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ABSTRACT. In this paper we review some recent results on the existence of
finite energy weak solutions to a class of quantum hydrodynamics (QHD) sys‐
tem. Our approach is based on a polar factorization method. This method
allows to overcome the mathematical difficulty arising in the classical WKB
approach, to define the velocity field inside the vacuum regions. Our methods
to show existence of finite energy weak solutions fully exploit the dispersive and
the local smoothing properties of the underlying nonlinear Schrödinger evolu‐
tion in order to establish suitable “a priori”’ bounds for the hydrodynamical
quantities. We finally sketch some new results towards a purely hydrodynamic
theory in 1-\mathrm{D} and recent developments of a low Mach number analysis of
Quantum Vortices.

1. INTRODUCTION

QHD systems are typically fluid dynamical equations in which quantum effects
are non‐negligible and must be taken into account in the description. They appear
in various contexts, for example they are extensively used in the description of
phenomena hke superfluidity [53], Bose‐Einstein condensation [21], quantum plas‐
mas [38], or in the modeling of semiconductor devices [31]. Moreover such systems
are also intimately related to the class of the so‐called Korteweg fluids [13] where
capillary effects are considered in the description.

The prototype QHD model is the following

(1.1) \left\{\begin{array}{l}
\partial_{t} $\rho$+\mathrm{d}\mathrm{i}\mathrm{v}J=0\\
\partial_{t}J+\mathrm{d}\mathrm{i}\mathrm{v}(\frac{J\otimes J}{p})+\nabla p( $\rho$)=\frac{1}{2} $\rho$\nabla(\frac{ $\Delta$\sqrt{p}}{\sqrt{ $\rho$}}) ,
\end{array}\right.
where  $\rho$ is the mass (or charge) density,  J is the momentum (or current) density,
p( $\rho$) is a pressure term. The term on the right hand side takes into account the
quantum effects of the fluid and is a nonlinear third order (dispersive) term. Under
suitable regularity assumptions, it may also be written in different ways

\displaystyle \frac{1}{2} $\rho$\nabla(\frac{ $\Delta$\sqrt{ $\rho$}}{\sqrt{ $\rho$}}) =\frac{1}{4}\nabla $\Delta \rho$-\mathrm{d}\mathrm{i}\mathrm{v}(\nabla\sqrt{p}\otimes\nabla\sqrt{})=\frac{1}{4}\mathrm{d}\mathrm{i}\mathrm{v}( $\rho$\nabla^{2}\log $\rho$) .
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System (1.1) is Hamiltonian, whose energy

(1.2) \displaystyle \mathcal{E}=\int\frac{1}{2}|\nabla\sqrt{ $\rho$}|^{2}+\frac{1}{2}\frac{|J|^{2}}{ $\rho$}+f( $\rho$)dx,
is formally conserved along the flow of solutions. The internal energy density f( $\rho$)
is related to the pressure through the relation p( $\rho$)= $\rho$ f'( $\rho$)-f( $\rho$) .

Assumption 1.1.  f:[0, \infty) \rightarrow[0, \infty) satisfies  f\in C^{1}([0, \infty))\cap C^{2}((0, \infty)) and

(1.3) |f'( $\rho$)+2 $\rho$ f''( $\rho$)|\sim<1+$\rho$^{ $\gamma$-1},
where  $\gamma$>1 for d=1 , 2 and 1< $\gamma$<3 if d=3.

As it will become clear in what follows the QHD system (1.1) is strictly related
to the following nonlinear Schrödinger (NLS) equation

(1.4)  i\displaystyle \partial_{t} $\psi$=-\frac{1}{2} $\Delta \psi$+f'(| $\psi$|^{2}) $\psi$
and it is fundamental in our study to exploit the properties of solutions to (1.4) in
order to infer some analogous properties for solutions to (1.1). In fact since the early
days of quantum mechanics Madelung [60] proposed a hydrodynamical formulation
alternative to the wave function dynamics given by the linear Schrödinger equation,
in which the quantum system is described in terms of the probability density and
the phase of the wave function. This analogy was later resumed by Landau [53, 50]
to describe nonlinear phenomena in superfluidity. The most immediate way to point
out the relation between (1.4) and (1.1) is the so called WKB ansatz, namely we
express the wave function  $\psi$ in terms of its modulus \sqrt{ $\rho$} and its phase S,  $\psi$=\sqrt{ $\rho$}e^{ $\iota$ S}.
By plugging this ansatz inside equation (1.4) and by then separating the real and
imaginary parts of the identity, after some small calculations we find out that
formally (p, S) satisfy the following system

\left\{\begin{array}{l}
\partial_{t} $\rho$+\mathrm{d}\mathrm{i}\mathrm{v}( $\rho$\nabla S)=0\\
\partial_{t}S+\frac{1}{2}|\nabla S|^{2}+f'( $\rho$)=\frac{1}{2}\frac{ $\Delta$\sqrt{ $\rho$}}{\sqrt{ $\rho$}}.
\end{array}\right.
If we further define J=p\nabla S then we see that ( $\rho$, J) satisfy the QHD system (1.1).

However, the WKB formalism experiences a main mathematical problem as soon
as vacuum regions appear in the fluid. It is straightforward to see that in the set
\{ $\psi$=0\}=\{ $\rho$=0\} the phase cannot be uniquely defined, hence this analogy breaks
down. On the other hand, in the study of quantum fluids it is of great interest to
consider the possible presence of vacuum, both from the mathematical and physical
points of view. One of the most striking features of superfluids is the presence of
quantized vortices, namely the circuitation of the velocity field along a closed curve
around a vortex can attain only values which are integer multiples of the vorticity
quantum. Such coherent objects are located exactly in the vacuum region [68],
hence it is physically interesting to study solutions to (1.1) allowing the presence
of quantized vortices in the nodal region \{ $\rho$=0\}.

The aim of our study is to develop a rigorous analysis of finite energy solutions
to hydrodynamical equations for quantum fluids, which retain the relevant physical
properties of the system we want to describe.

For this reason we are going to develop a polar factorization approach which
is not hmited by the presence of vacuum regions and overcomes the difficulties
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encountered through the WKB method. In this way we set up a self consistent
theory based on two hydrodynamical quantities, namely \sqrt{p} and  $\Lambda$ = J/\sqrt{p} , so
that we do not need to define the velocity field in the nodal region.

QHD systems are widely studied in the mathematical hterature. In [32] the
authors show the existence of weak solutions by defining the moments (via the
Madelung transform) associated to a H^{2} solution for \mathrm{a} (hnear) Schrödinger equa‐
tion. One of the main motivations to study QHD systems is the modeling of semi‐
conductor devices [31], where (1.1) is augmented by an electrostatic potential and
a dissipative (relaxation) term, which phenomenologically describes the collisions
between electrons [12]. In [47] such model is considered on a bounded domain;
by using energ methods and the WKB approach the authors prove local well‐
posedness of smooth solutions. In [57] the authors study the same system, by using
tools from the theory of hyperbolic systems of conservation laws; under a subsonic‐
ity condition they can show the existence of global in time regular solutions. The
analysis of regular solutions is also done in [41, 61, 42, 45] where the authors also
study the asymptotic stability of stationary states. Regarding the uniqueness of
the weak solutions it has been pointed out in [26], by using methods of convex
integration, the existence of infinitely many weak solutions to the Euler‐Korteweg
system, satisying the energy inequality. Recently also a class of viscous quantum
fluid dynamical systems was considered. Such models can be derived from the
Wigner‐Fokker‐Planck equation [46] (see also the interesting review [43]). Global
existence of finite energy weak solutions was proved in [44, 9, 52] (see also [56]
where similar arguments are used to study the compressible Navier‐Stokes system
with degenerate viscosity).

Finally, we also mention that the quantum hydrodynamical approach could have
some interesting applications in the field of quantum synchronization [7].

Our main focus will be on finite energy weak solutions for a class of hydrodynam‐
ical equations describing quantum fluids. To be more precise about our framework
we are going to state the definition of finite energy weak solutions for the prototype
system (1.1). However, even though this will not be explicitly written, for all other
systems introduced in this paper we will always consider Definition 1.2 below with
the changes due to the different terms present in the system.

Definition 1.2 (Finite energy weak solutions). Let  $\rho$ 0, J_{0}\in L_{lo\mathrm{c}}^{1}(\mathrm{R}^{d}) , we say the
pair ( $\rho$, J) is a finite energy weak solution to the Cauchy problem for (1.1) with
initial data  $\rho$(0) =$\rho$_{0}, J(0)=J_{0} , in the space‐time slab [0, T) \times \mathrm{R}^{d} if there exist
two locally integrable functions \sqrt{p}\in L_{lo\mathrm{c}}^{2}(0, T;H_{loc}^{1}(\mathrm{R}^{d})), $\Lambda$\in L_{loc}^{2}(0,T;L_{loc}^{2}(\mathrm{R}^{d}))

such that

(i)  $\rho$:=(\sqrt{p})^{2},  J:=\sqrt{ $\rho$} $\Lambda$ ;
(ii) \forall $\eta$\in C_{0}^{\infty}([0, T)\times \mathrm{R}^{d}) ,

\displaystyle \int_{0}^{T}\int_{\mathrm{R}^{d}} $\rho$\partial_{t} $\eta$+J\cdot\nabla $\eta$ dxdt+\int_{\mathrm{R}^{d}}$\rho$_{0}(x) $\eta$(0, x)dx=0 ;

(iii) \forall $\zeta$\in C_{0}^{\infty}([0, T)\mathrm{x}\mathrm{R}^{d};\mathrm{R}^{d}) ,

\displaystyle \int_{0}^{T}\int_{\mathrm{R}^{d}}J\cdot\partial_{t} $\zeta$+ $\Lambda$\otimes $\Lambda$:\nabla $\zeta$+p( $\rho$)\mathrm{d}\mathrm{i}\mathrm{v} $\zeta$+\nabla\sqrt{ $\rho$}\otimes\nabla\sqrt{ $\rho$}:\nabla $\zeta$
+\displaystyle \frac{1}{4} $\rho$\triangle \mathrm{d}\mathrm{i}\mathrm{v} $\zeta$ dxdt+\int_{\mathrm{R}^{d}}J_{0}(x)\cdot $\zeta$(0, x)dx=0 ;
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(iv) (finite energy) the total energy defined by

(1.5) \displaystyle \mathcal{E}(t):=\int_{\mathrm{R}^{d}}\frac{1}{2}|\nabla\sqrt{ $\rho$}|^{2}+\frac{1}{2}| $\Lambda$|^{2}+f( $\rho$)dx,
is finite for almost every t\in[0, T)_{f}.

(v) (generalized irrotationality condition) for almost every t\in(0, T)

\nabla\wedge J=2\nabla\sqrt{ $\rho$}\wedge $\Lambda$,

holds in the sense of distributions.

