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Abstract

The problem of minimizing a function representable as the difference of two monotonic
functions over the unit simplex has a potential for various practical applications. In this
paper, we discretize the problem and develop a branch-and-bound algorithm for generat-

ing an approximate optimal solution within a polynomial number of function evaluations.
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1 Introduction

In this paper, we discuss optimization of a function representable as the difference of mono-
tonic (d.m.) functions over the unit simplex. Monotonic optimization was first introduced
by Rubinov et al. [10] in 2001 to solve optimization problems defined only with increasing
functions. Since then, Tuy et al. extended it to handle d.m. functions and achieved remarkable
results, including the polyblock algorithm for locating a globally optimal solution [11-14].
Monotonicity is commonly observed in real-world systems related to economics and engi-
neering, and besides polynomials, often used in their mathematical modeling, are all d.m.
functions. Therefore, monotonic optimization has a great potential for a broad range of real-
world applications. In contrast to the objective function, the constraints of our problem are
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rather special and limit the feasible set of solutions to the unit simplex. However, our prob-
lem still includes various problems of practical and theoretical importance, e.g., the maximum
clique problem [7], Lipschitz optimization [9], and so forth.

In [3], Bomze and de Klerk discretize the problem of minimizing a quadratic function over
the unit simplex, and show that it admits a polynomial-time approximation scheme (PTAS). In
[4,5], de-Klerk et al. extend this result and show that the problem of minimizing a polynomial
of fixed degree also has a PTAS. Polynomials, including quadratic functions, are d.m., and
their discretization technique is directly applicable to our problem. Although the number
of feasible solutions to examine is a polynomial in the dimension, it is enormous when the
tolerance for approximation is small enough to use in practical applications. To enumerate
the feasible solutions of the discretized problem efficiently, we develop a branch-and-bound
algorithm and show that it generates an approximate optimal solution within a polynomial
number of function evaluations.

In Section 2, after describing the problem formulation, we present two major applications
of the problem. In Section 3, we review some known results on discretization of the problem.
In Sections 4 and 5, we devise a branching and a bounding procedures, respectively, which
are the two main parts of the algorithm. In Section 6, we summarize the branch-and-bound

algorithm.

2 Problem formulation and applications

Let us denote the unit n-cube and the unit (n — 1)-simplex by [0,1]” and A,_; = {x € R" |
e"x = 1,x > 0}, respectively, where e denote the all-ones n-vector. Fori = 1,2, let f; : R* -+ R
be a function increasing on [0,1], i.e., for any a,b € [0,1]", we have f;(a) < fi(b) ifa <b.
Therefore, [0,1]" is assumed to be a subset of dom f; N dom f,, where dom f; denotes the
effective domain of f;. The difference of these increasing functions fi and f, is generally
referred to as a d.m. (difference-of-monotonic) function [12], whose minimization on A, is

our problem considered in this paper:

minimize fi(x) — f2(x)
subjectto e'x=1, x>0.

¢y

Despite the simple appearance, (1) includes a wide variety of optimization problems, as will

be seen below.
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STANDARD QUADRATIC OPTIMIZATION

Every polynomial such as a quadratic is d.m. on the nonnegative orthant R, = {x ¢ R" |x >
0}, because it can be divided into the sum of positive coefficient terms and the sum of neg-
ative coefficient terms. Therefore, (1) includes the standard quadratic optimization problem
(standard QP) which minimizes x"Qx on A,_ for any Q € R™" [2,3]. An important example
of this class is the maximum clique problem. Let G = (V,E) be an undirected graph, where
V ={1,...,n} is the vertex set and E C V x V is the edge set, and let A denote the adjacency
matrix of G, i.e., a;; =1 if (i,j) € E, and a;j = 0 otherwise. It is known [7] that finding a
clique of maximum cardinality in G is equivalent to

minimize x'(A+1)x

. 2)
subjectto X € A,_1,

where I € R"*" is the identity matrix. Since all entries in A + I are nonnegative, (2) is a special
case of (1) where f, is absent. For other applications of the standard QP, the reader should
refer to [2].

LIPSCHITZ OPTIMIZATION OVER A SIMPLEX
The problem (1) also includes Lipschitz optimization over the unit simplex:

minimize g(x) 3)
subjectto x € A,_j,

where g is Lipschitzian with Lipschitz constant L > 0, i.e., [g(a) — g(b)| < L||a —b|| for any

a,b € domg. In [9], it is shown that (3) can be reduced to minimization of an increasing

positively homogeneous (IPH) function under the assumption where L is measured in the ¢;

norm. However, even if we do not impose such an assumption, (3) invariably belongs to the

class (1). Let

h(x;y) = g(y) — Lilx - y].

Then we have g(x) > h(x;y) for any X,y € dom g, where the equality holds if x = y. Assuming
[0,1]" C domg, let us define a function

F(x) = h(x;x+(1—-e"x)e) ife'x<1
" | e'x+Lyn+g(0) otherwise.

Obviously, we have f(x) = g(x) for any x € A,_;. Moreover, we can show that f is increasing
on [0, 1]".
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Proposition 2.1 Lera,b € [0,1]". If 0 <a <b, then f(a) < f(b).

