the polyhedron \mathcal{W}_{s} always active at the obtained optimal solution. Therefore, we replace the
constraint $\beta$_{1}\geq |v_{2}\cos( $\pi$)-v_{1}\sin( $\pi$)| by the equality $\beta$_{1}=-v_{2}\cos( $\pi$)+v_{1}\sin( $\pi$) . This replacement
can reduce the number of inequalities from which we expect the reduction of computation time.

Table 2 shows the computation time of the framework of LPP+active constraint. However, the
implementation of LPP relaxation combining with active selection method (LPP‐AS) requires longer
computation time than LPP implementation itself. In addition, the number of problems that
generated OOM is increased compared with the previous one. For example, we do not include the
result for the problem with m= {10100, 15222} since it failed to obtain the solution due to OOM.
We consider that using LPP and LPP‐AS is hard depending on the chosen  $\epsilon$ (see Table 1). We
should determine good  $\epsilon$ to obtain the optimal solution in a practical time. Therefore, we propose
another implementation for solving OSC problem in the next section.

Table 2: LPP‐AS results with  2 $\theta$=\{0.03 , 0.05, 0.08 \}
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3 Cone Decomposition Method

The concept of cone decomposition method is similar to LPP implementation. We employ a polyhe‐
dral relaxation to solve the problem. However, the cone decomposition derives different formulation
on lifted polyhedral relaxation to approximate the solution. An m‐dimensional second‐order cone
can be decomposed by the following theorem.

Theorem 3. 1 [ $\theta$] Let

\displaystyle \hat{H}^{d} := \{(v_{0}, v, w)\in \mathbb{R}^{(2m+1)} : v_{j}^{2}\leq \mathrm{w}_{j}v_{0}, \forall j\in\{1, \cdots , d\}, \sum_{j=1}^{d}w_{j}\leq v_{0}\},
then \mathcal{K}^{d} = Proj(v0,v)(\hat{H}^{d}) and hence \hat{H}^{d} is a lifted reformulation of \mathcal{K}^{d} with d rotated two‐
dimensional conic quadratic constraints, one linear constraint, and d auxiliary variables. Proj(v0,v)
is the orthogonal projection onto the space (v_{0}, v) variables.

The utilization of the theorem makes another reformulation on our OCS (3) as follow:

maximize : g_{N}^{T}4
subject to : e^{T}y=N,

z_{i}^{2}\leq w_{l}z_{0} for i=1 , . . . , m , (3)
\displaystyle \sum_{i=1}^{m}\mathrm{w}_{i}\leq z_{0},
y_{i}\in\{0 , 1 \} for i=1 , . .. , m

where z_{i}=U_{i}^{T}y_{i} for i=1 , . . . , m and z_{0}=\sqrt{2 $\theta$ N^{2}}.

Regarding the quadratic constraint in new formulation (2), we consider implementing another
method to convert it into linear constraints. Our approach is based on a Lagrange multiplier
method and outer approximation.

The following is an algorithm for an implementation of cone decomposition method based on the
theorem, the definition, an outer approximation method [3].

Algorithm 3.2 A combination of cone decomposition method with Lagrangian multiplier and Outer
approximation method for OCS problem.

Step 1

We compute an initial solution (\hat{y}_{i}^{0},\hat{z}_{i}^{0},\hat{w}_{i}^{0}) by omitting the quadratic constraint z_{i}^{2} \leq  w_{i}y_{0} on
formulation (3). Let k=0.

Step 2

If (\hat{z}_{i}^{k})^{2} \leq \hat{w}_{i}^{k}y_{0} is violated, we compute the projection of (\hat{w}_{i}^{k}, z_{i}^{k}) onto z_{i}^{2} \leq  w_{i}z_{0} by solving the
following subproblem with the Lagrangian multiplier method.

maximize : \displaystyle \frac{1}{2}(z-\hat{y}_{i}^{k})^{2}+\frac{1}{2}(w-\hat{w}_{i}^{k})^{2}
subject to : z^{2}\leq wz_{0}

Let a solution of this subproblem be (\overline{y}_{i}^{k},\overline{z}_{i}^{k},\overline{w}_{i}^{k}) .
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Step 3

To apply an outer approximation method [3], we generate the following constraint

( w_{ii}^{k_{-}\frac{i}{w}k}z_{i}^{k}-\overline{z}^{k} )^{T}( \hat{w}_{ii}^{k_{-}\frac{i}{w}k}\hat{z}_{i}^{k}-\overline{z}^{k} ) \leq 0.
We add the above constraint if \overline{z}_{i}^{2}-\overline{w}_{i}^{2}y_{0}>10^{-8}.
Step 4
Repeat Step 2 and 3 to obtain an optimal solution if the following condition is not hold:

||\hat{z}^{2}-z <10^{-8} and ||\hat{w}^{2}-w <10^{-8} (4)

Using Algorithm 3.2, we conduct numerical experiment to compare the performance of our proposed
methods with the existing methods.