We say ( $\rho$, J) is a global in time finite energy weak solution if we can take  T=\infty

in the above definition.

Remark 1.3. In the case of a smooth solution ( $\rho$, J) , for which we can write J=pv,
for some smooth velocity field v , the Generalized Irrotationality condition defined
above is equivalent to  $\rho$\nabla\wedge v=0 , i.e. the velocity field v is irrotational  $\rho$ dx almost
everywhere. It shows that the previous definition is the right weak formulation of
the classical irrotationality condition \nabla\wedge v = 0 valid away from vacuum in the
WKB approach. The generalized irrotationality condition is motivated by physics.
Indeed in the theory of superfluidity (as well as in Bose‐Einstein condensates) the
whole vorticity of the fluid is carried over only by quantized vortices, which are
located in the nodal region \{ $\rho$=0\} . More precisely, the flow is irrotational outside
the set \{ $\rho$=0\} and in the vacuum the vorticity becomes singular. In this respect
the solutions introduced in Definition 1.2 are more general than those obtained by
using the WKB ansatz, since in the latter case the velocity field v=\nabla S is always
irrotational and there is no vacuum. On the other hand, quantized vortices have
a very rich structure and they are intensively studied in the physics of superfluids
[68].

1.1. Notations. We conclude this Introduction by fixing some notations.  A<B\sim
denotes  A \leq  CB , for some constant C > 0. L^{p}(\mathrm{R}^{d}) , with Lebesgue exponent
p\in[1, \infty] , is the usual Lebesgue space, for s\geq 0H^{S}(\mathrm{R}^{d}) denotes the Sobolev space
whose norm is defined by \Vert f\Vert_{H^{ $\varepsilon$}} :=\Vert\langle\cdot\rangle^{S}\hat{f}\Vert_{L^{2}} , where \langle $\xi$\rangle=(1+| $\xi$|^{2})^{1/2} and \hat{f} is the
Fourier transform of f ; furthermore H^{\infty}(\mathrm{R}^{d}) :=\mathrm{n}_{s\geq 0}H^{S}(\mathrm{R}^{d}) . We also use the no‐

tation . |^{r}f\Vert_{L\mathrm{p}} :=(\displaystyle \int|x|^{pr}|f(x)|^{\mathrm{p}}dx)^{1/p} . If  p\in [1, \infty] is a Lebesgue exponent we
denote its dual by p' such that \displaystyle \frac{1}{p}+\frac{1}{p}=1 . We often make use of mixed space‐time

Lebesgue of Sobolev spaces, for instance L^{q}(I;L^{r}(\mathrm{R}^{d})) , where I is an aribtrary in‐
tervaJ and q, r two Lebesgue exponents; to shorten notations we write L_{t}^{q}L_{x}^{r} (I \mathrm{x}\mathrm{R}^{d})
or even simply L_{t}^{q}L_{x}^{r} when there is no ambiguity. Analogously for L^{q}(I;W^{1,r}(\mathrm{R}^{d}))
or L_{t}^{q}W_{x}^{1,r}. C(I;H^{S}(\mathrm{R}^{d})) denotes the space of continuous H^{S}‐valued functions and
C_{0}^{\infty} is the space of infinitely differentiable, compactly supported functions.

2. A SHORT REVIEW ON DISPERSIVE PROPERTIES FOR SCHRÖDINGER EQUATIONS

In this Section we recall some of the theory and tools on Schrödinger equations
which will be used in this paper in order to infer suitable properties for solutions to
our QHD systems. Such results are well established in the literature, we address the
interested reader to various textbooks [18, 67, 59, 28], and the references therein,
treating those arguments in a much more comprehensive way. First of all, we recall
the definition of admissible pairs for the Schrödinger equation.
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Definition 2.1. The pair of Lebesgue exponents (q, r) is called admissible if  2\leq

 q,  r\leq\infty and we have

\displaystyle \frac{2}{q}+\frac{d}{r}=\frac{d}{2}, (q,r, d)\neq(2, \infty, 2) .

By using this definition we can introduce a whole class of spacetime estimates
enjoyed by the free Schrödinger propagator, known as Strichartz estimates [66, 34,
71, 69, 49]. More precisely, the dispersive nature of the Schrödinger propagator
implies regularizing effects on the evolution, which enjoys some further space‐time
integrability properties.

Theorem 2.2 ([49]). Let (q, r) and (q_{1}, r_{1}) be two arbitrary admissible pairs and
let I be any time interval (possibily unbounded), then the following estimates hold

\Vert\dot{2}t $\Delta$<

\displaystyle \Vert\int_{0}t_{e^{4}\dot{2}(t-s) $\Delta$ F(s)ds\Vert_{L_{\mathrm{t}}^{q}L_{x}^{r}(I\mathrm{x}\mathrm{R}^{d})\sim}}<\Vert F||_{L_{t}L_{x}^{r_{1}'}(I\mathrm{x}\mathrm{R}^{d})}q_{1}'\prime ;

Another regularizing effect coming from the dispersive properties of the Schrödinger
propagator is the so called Kato smoothing effect [48], namely the solution to the
linear Schrödinger equation is half derivative smoother, locally in space, than its
initial datum [19, 65, 70]. Here we use the result in [19] which is more suited for
our applications, see also Section 4.3 in [59].

Theorem 2.3. Let  $\psi$ be a solution to

\left\{\begin{array}{l}
i\partial_{t} $\psi$=-\frac{1}{2} $\Delta \psi$+F\\
 $\psi$(0)=$\psi$_{0}\in L^{2}(\mathrm{R}^{d}) ,
\end{array}\right.
with F\in L^{1} ( \mathrm{R};L^{2} (Rd)), then we have

\Vert $\psi$\Vert_{L^{2}([0,T];H_{lo\mathrm{c}}^{1/2}(\mathrm{R}^{d}))\sim}<\Vert$\psi$_{0}\Vert_{L^{2}(\mathrm{R}^{d})}+\Vert F\Vert_{L^{1}}
Next Theorem resumes most of well‐posedness and stability properties for a class

of nonlinear Schrödinger equations which will be used through our paper. Those
results are now standard, based on Strichartz estimates and the conservation of
energy they also hold in more general cases; the proof and a more comprehensive
discussion can be found in many textbooks [18, 67, 59].

In order to give the well‐posedness result below we are going to need the follow‐
ing Assumption on the internal energy f( $\rho$) . Let us notice that this has a natural
equivalent counterpart given in terms of the pressure, see Assumption 4.1. Con‐
dition (2.1) below ensures the nonlinearity in (2.2) to be locally Lipschitz, which
guarantees the local well‐posedness of (2.2). Then the non‐negativity of the inter‐
nal energy, together with the conservation of energy, allows to extend the solution
globally in time.

Assumption 2.4.  f:[0, \infty ) \rightarrow[0, \infty) satisfies  f\in C^{1}([0, \infty))\cap C^{2}((0, \infty)) and

(2.1) |f'( $\rho$)+2pf''( $\rho$)|<1\sim+$\rho$^{ $\gamma$-1},

where  $\gamma$>1 for d=1 , 2 and 1< $\gamma$<3 if d=3.
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Theorem 2.5. For any $\psi$_{0}\in H^{1}(\mathrm{R}^{3}) there exists a unique solution  $\psi$\in C ( \mathrm{R};H^{1} (R3))
to

(2.2) \left\{\begin{array}{l}
i\partial_{t} $\psi$=-\frac{1}{2}\mathrm{A} $\psi$+f'(| $\psi$|^{2}) $\psi$\\
 $\psi$(0)=$\psi$_{0}
\end{array}\right.
and the solution depends continuously on the initial data, namely the map from
H^{1}(\mathrm{R}^{3}) to C ( \mathrm{R};H^{1} (R3)) which associates  $\psi$_{0}\mapsto $\psi$ is a continuous map. Further‐
more the total energy

(2.3)  E[ $\psi$(t)]=\displaystyle \int\frac{1}{2}|\nabla $\psi$(t,x)|^{2}+f(| $\psi$(t, x)|^{2})dx,
is conserved along the flow of solutions.

Next Proposition involves a regularization of the solution  $\psi$ to (2.2) and it will
be used in Section 4. Its proof is a straightforward consequence of two properties
of nonlinear Schrödinger equations, the former one being the persistence of regu‐
larity and the latter one being the stability of the equation with respect to small
perturbations. For a more detailed explanation we refer the reader to Section 3.7
in [67] and the references therein.

Proposition 2.6. Let  $\psi$\in C ( \mathrm{R};H^{1} (Rd)) be the solution constructed in Theorem
2.5 with initial datum  $\psi$(0)=$\psi$_{0} . For any  $\epsilon$>0 there exists $\psi$^{ $\varepsilon$}\in C(\mathrm{R};H^{\infty}(\mathrm{R}^{d}))
such that $\psi$^{ $\epsilon$} solves

(2.4) \left\{\begin{array}{l}
i\partial_{t}$\psi$^{ $\varepsilon$}=-\frac{1}{2} $\Delta \psi$^{ $\varepsilon$}+f'(|$\psi$^{ $\varepsilon$}|^{2})$\psi$^{e}+e^{ $\varepsilon$}\\
$\psi$^{ $\varepsilon$}(0)=$\psi$_{0}^{ $\varepsilon$},
\end{array}\right.
with $\psi$_{0}^{ $\varepsilon$}\in C^{\infty}(\mathrm{R}^{d}) , \Vert$\psi$_{0}^{ $\varepsilon$}-$\psi$_{0}\Vert_{H^{1}} \sim< $\varepsilon$ . Furthermore, for any  0<T<\infty and any
admissible pairs (q, r) and (q_{1}, r_{1}) we have

\Vert e^{ $\varepsilon$}\Vert_{L^{\mathrm{q}_{1}'}([0,T];W^{1}} , f í (\mathrm{R}^{d}))\leq $\varepsilon$,
\Vert$\psi$^{ $\varepsilon$}- $\psi$\Vert_{L}q([0, $\tau$];W^{1, $\gamma$}(\mathrm{R}^{d}))\sim<e.

3. THE POLAR DECOMPOSITION APPROACH

In this Section we review the polar factorisation method, which will be exploited
to define the hydrodynamic quantities (\sqrt{p}, $\Lambda$) and to set up the correspondence
between the wave function dynamics and the hydrodynamical system. The main
advantage of this approach with respect to the usual WKB method, for instance,
is that vacuum regions are allowed in the theory. More precisely, we factorize
the wave function  $\psi$ in its amplitude \sqrt{ $\rho$} := | $\psi$| and its polar factor  $\phi$ , namely a
function taking its values in the unitary disk \{|z|\leq 1\} of the complex plane, such
that  $\psi$=\sqrt{p} $\phi$ . In the WKB setting the polar factor would be given by  $\phi$=e^{iS/\hslash},
however this equality holds only in the complement of the null set of the wave
function which is not a well defined smooth set, in general not even a closed set
[16, 23].