Thus, replacing the objective function g with f in (3), we have an equivalent d.m. opti-
mization problem, which is again a special case of (1) where f>(x) = 0. This class of (1)
also includes minimization of ordinary IPH functions on the unit simplex, which is discussed
in [1], because IPH functions are basically increasing on R’ .

3 Discretization of the problem

Instead of dealing with (1) directly, we propose to discretize it, using a prescribed integer
m > 0, into an approximation problem:

minimize fj(x) — f>(x) @
subjectto e'x=1, x>0, mxecZ"

For any ¢ > 0, let
M(c,n,m) =cA,_1 N %Z",

where cA,_1 = {cx € R" | x € A,_1}. Then M(1,n,m) represents the feasible set of (4), which
is the set of grid points generated by subdividing each edge of A, into m segments of length
V/2/m. Since the number of gird points is identical to the (m+ 1)th (n — 1)-simplex number,
the figurate number for an (n — 1)-simplex [6], the total number of feasible solutions to this
approximation problem (4) is bounded from above by

actmmy| = (" 1),

m

which is a polynomial in n. Therefore, as discussed in [3-5], the problem (4) is polynomial-
time solvable if f; and f, can be evaluated in time polynomial in n. A typical such case is
when both f; and f, are polynomials of fixed degree. In that case, we can also estimate the
approximation quality of (4) beforehand.

Let us denote the optimal values of (1) and (4) by z and z*, respectively. Also let Z denote
the optimal value of
maximize fi(x) — f2(x)
subjectto e'x=1, x>0.

®)

In [3, 4], the following result is proven:

Proposition 3.1 If both fi and f, are polynomials of degree d and m > d, then

=22 (1) (4 )
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Especially if d = 2,3, this bound can be tightened, respectively, into

4

(z-2), Z'-z< m(i—é)-

. 1
7 —z<—

m
For any given tolerance € > 0 and any polynomials f; and f, of fixed degree d, we can

choose an integer m > d to satisfy

o= (15 (4 )

The number of feasible solutions to (4) derived from this integer m is |M(1,n,m)|, which
is polynomial in n as seen above. These two facts imply that our target problem (1) allows a
polynomial-time approximation scheme (PTAS) (see e.g., [8]) when both f] and f; are polyno-
mials of fixed degree. Even though it is polynomial, |M(1,n,m)| is an enormous number when
the tolerance € is reasonably small. In the rest of this section, we develop a branch-and-bound
algorithm for implicitly enumerating all points in the feasible set M(1,n,m) of (4).

4 Branching procedure

Let a € R” be a nonnegative vector satisfyinge’a < 1,0 <ma € Z" andletc=1— e'a. Ob-
viously, mc is a positive integer. For K = {ji,..., jr} CN ={1,...,n}, consider a subproblem
of the approximation problem (4):

minimize f)(x) — f2(x)

subjectto e'x=1, x>0, mxcZ"
xj>aj, jekK
xj=aj, Jj¢K,

P(a,K)

which is equivalent to

minimize fi(x) — f2(x)
subject to y € M(c,k,m) (©6)

Yi=Xj; —aj, i=1,...,k
Xj = aj, Jé¢K.

By definition, M(c, k,m) is the set of grid points generated by subdividing each edge of the
(k— 1)-simplex cAy_; into mc segments of length v/2/m. The number of grid points is given
by

)

k+mc—1
mc ’

e )] = (
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which is the number of evaluations of f; and f> required to solve P(a,K). To perform this
recursively, we first select an index, say r, from K. Then we divide P(a, K) into two problems:

minimize fj(X) — f2(x)
subjectto e'x=1, x>0, mxcZ"

P(a+e,/m,K) xj>aj, jeEK\{r}
Xr > a,+1/m
Xj=aj, ]¢K’

and
minimize fi(x) — f2(x)
subjectto e'x=1, x>0, mxeZ"

P(a,K\{r}) xj>aj, jEK\{r}
Xy =4y
Xj=aj, J¢K1

where e, is the rth standard basis n-vector. These are rewritten, respectively, as follows:

minimize f;(x) — f2(x)
subjectto y € M(c—1/m,k,m)

yi=xj,—aj, i=1,... k-1 (®)
Ye=Xr—a,—1/m
xj=a;,  j¢K,
and
minimize £ (x) — f>(x)
subjectto 'y € M(c,k—1,m)
Yi=Xj;—aj;, i=1,...,k—l (9)
Xr=a,
Xj = aj, ]¢K
Note that

k+mc—2 k+mc—2
M(c—1/m,k = M(c,k—1 = .
el = (17 2). patek-rmi= (17072

Since the following relation is well-known:

k+mc—1\  [(k+mc—2 + k+mc—2
mc "\ me—1 mc ’



we have
|M(Cakam)| = IM(C_ l/m,k,m)|+|M(c,k— lim)l

If the same procedure is applied to both P(a+e,/m,K) and P(a,K \ {r}) recursively, we

k+mc—1

me ) subproblems, each of which is a trivial problem with a single feasible

eventually have (
solution corresponding to some grid point in the feasible set M(c,k, m) of (4).