4 Numerical Result

In the numerical test, we compared the performance of our proposed method with the existing
method, OPSEL and GENCONT. We also compared their performances with the optimization solver
CPLEX. We used the data from https: //\mathrm{d}\mathrm{o}\mathrm{i}.\mathrm{o}\mathrm{r}\mathrm{g}/10.5061/dryad. 9\mathrm{p}\mathrm{n}5\mathrm{m} , which was generated by
the simulation POPSIM [9], for m = \{200 , 1050, 2045, 5050, 10100, 15222\}, N = \{50 , 100 \} , and
gap=\{1\%, 5\%\} . Moreover, we set the computation time limit to 3 hours for all methods except
for LPP and LPP‐AS.

The numerical experiment was done by using a 64‐bit Windows 10 PC on Xeon CPU E3‐1231 (3.40
GHz) with 8 memory space. We implemented the proposed methods using Matlab \mathrm{R}2016\mathrm{a} . In
addition, we handled the optimization problems that involve integer constraint using CPLEX.

Table 3 shows the result from a breeding selection solver GENCONT for all m except m= {10100, 15222}
due to OOM. From Table 3, we observe that the number of selected candidates did not correspond
to the given parameter N . This means that GENCONT failed to obtain the optimal solution since the
constraint e^{T}x=N is not satisfied.

\displaystyle \frac{\mathrm{T}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}3:\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}1\mathrm{t}\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{G}\mathrm{E}\mathrm{N}\mathrm{C}0\mathrm{N}\mathrm{T}}{N=50}
\overline{\frac{\mathrm{p}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}m2 $\theta$ g^{1}xx^{1}Ax\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}(\mathrm{s})\#\mathrm{S}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}N}{2000.033411.4720.033403.5464}}

1050 0.0627 25.91 0.06270 7.20 81

2045 0.0711 438.36 0.07109 111.52 71

5050 0.1081 43.44 0.10810 1561.43 78

N=100

\overline{\frac{\mathrm{p}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}m2 $\theta$ g^{1}xx^{1}Ax\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}(\mathrm{s})\#\mathrm{S}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}N}{2000.02588.890.025800.4893}}
1050 0.0539 24.07 0.0539 4.77 94

2045 0.0628 432.75 0.06279 106.48 74

5050 0.0994 42.08 0.09940 1533.31 81
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Table 4: The comparison of the convex relaxation approaches (N=50)

Table 4 presents the result for the case N = 50 . We fixed  $\epsilon$ = 0.006 to generate the solution
from the problem with LPP relaxation and its modification (LPP‐AS). From Table 4, LPP and
LPP‐AS failed to obtain the solution due to OOM and time limit exceeded (TLE), even when the
time limitation was set into 2 days. This condition is different with the result on Section 2 since
we set tighter gap for the solution on here. Moreover this problem is a consequence of very tight
 $\epsilon$ . The chosen  $\epsilon$=0.006 makes LPP cannot generate optimal solution. For example, the problem
with m=200 has the value of genetic pedigree x^{T}Ax=0.00380 in which larger than 2 $\theta$=0.0334.

Thus, we have to try and find another  $\epsilon$ , as in Table 5. In contrast to LPP and LPP‐AS, the cone
decomposition method (CDM) takes shorter computation time than other methods.

Lastly, Table 5 indicates the solution for all methods with  N = 100 . Similarly to the result on
the previous table, LPP and LPP‐AS got no sensitive solutions for some problems due to TLE and
OOM. Besides, the objective solution of LPP‐AS for Z=100 , which is equal to -1.16 , is invalid due
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to time limitation. In this table, CDM gives better performance on computation time than others.
Based on the above observation, CDM is the most effective method to solve OCS problem.

Table 5: The comparison of the convex relaxation approaches (N=100)
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5 Conclusion and Future Work

In this study, we proposed the implementation of polyhedral relaxation, which is LPP, LPP‐AS,
and cone decomposition methods, to optimal contribution selection of tree breeding problem. The
computation time problem difficulty from OPSEL makes us consider to propose the efficiency methods
for solving OCS. We compared the efficiency of our proposed implementation with the existing
breeding selection software (GENCONT and OPSEL) and also with the optimization solver CPLEX.

Based on the numerical result, we observed that our proposed relaxations, LPP and LPP‐AS, failed
to obtain the solution for the problem with larger m due to time limitation and memory size of
our environment. This condition occurred since we used very tight  $\epsilon$ which will increase larger
number of constraints. Besides, very tight gaps (5% and 1%) make this method harder. Compared
with LPP and LPP‐AS, GENCONT solved the problem quickly, however it only generated suboptimal
solution rather than the optimal one. We also need to consider on choosing best epsilon so that
LPP and LPP‐AS can guarantee the optimal solution. Therefore, we can conclude that CDM is
better than other implementation in our numerical experiment since CDM can efficiently obtain the
optimal solution of OCS problem.

In future study, we will consider another problem of OCS that involves not only simple binary
constraints but also semi‐integer constraints.
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