Given any function  $\psi$\in H^{1}(\mathrm{R}^{d}) we define the set

P( $\psi$) := {  $\phi$\in L^{\infty}(\mathrm{R}^{d}) : \Vert $\phi$\Vert_{L\infty} \leq 1,  $\psi$=\sqrt{ $\rho$} $\phi$ a.e. in \mathrm{R}^{d}},

where \sqrt{ $\rho$} := | $\psi$| . The possible appearance of vacuum regions prevents the polar
factors to be uniquely determined on the whole space. However, we have that
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| $\phi$|=1\sqrt{ $\rho$}dx a.e. in \mathrm{R}^{d} and  $\phi$ is uniquely defined \sqrt{ $\rho$}dx a.e. in \mathrm{R}^{d}.

Next Lemma points out the main properties of the polar factorization and expresses
the hydrodynamic quantities in terms of the wave function and its polar factor.
Moreover, it shows the stability of this approach in the natural space of finite
energy states. Finally we see that any current density originated from a wave
function  $\psi$\in H^{1}(\mathrm{R}^{d}) satisfies the generalized irrotationality condition.

Lemma 3.1 (H^{1} Stability). Let  $\psi$ \in  H^{1}(\mathrm{R}^{d}) , \sqrt{ $\rho$}:= | $\psi$| be its amplitude and
let  $\phi$\in P( $\psi$) be a polar factor associated to  $\psi$ . Then \sqrt{ $\rho$}\in H^{1}(\mathrm{R}^{d}) and we have
\nabla\sqrt{ $\rho$}={\rm Re}(\overline{ $\phi$}\nabla $\psi$) . Moreover, by defining  $\Lambda$ :={\rm Im}(\overline{ $\phi$}\nabla $\psi$) , then  $\Lambda$\in L^{2}(\mathrm{R}^{d}) and the
following identity holds

{\rm Re}(\nabla\overline{ $\psi$}\otimes\nabla $\psi$)=\nabla\sqrt{ $\rho$}\otimes\nabla\sqrt{ $\rho$}+ $\Lambda$\otimes $\Lambda$ , a.e. in \mathrm{R}^{d}.

Furthermore, if \{$\psi$_{n}\}\subset H^{1}(\mathrm{R}^{d}) is such that \Vert$\psi$_{n}- $\psi$\Vert_{H^{1}} \rightarrow 0 as  n\rightarrow\infty , then we
have

\nabla\sqrt{$\rho$_{n}}\rightarrow\nabla\sqrt{ $\rho$},  $\Lambda$_{n}\rightarrow $\Lambda$ , in  L^{2} (Rd),
where \sqrt{$\rho$_{n}} := |$\psi$_{n}|, $\Lambda$_{n} :={\rm Im}(\overline{ $\phi$}_{n}\nabla$\psi$_{n}) , $\phi$_{n} being a unitary factor for $\psi$_{n} . Finally
the current density

J:={\rm Im}(\overline{ $\psi$}\nabla $\psi$)=\sqrt{ $\rho$} $\Lambda$,
satisfies

\nabla\wedge J=2\nabla\sqrt{ $\rho$}\wedge $\Lambda$ , a.e. in \mathrm{R}^{d}.

Proof. Let  $\psi$\in  H^{1}(\mathrm{R}^{d}) and let us consider a sequence of smooth functions con‐
verging to  $\psi$, \{$\psi$_{n}\}\subset C_{0}^{\infty}(\mathrm{R}^{d}) ,  $\psi$_{n}\rightarrow $\psi$ in  H^{1} (Rd). For each $\psi$_{n} we may define

$\phi$_{n}(x):= \left\{\begin{array}{ll}
\frac{$\psi$_{n}(x)}{|$\psi$_{n}(x)|} & \mathrm{i}\mathrm{f} $\psi$_{n}(x)\neq 0\\
0 & \mathrm{i}\mathrm{f} $\psi$_{n}(x)=0.
\end{array}\right.
The $\phi$_{n} ’s are clearly polar factors for the wave functions $\psi$_{n} . Since \Vert$\phi$_{n}\Vert_{L\infty} \leq  1,
then (up to passing to subsequences) there exists  $\phi$\in L^{\infty}(\mathrm{R}^{d}) such that

$\phi$_{n}\rightharpoonup* $\phi$, L^{\infty}(\mathrm{R}^{d}) .

It is easy to check that  $\phi$ is indeed a polar factor for  $\psi$ . Since \{$\psi$_{n}\}\subset C_{0}^{\infty}(\mathrm{R}^{d}) , we
have

\nabla\sqrt{$\rho$_{n}}={\rm Re}(\overline{ $\phi$}_{n}\nabla$\psi$_{n}) , a.e. in \mathrm{R}^{d}.

It follows from the convergence above

\nabla\sqrt{$\rho$_{n}}\rightharpoonup\nabla\sqrt{ $\rho$}, L^{2}(\mathrm{R}^{d})
{\rm Re}(\overline{ $\phi$}_{n}\nabla$\psi$_{n})\rightharpoonup{\rm Re}(\overline{ $\phi$}\nabla $\psi$) , L^{2}(\mathrm{R}^{d}) ,

thus \nabla\sqrt{ $\rho$}={\rm Re}(\overline{ $\phi$}\nabla $\psi$) in L^{2}(\mathrm{R}^{d}) and consequently the equality holds a.e. in \mathrm{R}^{d}.

Resuming we have proved that for any  $\psi$\in H^{1}(\mathrm{R}^{d}) we have

\nabla\sqrt{ $\rho$}={\rm Re}(\overline{ $\phi$}\mathrm{V} $\psi$) ,

where  $\phi$ is the polar factor given as the weak-* limit in L^{\infty} of the polar factors
$\phi$_{n} . It turns out that this equality holds independently on the particular choice
of the polar factor. Indeed, by Theorem 6.19 in [54] we have \nabla $\psi$=0 for almost
every x \in $\psi$^{-1}(\{0\}) and, on the other hand,  $\phi$ is uniquely determined on \{x \in

\mathrm{R}^{d} : | $\psi$(x)|>0\} almost everywhere. Consequently, for any $\phi$_{1}, $\phi$_{2}\in P( $\psi$) , we have
{\rm Re}(\overline{ $\phi$}_{1}\nabla $\psi$) ={\rm Re}(\overline{ $\phi$}_{2}\nabla $\psi$) =\nabla\sqrt{ $\rho$} . The same argument applies for  $\Lambda$ :={\rm Im}(\overline{ $\phi$}\nabla $\psi$) ,
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so that this definition is not ambiguous. Again, from Theorem 6.19 in [54] and the
uniqueness of  $\phi$\sqrt{ $\rho$}dx-\mathrm{a}.\mathrm{e} . in \mathrm{R}^{d} , we have

{\rm Re}(\nabla\overline{ $\psi$}\otimes\nabla $\psi$)={\rm Re}(( $\phi$\nabla\overline{ $\psi$})\otimes(\overline{ $\phi$}\nabla $\psi$))
={\rm Re}( $\phi$\nabla\overline{ $\psi$})\otimes{\rm Re}(\overline{ $\phi$}\nabla $\psi$)-{\rm Im}( $\phi$\nabla\overline{ $\psi$})\otimes{\rm Im}(\overline{ $\phi$}\nabla $\psi$)
=\nabla\sqrt{ $\rho$}\otimes\nabla\sqrt{ $\rho$}+ $\Lambda$\otimes $\Lambda$,

almost everywhere in \mathrm{R}^{d} . By taking the trace on both sides of the above equality
we furthermore obtain

(3.1) |\nabla $\psi$|^{2}=|\nabla\sqrt{ $\rho$}|^{2}+| $\Lambda$|^{2}.
Similarly,

\nabla\overline{ $\psi$}\wedge\nabla $\psi$=( $\phi$\nabla\overline{ $\psi$})\wedge(\overline{ $\phi$}\nabla $\psi$)

=2i\nabla\sqrt{ $\rho$}\wedge $\Lambda$ , a.e. in \mathrm{R}^{d},
and \nabla\wedge J=\nabla\wedge({\rm Im}(\overline{ $\psi$}\nabla $\psi$)) ={\rm Im}(\nabla\overline{ $\psi$}\wedge\nabla $\psi$) . This implies that J satisfies the
generalized irrotationality condition of Definition 1.2.
Now we prove the second part of Lemma. Let \{$\psi$_{n}\} \subset  H^{1}(\mathrm{R}^{d}) be any sequence
such that  $\psi$_{n}\rightarrow $\psi$ in  H^{1} (Rd). As before it is straightforward to prove

{\rm Re}(\overline{ $\phi$}_{n}\nabla$\psi$_{n})\rightarrow{\rm Re}(\overline{ $\phi$}\nabla $\psi$) , L^{2}
{\rm Im}(\overline{ $\phi$}_{n}\nabla$\psi$_{n})\rightharpoonup{\rm Im}(\overline{ $\phi$}\nabla $\psi$) , L^{2}.

Moreover, from (3.1), the strong convergence of $\psi$_{n} and the weak convergence for
\nabla\sqrt{$\rho$_{n}}, $\Lambda$_{n} , we obtain

\displaystyle \Vert\nabla $\psi$\Vert_{L^{2}}^{2}=\Vert\nabla\sqrt{ $\rho$}\Vert_{L^{2}}^{2}+\Vert $\Lambda$\Vert_{L^{2}}^{2} \leq\lim_{n\rightarrow}\inf_{\infty}(\Vert\nabla\sqrt{$\rho$_{n}}\Vert_{L^{2}}^{2}+\Vert$\Lambda$_{n}\Vert_{L^{2}}^{2})
=\mathrm{h}\mathrm{m}(\Vert\nabla$\psi$_{n}\Vert_{L^{2}}^{2})=\Vert\nabla $\psi$\Vert_{L^{2}}^{2}n\rightarrow\infty.

Hence, we obtain \Vert\nabla\sqrt{$\rho$_{n}}\Vert_{L^{2}} \rightarrow \Vert\nabla\sqrt{ $\rho$}\Vert_{L^{2}} and \Vert$\Lambda$_{n}\Vert_{L^{2}} \rightarrow \Vert $\Lambda$\Vert_{L^{2}} . Consequently,
from the weak convergence in L^{2} and the convergence of the L^{2} norms we may infer
the strong convergence

\nabla\sqrt{$\rho$_{n}}\rightarrow\nabla\sqrt{ $\rho$},  $\Lambda$_{n}\rightarrow $\Lambda$ , in  L^{2}(\mathrm{R}^{d}) .