If we start this branching procedure from P(0,N), the original discretized problem (4),
then (""',':") trivial subproblems are generated. Simultaneously, we have a branching binary

o (ntm—1
tree T rooted at P(0,N) with (**”7") leaves.

n+m—l) _ 1‘

Lemma 4.1 The total number of nodes in T is 2( m

5 Bounding procedure

Again, consider the subproblem P(a,K), or equivalently (6), of the approximation problem
(4). To simplify the illustration, let K = {1,...,k} and N\ K = {k+1,...,n}. Also letag =
(ar,...,a)" and ay\x = (@41, ..,an)". Introducing the following functions defined on R¥:

ﬂ,K(y)zﬁ(Y+aKaaN\K)1 i=1,2,
we can rewrite P(a, K) and (6) in a more tidy form:

minimize 1k (y) - f2,k(¥) (10)
subject to 'y € M(c,k,m).

We also see that P(a, K) is an approximation problem of

minimize fi x(y) — k() (1)
subjectto y € cAg.

Let z*(a,K) and z(a,K) denote the optimal values of (10) and (11), respectively. Needless to
say, z*(a, K) is the optimal value of P(a, K), and greater than or equal to z(a,K). It should also
be noted that z*(0,N) = z* and z(0,N) = z.

Note that M (c,k,m) C cA; C c[0,1]F = {x € R¥| 0 < x < ce}. Since f; is still increasing
on [0, 1}* for each i, we have a lower bound on z*(a, K) immediately as follows:

u1(a,K) = f1x(0) — fo,x(ce) = fi(a) — f2(ak + ce,an\x). (12)

Ifui(a,K) > fi(x*) — f2(x*) for some x* € M(1,n,m) obtained in the course of the algorithm,
we can prune P(a,K) from the branching tree. This lower bound u; (a, K) is handy to obtain,
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but unfortunately it is not strong enough.
To strengthen the lower bound for P(a,K), let us consider & cubes, each of which is a
proper subset of [0, 1]*:

0<x<1—1/n, i#j } jek,

._1 — Eya) = k
B;—n((n 1)[0,1] +e;)—{xeR Un<x<1

where e; is the jth standard basis k-vector. Since cB; C c[0, 1}* for each j € K, the minimum
and the maximum of f; x on cB; are achieved at the vertices (¢/n)e;j and (c/n) ((n—1)e+e;),
respectively. Let

vj=f1,K(§ej), wj:fz’K(YEl ((n—l)e+ej)), jGK,

and let
uz(a,K) =min{y; | j € K} —max{w; | j € K}.

Proposition 5.1 The following inequalities hold:
ui(a,K) <uy(a,K) <z*(a,K).
For each j € K, if we further replace B; with the union of k cubes

Bjp = ((n—l)B,-+eg), (€K,

S |-

and define

Vi=min{fix(y)|y€ |JcBje}, w;=max{frk(y)|ye|JcBjy}, JjeK.
leKk 1734

Then we obtain another lower bound on z*(a,K):
u3(a,K) = min{v; | j € K} —max{w} | j € K},

which is expected to be tighter than up(a,K). In principle, by applying this procedure re-
cursively to Bjy’s, we can strengthen the lower bound for P(a,K) endlessly. The polyblock
algorithm for solving more general class of monotonic optimization problems is essentially
based on the same idea [11-14]. However, while u; requires a single function evaluation for
each of f) and f,, the strengthened bounds u; and u3 need O(n) and O(n?) function evalua-
tions, respectively. As a tool for bounding, this kind of lower bound would be too expensive

to use if we expected it to be tighter than us.



6 Algorithm description and performance

Let us summarize the discussion so far into a branch-and-bound algorithm. For prescribed
integers m > 0 and s € {1,2,3}, it can be described as follows:

algorithm dm_branch_bound(fi, f>,m,s)
P+ {P(0,{1,...,n})}; x* < null; z* < +o0; a2  0;
while &2 # 0 do
select a subproblem P(a, {ji,..., ji}) from &7,
K<+ {j1,--jk}sc 1—eTa; x° < a;
select a point y° € cSk; # extraction of a solution
fori=1,...,kdo
Xy Xt
end for;
if f1(x°) — f2(x°) < z* then # update of the incumbent
X' X% 2" fi(x%) - fo(x°);
end if;
compute a lower bound u(a, K) for P(a,K); # bounding process
if ug(a,K) < z* then
select an index r from K; # branching process
P — (Z\{P(a,K)})U{P(a+e,/m,K),P(a,K\{r})}
end if
end while;

return x*

end.

It should be remarked in this description that y° is chosen from the simplex cAg, not from
the set of grid points M(c,k,m). As a result, the output x* of the algorithm might not a
feasible solution to the approximation problem (4). However, x* is still feasible for the original

problem (1), and besides never inferior to any feasible solution of (4).

Theorem 6.1 The algorithm dm_branch_bound terminates after 2("'"™~1) — 1 iterations at

most, and generates a feasible solution X* of (1) satisfying

) = ) S fil®) ~ fox), VX EAnN T

Numerical results of the algorithm dm_branch_bound will be reported in details elsewhere.
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