\square 

The next Lemma will be used in Section 5 to deal with the non‐Hamiltonian

case. More precisely it will be used in the fractional step argument in order to
construct an approximate solution to the system under consideration. Its proof is
a straightforward consequence of the polar decomposition method and its stability
property in H^{1} , however we will state it here as it will be handy to use in the
fractional step argument. Moreover this can be further generalized in order to take
into account a wider class of terms in the fractional step, see for example [6].

Lemma 3.2. Let  $\psi$\in H^{1}(\mathrm{R}^{d}) and let e,  $\tau$>0 be two arbitrary (small) real num‐
bers,  $\alpha$\geq 0 . Then there exists \tilde{ $\psi$}\in H^{1}(\mathrm{R}^{d}) such that if \sqrt{\tilde{ $\rho$}}:=|\tilde{ $\psi$}|, \tilde{ $\Lambda$} :={\rm Im}(^{\sim}- $\phi$\nabla\tilde{ $\psi$}),
with \tilde{ $\phi$} polar factor for \tilde{ $\psi$} , then

(3.2) \left\{\begin{array}{l}
\sqrt{\tilde{ $\rho$}}=\sqrt{ $\rho$}+r_{ $\varepsilon$}\\
\tilde{ $\Lambda$}=(1- $\alpha \tau$) $\Lambda$+$\Gamma$_{ $\varepsilon$}\\
\nabla\tilde{ $\psi$}=\nabla $\psi$-i $\alpha \tau$\hat{ $\phi$} $\Lambda$+R_{ $\varepsilon,\ \tau$},
\end{array}\right.
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where \Vert\hat{ $\phi$}\Vert_{L}\infty \leq 1 and

||r_{ $\varepsilon$}\Vert_{H^{1}}+\Vert$\Gamma$_{ $\varepsilon$}\Vert_{L^{2}}\leq $\epsilon$
and

\Vert R_{ $\epsilon,\ \tau$}\Vert_{L^{2_{\sim}}}< $\varepsilon$+ $\tau$\Vert\nabla $\psi$\Vert_{L^{2}}.

4. EXISTENCE OF SOLUTIONS FOR THE QHD SYSTEM

A first application of the polar factorization Lemma 3.1 is the existence of global
in time finite energy weak solutions for the Cauchy problem associated to system
(1.1), complemented with the following initial data

p(0)= $\rho$ 0, J(0)=J_{0}.

This first result comes directly from the polar factorization method and the stability
properties for solutions to NLS equations stated in Theorem 2.5. This approach
allows to construct a global in time finite energy weak solution to (1.1) under some
quite general assumptions on the initial data and without smallness restrictions.
The main drawback will be that, since we will exploit the underlying Schrödinger
dynamics, the choice of our initial data must be consistent with an initial wave
function. It is an interesting open question to determine the level of generality
of such initial data within the class of finite energy data. Indeed, while the polar
factorization Lemma allow us to define the hydrodynamical quantities starting from
a wave fUmction, the converse is in general not true, due to the presence of vacuum.
Furthermore, also the generalized irrotationality condition would be important for
the hydrodynamical quantities in order to be consistent with a wave function.
The assumption (2.4) has a natural equivalent counterpart in terms of the pressure
function, since p( $\rho$)= $\rho$ f'( $\rho$)-f( $\rho$) .

Assumption 4.1. By the regularity assuptions on f we get

 p\in C([0, \infty))\cap C^{1}((0, \infty

The non negativity of the internal energy yields to:

 0\displaystyle \leq $\rho$\int^{ $\rho$}\frac{p'(s)}{s}ds-p( $\rho$)
and the locally Lipschitz condition can be stated equivalently

|2p'( $\rho$)+\displaystyle \int^{ $\rho$}\frac{p'(s)}{s}ds|\sim<1+$\rho$^{ $\gamma$-1}
with  $\gamma$>1 for d=1 , 2 and 1< $\gamma$<3 for d=3.

We remark that no monotonicity has been assumed on p.

Theorem 4.2. Let $\psi$_{0} \in H^{1}(\mathrm{R}^{d}) and define the initial data for the QHD system
(1.1) as  $\rho$ 0 := |$\psi$_{0}|^{2}, J_{0} :={\rm Im}(\overline{ $\psi$}_{0}\nabla$\psi$_{0}) . Then there exists a global in time finite
energy weak solution such that \sqrt{ $\rho$}\in L^{\infty} ( \mathrm{R};H^{1} (Rd)),  $\Lambda$\in L^{\infty}(\mathrm{R};L^{2}(\mathrm{R}^{d})) , which
conserves the energy at all times.

Proof. Let $\psi$_{0}\in H^{1} (Rd), from Theorem 2.5 we know there exists a unique solution
 $\psi$\in C ( \mathrm{R};H^{1} (Rd)) to (2.2) such that the energy (2.3) is a conserved quantity for
all times. Let us fix  $\varepsilon$>0 sufficiently small, and let $\psi$^{ $\varepsilon$} be given from Proposition
2.6. We can define the following hydrodynamical quantities $\rho$^{ $\varepsilon$} := |$\psi$^{ $\varepsilon$}|^{2}, J^{ $\varepsilon$} :=
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{\rm Im}(\overline{ $\psi$}^{ $\varepsilon$}\nabla$\psi$^{ $\varepsilon$}) . By differentiating $\rho$^{ $\varepsilon$} with respect to time and by using the fact that
$\psi$^{ $\varepsilon$} is a solution to (2.4) we obtain an approximate continuity equation

(4.1) \partial_{t}$\rho$^{ $\varepsilon$}+\mathrm{d}\mathrm{i}\mathrm{v}J^{ $\varepsilon$}=r^{ $\varepsilon$},

where r^{ $\varepsilon$} =2{\rm Re}(\overline{e}^{ $\varepsilon$}$\psi$^{ $\varepsilon$}) . Again by using (2.4) we can differentiate J^{ $\varepsilon$} with respect
to time to find out the following identity

\displaystyle \partial_{t}J^{ $\varepsilon$}+\mathrm{d}\mathrm{j}\mathrm{v}({\rm Re}(\nabla\overline{ $\psi$}^{ $\varepsilon$}\otimes\nabla$\psi$^{ $\varepsilon$}))+\nabla p($\rho$^{ $\varepsilon$})=\frac{1}{4}\nabla $\Delta \rho$^{ $\varepsilon$}+G^{ $\varepsilon$},
where the error G^{ $\varepsilon$} is given by G^{ $\varepsilon$}={\rm Re}(\overline{e}^{ $\varepsilon$}\nabla$\psi$^{ $\varepsilon$}-\overline{ $\psi$}^{ $\varepsilon$}\nabla e^{ $\varepsilon$}) . Here we used the fact
that p( $\rho$)= $\rho$ f'( $\rho$)-f( $\rho$) . Lemma 3.1 shows that the following bihnear identity

{\rm Re}(\nabla\overline{ $\psi$}^{ $\varepsilon$}\otimes\nabla$\psi$^{ $\varepsilon$})=\nabla\sqrt{f}\otimes\nabla\sqrt{$\rho$^{ $\varepsilon$}}+$\Lambda$^{ $\varepsilon$}\otimes$\Lambda$^{\mathrm{e}}

holds true, which implies

(4.2) \displaystyle \partial_{t}J^{ $\varepsilon$}+\mathrm{d}\mathrm{i}\mathrm{v}($\Lambda$^{ $\varepsilon$}\otimes$\Lambda$^{ $\epsilon$})+\nabla p($\rho$^{e})=\frac{1}{4}\nabla $\Delta \rho$^{ $\varepsilon$}-\mathrm{d}\mathrm{i}\mathrm{v}(\nabla\sqrt{$\rho$^{ $\varepsilon$}}\otimes\nabla\sqrt{f})+G^{ $\varepsilon$},
i.e. ($\rho$^{ $\varepsilon$}, J^{ $\varepsilon$}) is a global in time finite energy solution to (1.1), up to the errors rỏ, G^{ $\varepsilon$}.

We can now take (4.1) and (4.2) and put them in the weak formulation given in
Definition 1.2. By taking the limit  $\varepsilon$ \rightarrow 0 in the weak formulation and by using
the convergence stated in Proposition 2.6 we then infer that (p, J) , defined by  $\rho$ :=

| $\psi$|^{2}, J :={\rm Im}(\overline{ $\psi$}\nabla $\psi$) , is a global in time finite energy weak solution to (1.1). Indeed
the convergence in Proposition 2.6 also imphes \Vert\nabla\sqrt{$\rho$^{ $\varepsilon$}}-\nabla\sqrt{ $\rho$}\Vert_{L_{t}^{\infty}H_{x}^{\mathrm{i}}} \rightarrow  0 and

\Vert$\Lambda$^{ $\varepsilon$}- $\Lambda$\Vert_{L_{t}^{\infty}L_{X}^{2}} \rightarrow 0 , by the stability of the polar factorization in H^{1} . Furthermore,
again from Lemma 3.1, we have that |\nabla $\psi$|^{2} = |\nabla\sqrt{ $\rho$}|^{2}+ | $\Lambda$|^{2} , a.e. in \mathrm{R}^{d} , so
that by considering the energy functional in (1.2) and (2.3) and by exploiting the
conservation of energy for NLS, we have

\mathcal{E}(t)=E[ $\psi$(t)]=E[ $\psi$(0)]=\mathcal{E}(0) .

Therefore the energy is conserved for the solution constructed before. \square 

We conclude this Section by noticing that in the hydrodynamical system (1.1)
we can include also extra terms, as long as the corresponding wave function dy‐
namics has a satisfactory well‐posedness theory in the energy space and satisfies
suitable stability properties. In particular it is possible to consider electrostatic
potentials (see also next Section) which give, in the wave function dynamics, a non‐
local nonlinearity of Hartree type. The case with magnetic fields is more dehcate
and requires a finer analysis on the underlying wave functions dynamics; we address
the interested reader to [1] for some results in this direction.

5. THE QHD MODEL FOR SEMICONDUCTOR DEVICES

In the last Section we showed that, as long as the dynamics in the wave function
framework is described by a nonlinear Schröùnger equation having suitable well‐
posedness and stability properties, we are able to construct a finite energy weak
solution to the hydrodynamical system under very general assumptions on the initial
data.

On the other hand, this is not always the case, as there are various QHD models
in the hterature whose analogue wave function dynamics does not have a satisfac‐
tory well‐posedness theory in the space of energy. That is the case, for instance,
when we incorporate some dissipative effects in the fluid model, or interaction with
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other flows like in the Landau’s two‐fluid theory of superfluidity [50]. A typical
model falling in this class is the following one

(5.1) \left\{\begin{array}{l}
\partial_{t} $\rho$+\mathrm{d}\mathrm{i}\mathrm{v}J=0\\
\partial_{t}J+\mathrm{d}\mathrm{i}\mathrm{v}(\frac{J\otimes J}{p})+\nabla p( $\rho$)+ $\rho$\nabla V=\frac{1}{2} $\rho$\nabla(\frac{\triangle\sqrt{ $\rho$}}{\sqrt{ $\rho$}})- $\alpha$ J\\
-\triangle V= $\rho$,
\end{array}\right.
where now we also consider an electrostatic potential V and the term - $\alpha$ J with
 $\alpha$\geq 0 on the right hand side of the equation for the momentum density introduces
\mathrm{a} (linear) dissipation in the system. Indeed, along the flow of solutions to (5.1) we
formally have

(5.2) \displaystyle \mathcal{E}(t)+ $\alpha$\int_{0}^{t}\int| $\Lambda$(t', x)|^{2}dxdt'=\mathcal{E}(0) ,

where now the energy is given by

\displaystyle \mathcal{E}(t)=\int\frac{1}{2}|\nabla\sqrt{ $\rho$}|^{2}+\frac{1}{2}| $\Lambda$|^{2}+f( $\rho$)+\frac{1}{2}|\nabla V|^{2}dx.
The main result we are going to present in this Section is the following Theorem.
Here we focus only on the three dimensional case; for the study of (5.1) in the
two‐dimensional case we address to [4]. In this Section the arguments to prove the
Theorem below are only sketched, the reader can find more details in [3].

Theorem 5.1. Let $\psi$_{0}\in H^{1}(\mathrm{R}^{3}) and let us define p0:= |$\psi$_{0}|^{2}, J_{0} :={\rm Im}(\overline{ $\psi$}_{0}\nabla$\psi$_{0}) .
Then there exists a global in time finite energy weak solution to (5.1) such that

\sqrt{ $\rho$} \in  L^{\infty} ( \mathrm{R};H^{1} (R3)),  $\Lambda$ \in  L^{\infty}(\mathrm{R};L^{2}(\mathrm{R}^{3})) , and we have the following energy
inequality

\mathcal{E}(t)\leq \mathcal{E}(0) , for a.e. t>0.

System (5.1) is widely studied in the mathematical literature [57, 47, 61, 41, 42,
45] because this is a key model for semiconductor devices [31]. The dissipative term
was introduced phenomenologically [12] in order to describe the colhsions between
electrons in the semiconductor device. For this reason we often refer to it as the

collisional term and system (5.1) with  $\alpha$=0 will be regarded as the non‐collisional
system.

Formally, the wave function dynamics analogue to (5.1) reads

(5.3) \left\{\begin{array}{l}
i\partial_{t} $\psi$=-\frac{1}{2}\triangle $\psi$+f'(| $\psi$|^{2}) $\psi$+V $\psi$+\overline{V} $\psi$\\
- $\Delta$ V= $\rho$,
\end{array}\right.
where the self‐consistent potential \overline{V} is given by

\displaystyle \overline{V}=\frac{ $\alpha$}{2i}\log( $\psi$/\overline{ $\psi$}) .

Similar dissipative Schrödinger equations arise also in other contexts, see for ex‐
ample the Schrödinger‐Langevin equation [51], however to our knowledge there is
no well‐posedness result in the energy space for the Cauchy problem associated to
(5.3), due to the ill‐posedness created by the potential V.

For this reason, in order to show the existence of a finite energy weak solution
to (5.1) we construct a sequence of approximating solutions based on an operator
splitting argument.
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Definition 5.2. Let  $\tau$ > 0 be a small parameter, we say \{($\rho$^{ $\tau$}, J^{ $\tau$})\}_{ $\tau$>0} is a se‐
quence of approximate solutions for the system (5.1) with initial data ($\rho$_{0}, J_{0}) \in

 L_{loc}^{1}(\mathrm{R}^{d}) if there exist locally integrable functions \sqrt{$\rho$^{ $\tau$}}\in L_{loc}^{2}(0, T;L_{loc}^{2}(\mathrm{R}^{d})) , $\Lambda$^{ $\tau$}\in

 L_{loc}^{2}(0, T;L_{loc}^{2}(\mathrm{R}^{d})) such that conditions (i), (iv), (v) in Definition 1.2 hold true
for ($\rho$^{ $\tau$}, J^{ $\tau$}) , and the night hand sides of (ii) and (iii) (with the obvious changes due
to the extra terms in the system), with ($\rho$^{ $\tau$}, J^{ $\tau$}) , are o(1) as  $\tau$\rightarrow 0.

More precisely, let us fix a small parameter  $\tau$>0 , then we spht our evolutionary
problem into two parts. In the former step we solve the non‐collisional dynamics
( $\alpha$=0) by means of the associated Schrödinger‐Poisson system, then in the latter
one we update the quantities in order to take into account the dissipative term
- $\alpha$ J.

The main difficulty here is to implement the colhsional step at the level of wave
function description of the system. Indeed, as already explained in the previous
Section, we deal with the non‐collisional step by exploiting the polar factorization
approach and solving the nonlinear Schrödinger‐Poisson system, i.e. (5.3) with
 $\alpha$=0 . Furthermore, while it is possible to define the hydrodynamical quantities
given a wave function, the converse is not true in general (see also the discussion
before Theorem 4.2). Therefore we need to perform also the collisional step at a
wave function level, in order to start again with an updated wave function in the
next step. From the operator splitting we see that the collisional step would consist
in just solving the following ODE

\left\{\begin{array}{l}
\partial_{t} $\rho$=0\\
\partial_{t}J+ $\alpha$ J=0.
\end{array}\right.
However, this has to be translated to an updating for the (approximating) wave
function; it consists in adjusting its phase. For this purpose we are going to use
Lemma 3.2.

More precisely, fixed  $\tau$ > 0 , we construct our approximate solution $\psi$^{ $\tau$}
1

in the
following way. Let $\psi$_{0}\in H^{1} (Rd), at first step k=0 we solve

(5.4) \left\{\begin{array}{l}
i\partial_{\mathrm{Y}}$\psi$^{ $\tau$}=_{\overline{2}}-\triangle$\psi$^{ $\tau$}+f'(|$\psi$^{ $\tau$}|^{2})$\psi$^{ $\tau$}+V^{ $\tau$}$\psi$^{ $\tau$}, (t, x)\in[0,  $\tau$)\times \mathrm{R}^{d}\\
- $\Delta$ V^{ $\tau$}=|$\psi$^{ $\tau$}|^{2}, (t, x)\in[0,  $\tau$)\times \mathrm{R}^{d}\\
$\psi$^{ $\tau$}(0)=$\psi$_{0}, x\in \mathrm{R}^{d}.
\end{array}\right.
Let us define the approximate solution by induction: we assume we already con‐
structed $\psi$^{ $\tau$} in [(k-1) $\tau$, k $\tau$) \times \mathrm{R}^{d} , we want to construct $\psi$^{ $\tau$} in the next space‐time
slab [k $\tau$, (k+1) $\tau$) \times \mathrm{R}^{d} . We invoke Lemma 3.2 with  $\psi$=$\psi$^{ $\tau$}(k $\tau$-) ,  $\varepsilon$= $\tau$ 2^{-k}\Vert$\psi$_{0}\Vert_{H^{1}}.
The \tilde{ $\psi$} in Lemma will be the updated wave function:

$\psi$^{ $\tau$}(k $\tau$+):=\tilde{ $\psi$}.
As a consequence we obtain

\sqrt{$\rho$^{ $\tau$}}(k $\tau$+)=\sqrt{$\rho$^{r}}(k $\tau$-)+r_{k $\tau$}
$\Lambda$^{ $\tau$}(k $\tau$+)=(1- $\alpha \tau$)$\Lambda$^{ $\tau$}(k $\tau$-)+$\Gamma$_{k, $\tau$},

lStrictly speaking the approximate solution is given by the hydrodynamic quantities ($\rho$^{ $\tau$}, J^{ $\tau$})
associated to the wave function $\psi$^{ $\tau$} . More precisely, $\psi$^{ $\tau$} is not an approximate solution for any
equation (see Remark 5.8 below), however we will call it in this way because its moments ($\rho$^{ $\tau$}, J^{ $\tau$})
are approximate solutions, in the sense of Definition 5.2 to system (5.1).
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where \Vert r_{k, $\tau$}\Vert_{H^{1}}+\Vert$\Gamma$_{k, $\tau$}\Vert_{L^{2}}\leq $\tau$ 2^{-k}\Vert$\psi$_{0}\Vert_{H^{1}} , and

(5.5) \nabla$\psi$^{ $\tau$}(k $\tau$+)=\nabla$\psi$^{ $\tau$}(k $\tau$-)-i $\alpha \tau \phi$_{k}^{ $\tau$}$\Lambda$^{ $\tau$}(k $\tau$-)+R_{k, $\tau$},

for some ￠  $\tau$ k with \Vert$\phi$_{k}^{ $\tau$}\Vert_{L\infty} \leq 1 and

\Vert E_{k, $\tau$}\Vert_{L^{2}} \leq C( $\tau$\Vert\nabla$\psi$^{ $\tau$}(k $\tau$-)\Vert_{L^{2}}+ $\tau$ 2^{-k}\Vert$\psi$_{0}\Vert_{H^{1}}) \leq $\tau$ CE_{0}^{1/2}
Now we can start again with the Cauchy problem associated to (5.4) on the space‐
time slab [k $\tau$, (k+1) $\tau$) \times \mathrm{R}^{d} , by considering

 $\psi$(k $\tau$)=$\psi$^{ $\tau$}(k $\tau$+)

as initial condition. Thus we define $\psi$^{ $\tau$} on [k $\tau$, (k+1) $\tau$) \times \mathrm{R}^{d} to be this solution.
With this procedure we construct iteratively $\psi$^{ $\tau$} on [0, \infty) \times \mathrm{R}^{d} . By means of the
polar factorization we define (\sqrt{p^{ $\tau$}}, $\Lambda$^{ $\tau$}) from $\psi$^{ $\tau$} . Now we need to prove that the
sequence of approximate solutions has a limit and that this limit actually solves
(in the weak sense) the QHD system (5.1). First of all we show the consistency of
approximate solutions, namely that if the sequence \{(\sqrt{$\rho$^{ $\tau$}}, $\Lambda$^{ $\tau$})\} has a strong hmit,
then this limit is a weak solution to (5.1).

Theorem 5.3. Let us consider a sequence of approximate solutions \{($\rho$^{ $\tau$}, J^{ $\tau$})\}
constructed via the fractional step method, and let us assume there exist \sqrt{ $\rho$} \in

 L_{loc}^{2} (0, T;H_{lo\mathrm{c}}^{1} (Rd)),  $\Lambda$\in L_{loc}^{2}(0,T;L_{loc}^{2}(\mathrm{R}^{d})) such that

\sqrt{$\rho$^{ $\tau$}}\rightarrow\sqrt{ $\rho$} in L_{loc}^{2} (0, T;H_{lo\mathrm{c}}^{1} (Rd))
 $\Lambda$^{ $\tau$}\rightarrow $\Lambda$ in  L_{loc}^{2}(0,T;L_{loc}^{2}(\mathrm{R}^{d})) .

The  $\rho$:=(\sqrt{ $\rho$})^{2}, J :=\sqrt{ $\rho$} $\Lambda$ is a weak solution to (5.1) in [0, T) \times \mathrm{R}^{d}.

It thus remains to prove that the sequence of approximate solutions has a strong
limit, as stated in the hypothesis of the Theorem above. That is, we need to
show some compactness properties for the family \{$\psi$^{r}\} , which will then imply the
necessary compactness for \{(\sqrt{$\rho$^{ $\tau$}},$\Lambda$^{ $\tau$})\} by means of the polar factorization. First
of all, we show that \{$\psi$^{ $\tau$}\} is uniformly bounded in the energy space. More precisely
the sequence \{$\psi$^{ $\tau$}\} satisfies an approximate version of (5.2).

Lemma 5.4. Let 0< $\tau$< 1 and let $\psi$^{ $\tau$} be the approximate solutions constructed
above. Then we have the following energy inequality

(5.6) E^{ $\tau$}(t)\displaystyle \leq-\frac{ $\tau$}{2}\sum_{k=1}^{[t/ $\tau$]}\Vert$\Lambda$^{ $\tau$}(k $\tau$-)\Vert_{L^{2}}^{2}+(1+ $\tau$)E_{0}.
The above estimate provides the uniform (in  $\tau$>0) boundedness of \{$\psi$^{ $\tau$}\} in the

space L^{\infty} ( \mathrm{R}_{+};H^{1} (Rd)). This implies there exists (up to passing to subsequences),
a weak limit  $\psi$ \in  L^{\infty} ( \mathrm{R}_{+};H^{1} (Rd)), $\psi$^{ $\tau$} \rightarrow*  $\psi$  L_{t}^{\infty}H_{x}^{1} . Unfortunately, this is not
sufficient to prove the consistency of approximate solutions: indeed the quadratic
term

{\rm Re}(\nabla\overline{ $\psi$}^{ $\tau$}\otimes\nabla$\psi$^{ $\tau$}) ,

appearing in the equation for the current density, could exhibit some concentration
phenomena in the limit. We thus need to exploit the dispersive properties of the
approximate solutions inherited from (5.4). For this purpose we first need the
following Lemma, which express the gradient of the approximate solution $\psi$^{ $\tau$} at
time t in terms of the Schrödinger evolution group U(t)=e^{$\iota$_{2}^{\`{i}} $\Delta$}.
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Lemma 5.5. Let $\psi$^{ $\tau$} be the approximate solution constructed above, then we have

\displaystyle \nabla$\psi$^{ $\tau$}(t)=U(t)\nabla$\psi$_{0}-i\int_{0}^{t}U(t-s)\nabla \mathcal{N}($\psi$^{ $\tau$})(s)ds
(5.7)

-i $\tau$\displaystyle \sum_{k=1}^{[t/ $\tau$]}U(t-k $\tau$)[$\phi$_{k}^{ $\tau$}$\Lambda$^{ $\tau$}(k $\tau$-)]+\sum_{k=1}^{[t/ $\tau$]}U(t-k $\tau$)r_{k, $\tau$},
where

\mathcal{N}($\psi$^{ $\tau$})=f'(|$\psi$^{ $\tau$}|^{2})$\psi$^{ $\tau$}+V^{ $\tau$}$\psi$^{ $\tau$},
and $\phi$_{k}^{ $\tau$},  rk, $\tau$ are defined in (5.5).

The Lemma above shows the importance of defining the updating step in the
construction of the approximate solutions by means of Lemma 3.2. Indeed, this
approximate updating allows us to write formula (5.7) in a quite neat way. For a
more detailed discussion on this point we refer the reader to [3], Remark 21.
At this point we may use the Strichartz estimates for the Schrödinger semigroup.
Formula (5.7) is the key point to exploit the dispersive estimates associated to the
Schrödinger propagator and infer suitable a priori estimates on the sequence of
approximating solutions. By applying the Strichartz estimates of Theorem 2.2 and
the local smoothing estimates of Theorem 2.3 we can show the compactness for
the sequence \{$\psi$^{ $\tau$}\}_{ $\tau$>0} . Next Proposition collects all the needed a priori estimates,
their proof can be found in [3].

Proposition 5.6. Let  0<T<\infty be a finite time. Then for any admissible pair
(q, r) we have

\Vert\nabla$\psi$^{ $\tau$}\Vert_{L\mathrm{q}(0,T;L^{r}(\mathrm{R}^{d}))}\leq C(E_{0}, \Vert $\rho$ 0\Vert_{L^{1}},T) .

Furthermore,

\Vert\nabla$\psi$^{ $\tau$}\Vert_{L^{2}([0,T];H_{lo\mathrm{c}}^{1/2}(\mathrm{R}^{d}))}\leq C(E_{0}, \Vert $\rho$ 0\Vert_{L^{1}}, T) .

Having those estimates at hand we can now use a Aubin‐Lions type Lemma in
order to extract a subsequence (which we \mathrm{w}\mathrm{m} also call \{$\psi$^{ $\tau$}\} ) which has a strong
limit. More precisely we make use of a result by Rakotoson and Temam [63] (see
[3] for more details).

Theorem 5.7. For any finite time 0 < T < \infty , the sequence \nabla$\psi$^{ $\tau$} is relatively
compact in L^{2}(0,T;L_{loc}^{2}(\mathrm{R}^{d})) . More precisely, there exists  $\psi$\in L^{2}(0, T;H_{loc}^{1}(\mathrm{R}^{d}))
such that

 $\psi$=s-\mathrm{h}\mathrm{m}$\psi$^{ $\tau$} , in L^{2}(0, T;H_{toc}^{1}(\mathrm{R}^{d})) .
 $\tau$\rightarrow 0

As a consequence,
\sqrt{$\rho$^{ $\tau$}}\rightarrow\sqrt{ $\rho$} in L^{2}(0, T;H_{loc}^{1}(\mathrm{R}^{d}))

 $\Lambda$^{ $\tau$}\rightarrow $\Lambda$ in  L^{2}(0,T;L_{lo\mathrm{c}}^{2}(\mathrm{R}^{d})) .

By combining the Theorem above and Theorem 5.3, we know that (\sqrt{ $\rho$}, $\Lambda$) satisfy
(5.1) in the weak sense, in [0, T] \times \mathrm{R}^{d} , for any finite  0<T<\infty . Moreover, it is
easy to check that the energy for (\sqrt{ $\rho$}, $\Lambda$) is finite for almost every time: this follows
directly from passing (5.6) to the limit as  $\tau$\rightarrow 0 . Furthermore let us recall (\sqrt{p}, $\Lambda$)
are the hydrodynamic quantities associated to  $\psi$ \in  L^{\infty} ( \mathrm{R}_{\mathrm{d};}H^{1} (Rd)), hence by
the polar decomposition Lemma they also satisfy the generalized irrotationality
condition. We can thus say that (\sqrt{ $\rho$},  $\Lambda$) define a finite energy weak solution to the
QHD system (5.1), and this proves Theorem 5.1.
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Remark 5.8. We should remark here that, despite the fact  $\psi$ is the strong limit of
the sequence \{$\psi$^{ $\tau$}\} and the hydrodynamic quantities (\sqrt{ $\rho$},  $\Lambda$) associated to  $\psi$ solve
the QHD system (5.1), it is not clear if the wave function  $\psi$ solve any nonlinear
Schrödinger equation. Indeed, while for \nabla$\psi$^{ $\tau$} we can write the Duhamel’s formula
(5.7), we don’t have a similar expression for $\psi$^{ $\tau$} . In any case, even regarding formula
(5.7) it is not clear whether the second line has a limit as  $\tau$\rightarrow 0.

The analysis given in this Section to deal with the dissipative term - $\alpha$ J is useful
not only in the study of the QHD model for semiconductor devices, but this is also
a starting point to attack a more general class of hydrodynamical systems, related
to the Landau’s two‐fluid model [50]. This is a system which described superfluid
phenomena at finite temperatures, where the quantum (superfluid) flow is coupled
to a normal flow, described by a classical viscous fluid. A partial result in this
direction was given in [5] but there are many interesting open questions on this
topic.

6. A PRIORI DISPERSIVE ESTIMATES FOR THE 1\mathrm{D} QHD SYSTEM

So far the main method to study QHD systems is based on the underlying
wave functions dynamics and the dispersive properties enjoyed by the Schrödinger
propagator  U(t)=e^{1}2t $\Delta$ . It is an interesting problem to see if general solutions to
QHD systems (namely, not only those ones generated from a wave function) enjoyed
suitable a priori (dispersive) estimates. In the existing hterature some results in
this direction were already proved in [10, 11] also considering the more general
case of Korteweg fluids, but they all require further regularity on the solutions and
furthermore it is necessary to consider the mass density to be uniformly bounded
away from zero. In this Section we try to sketch some alternative arguments, which
will appear in details in [8], to address such questions. Here we will focus on the
one‐dimensional case, some generalizations of those arguments will be the subject of
a subsequent paper. Furthermore, again for the sake of simplicity in the exposition,
in this Section we will assume the internal energy density to satisfy a power law,
i.e. we consider  f( $\rho$)=\displaystyle \frac{1}{ $\gamma$}$\rho$^{ $\gamma$} , with 1< $\gamma$<\infty.

Our approach is based on monotonicity formulae, namely the study of a class of
functionals for which it is possible to show they are non‐increasing in time. Similar
functional are already used in the context of nonlinear Schrödinger equations, where
they are proven to be useful in order to yield informations about the long time
behavior of solutions. The advantage of using those functionaJs is that they may
be written in terms of hydrodynamical quantities.

The conserved quantities, such as the total mass, momentum and energy, already
imply uniform bounds on the hydrodynamical quantities, namely

\sqrt{ $\rho$}\in L^{\infty}(\mathrm{R};H^{1}(\mathrm{R})) ,  $\Lambda$\in L^{\infty}(\mathrm{R};L^{2}(\mathrm{R})) .

Moreover, some functionals also yield dispersive properties of solutions to the QHD
system (1.1). The first one we take into consideration is associated to the so called
pseudo‐conformal vector field [35]

P=x+it\partial_{x}.

It is well known that P commutes with the Schrödinger operator,

[P, i\displaystyle \partial_{t}+\frac{1}{2}\partial_{xx}]=0.
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This implies that, if u is a solution to i\displaystyle \partial_{t}u+\frac{1}{2}\partial_{xx}u=0 , then so is Pu , hence

\Vert Pu(t)\Vert_{L^{2}}=\Vert Pu(0)\Vert_{L^{2}}= . |u(0)\Vert_{L^{2}}.

By using the identity

Pf (t, x)=(it)e^{\mathrm{z}^{\mathrm{L}_{2t}^{x\llcorner^{2}}}}\partial_{x}(e^{-i_{2}^{\llcorner x\rfloor}\frac{2}{t}}f(x)) ,

then we have

\Vert\partial_{x}(e^{-$\iota$^{\mathrm{L}_{2}\perp_{\mathrm{t}}}}x^{2}u(t))\Vert_{L^{2}} \leq t^{-1} . |u(0)\Vert_{L^{2}}

and by using the Sobolev embedding \Vert f\Vert_{L\infty} \sim< \Vert f\Vert_{L^{2}}^{1/2}\Vert\partial_{x}f\Vert_{L^{2}}^{1/2} , one obtains a
dispersive estimate for the free Schrödinger evolution

\Vert u(t)\Vert_{L\infty} \leq t^{-1/2}\Vert|\cdot|u(0)\Vert_{L^{2}}.
A similar approach holds also in the nonlinear case, indeed in [39, 40] this was used
to obtain existence of solutions and to derive smoothing estimates.

We can now follow the approach by [39, 40] to infer suitable bounds for solutions
to the QHD system. Indeed it is possible to write the functional on the right hand
side of formula (2.5) in [39] in terms of hydrodynamical variables 2. We define

H(t)=t^{2}E(t)-t\displaystyle \int xJ(t, x)dx+\int\frac{|x|^{2}}{2} $\rho$(t, x)dx
(6.1)

=\displaystyle \int\frac{t^{2}}{2}|\nabla\sqrt{ $\rho$}|^{2}+\frac{1}{2}|x\sqrt{ $\rho$}-t $\Lambda$|^{2}+t^{2}f( $\rho$)dx,
by studying its time evolution and by using a similar analysis to [39], we can infer
the following dispersive estimates. We omit the details of the proof and we refer to
the incoming paper [8].

Proposition 6.1. Let ( $\rho$, J) be a solution to the one‐dimensional QHD system
(1.1) with f( $\rho$)=\displaystyle \frac{1}{ $\gamma$}$\rho$^{ $\gamma$} , with  1< $\gamma$<\infty such that the total energy is conserved for
all times. Then the following a priori estimates hold true

(6.2) \displaystyle \Vert\partial_{x}\sqrt{p}(t)\Vert_{L^{2}}<\sim t^{- $\beta$}\Vert|\cdot|^{2} $\rho$(0)\Vert_{L^{1}}^{1/2},  $\beta$ :=\min\{1, \frac{ $\gamma$-1}{2}\},
and

(6.3) \displaystyle \int\sim|\cdot|^{2} $\rho$(0)\Vert_{L^{1}}) .

Proposition 6.1 already gives some dispersive estimates for solutions to the QHD
system. Clearly now it is not possible to use the abstract argument in [49] to infer
the Strichartz estimates, but we can still exploit exploit (6.2) and (6.3) to infer
a class of Strichartz‐type estimates for \sqrt{p} . Unfortunately, the pseudo‐conformal
energy yields informations only on the mass density. The next step is to infer some
analogue bounds also for the current density. To this end we need to consider
some higher order energy functionals. We emphasize that this approach does not
come straightforwardly from a linearization of the QHD, but they involve nonlinear
functions of (derivatives of) the hydrodynamical quantities (\sqrt{ $\rho$},  $\Lambda$) .

Below we state a recent result in this direction obtained in [8].

2_{\mathrm{L}\mathrm{e}\mathrm{t}} us remark that this analogy was already pointed out in Appendix A of [17].
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Theorem 6.2. Let us assume that \sqrt{$\rho$_{0}}\in H^{2}(\mathrm{R}) , \partial_{t}\sqrt{ $\rho$}(0)\in L^{2}(\mathrm{R}) , $\Lambda$_{0}\in L^{2}(\mathrm{R})
and \displaystyle \frac{1}{\sqrt{ $\rho$ 0}}|$\Lambda$_{0}|^{2}\in L^{2}(\mathrm{R}) . Then for any,  0<T<\infty , the solution ( $\rho$, J) , with these
initial data satysfies

\partial_{t}\sqrt{ $\rho$}\in L^{\infty}([0,T];L^{2}(\mathrm{R})) ,  $\Lambda$\in L^{\infty}([0, T] \times \mathrm{R}) ,

\partial_{xx} $\rho$\in L^{\infty}([0, T];L^{2}(\mathrm{R})) , \partial_{x}J\in L^{\infty}([0,T];L^{2}(\mathrm{R})) .

7. THE QHD SYSTEM WITH NON‐TRIVIAL CONDITIONS AT INFINITY

This Section is dedicated to the study of the QHD system (1.1) with non‐trivial
conditions at infinity, more specifically we impose

 $\rho$\rightarrow 1 , as |x|\rightarrow\infty.

The motivation for this study is two‐fold: first of all it is a physically relevant case in
the description of superfluidity close to the  $\lambda$ ‐point, see [36, 62]. Furthermore, this
will be the starting point for a more detailed analysis on the dynamics of quantized
vortices and a rigorous approach to quantum turbulence [68].

For this reason in this Section we mainly focus on the two dimensional settings,
even if some of our results, hke Theorems 7.1 and 7.5 for instance, hold also in the
3‐D setting.

For the sake of clarity here we assume the pressure term to be quadratic, i.e.
 p( $\rho$) = \displaystyle \frac{1}{2}$\rho$^{2} , however a similar analysis holds with minor modifications also for a
pressure term with general power law p( $\rho$) \sim $\rho$^{ $\gamma$} , with 1 <  $\gamma$ < \infty if  d= 2 and
1< $\gamma$<3 if d=3.

In this framework, the total energy associated to the system is given by

(7.1) \displaystyle \mathcal{E}=\int\frac{1}{2}|\nabla\sqrt{ $\rho$}|^{2}+\frac{1}{2}| $\Lambda$|^{2}+\frac{1}{2}( $\rho$-1)^{2}dx.
Also in this case we are going to exploit the wave function dynamics associated to
(1.1). If we consider the energy (7.1) written in terms of a wave function, we find
the celebrated Ginzburg‐Landau functional

\displaystyle \mathcal{E}_{GP}( $\psi$)(t)=\int_{\mathrm{R}^{d}}\frac{1}{2}|\nabla $\psi$|^{2}+\frac{1}{2}(| $\psi$|^{2}-1)^{2}dx,
whose associated Hamilton equation is given by the Gross‐Pitaevskii equation

(7.2) \left\{\begin{array}{l}
i\partial_{t} $\psi$=-\frac{1}{2} $\Delta \psi$+(| $\psi$|^{2}-1) $\psi$\\
 $\psi$(0)=$\psi$_{0}.
\end{array}\right.
In what follows, firstly we estabhsh the existence of finite energy weak solutions for
the system (1.1) in \mathrm{R}^{d} , for d=2 , 3, in the sense of Definition 1.2. Indeed, let us
remark that since condition (iv) is satisfied, then we have p(t) \rightarrow  1 , as |x| \rightarrow \infty

for almost every time. The loss of integrability of  p due the fact that the density
is non‐vanishing at infinity requires to modify the Cauchy theory presented above.
Subsequently, we generalise the existence result to a class of solutions that allows us
to consider vortices in the system. The major difficulty consists in the fact that the
associated energy for vortex solutions is in general infinite. Most of the arguments
exposed here are only sketched in this Section and they will appear in more details
in the forthcoming paper [2].
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In [33], Gérard shows the well‐posedness for the Cauchy‐Problem (7.2) in the
energy space, \mathrm{i}. \mathrm{e}.

\mathrm{E}=\{u\in H_{loc}^{1}(\mathrm{R}^{d}) : \nabla u\in L^{2}(\mathrm{R}d), |u|^{2}-1\in L^{2}\}
In particular, the fact that finite energy solutions  $\psi$ of equation (7.2) do not vanish
at infinity implies that  $\psi$\not\in L^{p} for any  1\leq p<\infty and therefore the classical theory
for the Cauchy Problem of nonlinear Schrödinger equations does not apply.

The first result we prove is the existence of finite energy weak solutions.

Theorem 7.1. Let  d=2 , 3 and $\psi$_{0}\in \mathrm{E} , define

$\rho$_{0}=|$\psi$_{0}|^{2}, J_{0}={\rm Im}(\overline{$\psi$_{0}}\nabla$\psi$_{0}) .

Then there exists a finite energy weak solution ( $\rho$, J) to (1.1) such that

 $\rho$(0)= $\rho$ 0, J(0)=J_{0}

Moreover, the energy defined in (7.1) is conserued for all times.

In Theorem 4.2 above, the proof of existence for finite energy weak solutions is
based on a polar factor decomposition and on the wel‐posedness property for the
underlying NLS equation. The main difficulty in proving Theorem 7.1 consists in
setting up a suitable polar factorization for wave functions lacking integrability. As
in [33], it will be useful to consider the following distance

(7.3) d_{\mathrm{E}}(f, g)=\Vert\nabla f-\nabla g\Vert_{L^{2}}+\Vert|f|^{2}-|g|^{2}\Vert_{L^{2}},
with f, g\in \mathrm{E} . Moreover, one has the inclusion

\mathrm{E}\subset X^{1}(\mathrm{R}^{d})+H^{1}(\mathrm{R}^{d}) ,

where X^{k} is the Zhidkov space defined for any integer k by

X^{k}=\{u\in L^{\infty}(\mathrm{R}^{d}) : \partial^{ $\alpha$}u\in L^{2}, | $\alpha$|\leq k\}.
and the following inequality holds

(7.4) \Vert u\Vert_{X^{1}+H^{1}} \leq C(1+\sqrt{\mathcal{E}_{GP}(u)}) ,

see Lemma 1 in [33]. It is crucial to observe that any function f in the energy
space can be approximated by a sequence of smooth function \{f_{n}\}_{n\in \mathrm{N}}\subset C^{\infty} such
that d(f_{n}, f) \rightarrow 0 . These properties enable us to derive the polar decomposition
Lemma being the analogue of Lemma 3.1, where we exploit the metric structure of
the energy space E.

Lemma 7.2 (Stability in E). Let  $\psi$ \in \mathrm{E} , let \sqrt{ $\rho$}:= | $\psi$| be its amplitude and let
 $\phi$\in P( $\psi$) be a polar factor associated to  $\psi$ . Then \sqrt{ $\rho$}\in L_{loc}^{2} and \nabla\sqrt{ $\rho$}={\rm Re}(\overline{ $\phi$}\nabla $\psi$) .
Moreover, if we define  $\Lambda$ :={\rm Im}(\overline{ $\phi$}\nabla $\psi$) , then  $\Lambda$ \in  L_{loc}^{2} and the following identity
holds

{\rm Re}(\nabla\overline{ $\psi$}\otimes\nabla $\psi$)=\nabla\sqrt{ $\rho$}\otimes\nabla\sqrt{ $\rho$}+ $\Lambda$\otimes $\Lambda$  a. e . in \mathrm{R}^{d}

Furthermore, if \{$\psi$_{n}\}\subset \mathrm{E} such that d_{\mathrm{E}}($\psi$_{n},  $\psi$)\rightarrow 0 , then the stability property holds

\nabla\sqrt{$\rho$_{n}}\rightarrow\nabla\sqrt{ $\rho$}, $\Lambda$_{n}\rightarrow $\Lambda$, inL^{2}(\mathrm{R}^{d})
Once Lemma 7.2 is established, it is possible to exploit the well‐posedness result

for (7.2). In particular, by using the continuous dependence on the initial data and
the persistence of regularity, it is possible to adapt the arguments of Section 4 and
prove Theorem 7.1.
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Remark 7.3. The existence result for finite energy weak solutions can also be derived
for periodic domains \mathrm{T}^{d} . It is straightforward to notice that in this case the total
mass and momentum are finite, for finite energy weak solutions. On the other hand,
for the stability properties of the nonlinear Schrödinger equation, we need to exploit
the Strichartz estimates on a compact manifold. The study of quantum vortex
dynamics in this framework is also interesting from a physical point of view and
furthermore this avoid the mathematical difficulty of dealing with configurations
which in general have infinite energy (see below for a more detailed discussion).

We now turn our attention to the study of weak solutions to (1.1) with non‐trivial
conditions at infinity and with the presence of vortices.

It can be proven that wave functions that do not vanish at infinity and with non‐
trivial degree at infinity have infinite energy. Indeed, let us consider the particular
case of a stationary vortex solution for the equation (7.2). More precisely, we
consider a function of the type u(x) =f(r)e^{ $\iota$ d $\theta$} with r= |x| and  $\theta$ is defined by
 e^{i $\theta$}=\displaystyle \frac{x}{|x|} . Here d is an integer and represents the winding number of the quantum
vortex. If u is a stationary solution to the 2\mathrm{D} GP equation (7.2), then the radial
proMe f must satisfy

\left\{\begin{array}{l}
f''(r)+\frac{1}{r}f'(r)-\frac{d^{2}}{r^{2}}f(r)+2(1-f(r)^{2})f(r)=0\\
f(r)\rightarrow 1 \mathrm{a}\mathrm{s} r\rightarrow\infty.
\end{array}\right.
It can be checked that \nabla_{x}f \in  L^{2} but \nabla u \not\in  L^{2} , therefore in particular E(u) =

\infty . Multi‐vortex configurations may be investigated by considering the product of
several of these vortices. In[15] Bethuel and Smets study the problem by considering
initial data of the type  $\psi$=U_{0}+v , where U_{0} is a fixed vortex‐configuration U_{0}=

f(r)e^{xd $\theta$} or a multi‐vortex configuration and v a perturbation of this stationary
solution. For this type of data the suitable function considered is  $\psi$ =U_{0}+u\in
 V+H^{1} , where

V := { U\in L^{\infty} : \nabla|U|\in L^{2}, \nabla^{k}U\in L^{2} , for any k\geq 2, (|U|^{2}-1)\in L^{2} }.
It is easy to check that U_{0} \in  V , for details we refer to [15]. It is shown that

for any $\psi$_{0} \in  V+H^{1}(\mathrm{R}^{2}) there exists a unique solution  t\mapsto  $\psi$(t) of (7.2) such
that  $\psi$(0)=$\psi$_{0} and  $\psi$(t)-U_{0} \in C^{0} ( \mathrm{R}, H^{1} (R2)). Relying on this existence result
for the underlying wave‐function, we show that there exists a global weak solution
to (1.1) with vortex initial data of the mentioned type. The first step consists in
generalising the polar decomposition Lemma 7.2. The previous arguments suggest
that in terms of hydrodynamic variables \nabla\sqrt{ $\rho$}\in L^{2}(\mathrm{R}^{2}) but  $\Lambda$\in L_{loc}^{2}(\mathrm{R}^{2}) due to
the non‐vanishing topological degree of  $\psi$ at infinity.

Lemma 7.4. Let  $\psi$ \in  V+H^{1}(\mathrm{R}^{2}) , let \sqrt{ $\rho$} := | $\psi$| be its amphtude and let  $\phi$ \in

 P( $\psi$) be a polar factor associated to  $\psi$ . Then \sqrt{ $\rho$}\in  L_{loc}^{2} and \nabla\sqrt{ $\rho$}={\rm Re}(\overline{ $\phi$}\nabla $\psi$) .
Moreover, if we define  $\Lambda$ :={\rm Im} C $\phi$\nabla $\psi$), then  $\Lambda$ \in  L_{loc}^{2} and the following identity
holds

{\rm Re}(\nabla\overline{ $\psi$}\otimes\nabla $\psi$)=\nabla\sqrt{ $\rho$}\otimes\nabla\sqrt{ $\rho$}+ $\Lambda$\otimes $\Lambda$  a. e . in \mathrm{R}^{d}

Furthermore, let  $\psi$\in  V+H^{1}(\mathrm{R}^{2}) and fix a decomposition  $\psi$=U_{0}+u such that
U_{0} \in  V and u \in  H^{1}(\mathrm{R}^{2}) . If \{u_{n}\} \subset  H^{1}(\mathrm{R}^{2}) such that u_{n} \rightarrow  u , the following
stability property holds for any fixed R>0,

\nabla\sqrt{$\rho$_{n}}\rightarrow\nabla\sqrt{ $\rho$}, $\Lambda$_{n}\rightarrow $\Lambda$, inL^{2}(B_{R}) .
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The Lemma 7.4 allows us to state the existence result for a solution of infinite

energy with a small perturbation of a vortex configuration as initial data.

Theorem 7.5. Let $\psi$_{0} = U_{0}+u_{0} for a ficed vortex configuration U_{0} \in  V and
u_{0}\in H^{1}(\mathrm{R}^{2}) . Define

 $\rho$ 0=|$\psi$_{0}|^{2}, J0={\rm Im}(\overline{$\psi$_{0}}\nabla$\psi$_{0}) .

Then there exists a global weak solution ( $\rho$, J) of (1.1) such that

 $\rho$(0)= $\rho$ 0, J(0)=J_{0}.

We stress that given  $\psi$\in  V+H^{1} , the decomposition  $\psi$=U_{0}+v is in general
not unique and in particular the position of single vortices is not. The considered
solutions exhibit non‐static vortices. Once the decomposition and in particular the
reference configuration U_{0} is fixed, one may introduce a renormalized energy as in
[15] that is needed to show that the result is global in time. We postpone the quite
technical discussion on the vortex configuration in the QHD setting to [2].

This previous discussion is oriented towards a rigorous analysis of quantum vor‐
tex dynamics in the context of QHD equations. When studying such coherent
objects, it is useful to scale the fluid dynamical equations in such a way to consider

(7.5) \left\{\begin{array}{l}
\partial_{t} $\rho$+\mathrm{d}\mathrm{i}\mathrm{v}J=0\\
\partial_{t}J+\mathrm{d}\mathrm{i}\mathrm{v}(\frac{J\otimes J}{ $\rho$})+\frac{1}{$\varepsilon$^{2}}\nabla p( $\rho$)=\frac{1}{2} $\rho$\nabla(\frac{\triangle\sqrt{ $\rho$}}{\sqrt{ $\rho$}}) ,
\end{array}\right.
in the same spirit of low Mach number limit, which focus on the dynamics of the
incompressible fluid flow of the system. In this way the GP equation scales hke

(7.6) \left\{\begin{array}{l}
i\partial_{t} $\psi$=-\frac{1}{2} $\Delta \psi$+\frac{1}{$\varepsilon$^{2}}(| $\psi$|^{2}-1) $\psi$\\
 $\psi$(x, 0)=$\psi$_{0}(x) ,
\end{array}\right.
with a small parameter  $\varepsilon$>0 . From a physical point of view  $\epsilon$>0 is (proportional
to) the characteristic core size of the vortex (healing length). The scaling for the
equation (7.6) with small  $\varepsilon$>0 has been proposed in [36, 62] as model for superflu‐
idity and is obtained after rescaling the equation (7.2). Heuristically, this suggests
that  $\rho$= | $\psi$|^{2} is close to 1 and the region where p is different from 1 is of size  $\epsilon$.

This fact for instance can be easily checked for the typology of vortices considered
previously. In the asymptotic regime as  $\varepsilon$\rightarrow 0 , the vortex cores shrink to point‐
vortices. In d= 2 , the dynamics of vortices for (7.6) in the incompressible hmit
has been extensively studied in hterature. It first appeared in the periodic setting
in the paper [20] by Colliander and Jerrard and on bounded domains by Lin and
Xin [58]. Both paper rely on variational methods for the minimization problem for
Ginzburg‐Landau energy functional and prove that the vortex dynamics for almost
energy minimizing solutions in the incompressible limit is governed by the classical
Kirchhoff‐Onsager law for point vortices in 2d . Later several different settings have
been investigated, for example in [14] the authors study the vortex dynamics on
the plane and they have to deal with infinite energy configurations.
When considering the quantum vortex dynamics in the QHD system (7.5), it is
possible to give a more detailed picture. In [24] the low Mach number hmit for
the QHD in the periodic setting is studied. It is shown that for sufficiently reg‐
ular but ill‐prepared data of finite energy the asymptotic regime is described by
the incompressible Euler equation. The proof uses the modulated energy method
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and a decreasing relative entropy functional. On the whole space, Li, Lin and Wu
[55] considered the asymptotic regime for well‐prepared initial data of finite energy.
Exploiting Strichartz estimates for the hnear wave equation on the plane and the
modulated energy method the authors obtain strong convergence towards a solution
of the incompressible Euler equation.

Our goal is to weaken the regularity assumptions on the initial data (in order to
consider vortex configurations) and to carry out the limit by a careful analysis of the
acoustic waves. The presence of a second sound described through the dispersive
properties of a fourth order operator can be seen also in a similar framework in
[25]. On the other hand, one of the main difficulties of considering vortex solutions
is that the 2d incompressible Euler equation does not admit a weak solution if the
initial vorticity is given by point vortices, \mathrm{i}. \mathrm{e} . a sum of weighted Dirac delta.
The most general existence result for the incompressible Euler equations has been
derived by Delort [22] and requires that the vorticity satisfies $\omega$_{0} \in  H^{-1} positive
Radon measure. To overcome this difficulty we shall combine those tools with an
analysis done in the same spirit as in [20, 56].
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