BRI ST R S B
#2073% 20184F 39-43

Complementarity of subspaces of £, revisited

Ryotaro Tanaka

1 Introduction

This note is a survey of [9]. Let X be a Banach space. A closed subspace M of X is said
to be complemented in X if there exists a closed subspace N of X such that X = M & N
(that is, X = M + N and M N N = {0}), or equivalently, there exists a bounded linear
projection from X onto M. The study on complementarity of closed subspaces of Banach
spaces has played a central role in the isomorphic theory; and is still of interest for many
mathematicians working around Banach space theory since some long-standing problems
was solved in 1990s by using (hereditarily) indecomposable Banach spaces.

The first example of an uncomplemented closed subspace of a Banach space is the (null)
convergent sequence space ¢ (or ¢p) in the bounded sequence space £.,. This appeared as
a consequence of the study on representation of linear operators on certain Banach spaces
by Phillips [8]. After a quarter century later, Whitley [10] gave a simplified proof which
based on an idea due to Nakamura and Kakutani [7]. Namely, he showed that (£ /co)*
has no countable total subsets, where a subset F' of the dual space X* of a Banach space
X is said to be total if f(z) = 0 for each f € F implies that z = 0. Since the property
that X* has a countable total subset is preserved under taking subspaces or by linear
isomorphisms, Whitley’s argument is sufficient for denying the complementarity of ¢y in
Lo

In 1967, Lindenstrauss [5] characterized complemented subspaces of Zo by showing
that £, is a prime Banach space, where an infinite dimensional Banach space X is said to
be prime if every infinite dimensional complemented subspace of X is isomorphic to X.
From this and the fact that £ is injective, an infinite dimensional closed subspace of £,
is complemented in £, if and only if it is isomorphic to £,. This powerful characterization
concludes, at least, any separable subspace of ¢, cannot be complemented in £, which
drastically improves the result of Phillips. However, we note that it is not always effective
in determining the complementarity of concrete non-separable subspaces of £,,. To do this,
we still have to investigate for case by case; because we do not know whether checking
an infinite dimensional subspace of 44, is (not) isomorphic to £, is easier than examining
the complementarity of the subspace directly.

The aim of this note is to present a simple criterion for complementarity of subspaces
of £, induced by bounded linear operators admitting matrix representations.

2 Matrix representations of operators on /.

We begin with preliminary works on matrix representations of operators on £.,. In what
follows, let (e,) be the standard unit vector basis for the space cyg of all complex sequences



with finitely nonzero coordinates, that is, let e, = (0,...,0,1,0,...) and e’a = a,, for each
n € N and each a = (a,) € ¢, where 1 is in the n-th position. ‘

A linear operator T on £, is said to admits a matriz representation if there exists an
infinite matrix (t;;) of complex numbers such that efTa = 377, t;;a; for each a = (a,) €
{o, and each i € N. Some basic facts about linear operators on /,, admitting matrix
representations are collected in the following proposition. The proof is routine; so it is
included only for the sake of completeness.

Proposition 2.1. Let T be a linear operator on .
(i) T admits a matriz representation if and only if
eiTa= liyrlne;*T(al, ceey @,y 0,..0)
for each (an) € £e and each i € N.
(ii) Suppose that T admits a matriz representation (t;;). Then T is bounded if and only
if M =sup{d>32, |tij| : i € N} < oo. In that case, | T|| = M.
For a Banach spaces X, let B(X) be the Banach space of all bounded linear operators
on X. '

Corollary 2.2. Let M(£y) be the subspace of B({s) consisting of all operators admitting
matriz representations. Then M(£y,) is isometrically isomorphic to £y (4y).
We next consider some special properties of elements T of M (£,) satisfying T(co) C ¢o.
For this, we need the following basic lemma.
Lemma 2.3. Let T € B(cy). Then there erists a unique weak*-to-weak* continuous
operator T, on Loy with ||Twl| = ||T|| that extends T.
For weak*-to-weak* continuous linear operators T on £, the condition T'(¢g) C ¢ can
be characterized by a simple way. ,
Lemma 2.4. Let S be a weak*-to-weak* continuous linear operator on Ly. Then S(co) C
co if and only if S = Ty, for some T € B(cp).
The following result helps us to understanding a position of bounded linear operators
on {,, admitting matrix representations.
Proposition 2.5. Let T € B({y).
() If T is weak*-to-weak* continuous then T € M (£y).
(i) If T € M(¢s) and T(cp) C co, then T is weak*-to-weak* continuous.
Now let My(loo) = {T € M(€s) : T(co) C co}. Then, by the preceding proposition,
T € My(¢s) if and only if T is a weak*-to-weak* continuous operator on £, satisfying
T(co) C co. :
The following provides a simple characterization of My(£y) in M (£s).
Proposition 2.6. Let T € M({) with a matriz representation (t;;). Then T € Mo(oo)
if and only if t;; — 0 as i — oo for each j € N. '
. We conclude this section with another characterization of Mj(¢) which shows that
all elements of My(£y) are induced by those of B(cp). -

Corollary 2.7. My(¢s) = {Tw : T € B(co)}. Consequently, Mo({x) is isometrically
isomorphic to B(cy).
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3 Subspaces of {,, induced by matrices

Let B(£,) denote the Banach space of bounded linear operators on £,,. Suppose that
T € B(£s). We consider the closed subspaces ¢(T) := T !(c) and co(T) := T"}(co) of
£, respectively. We note that ¢(I) = ¢ and co(f) = ¢o while ¢(0) = ¢(0) = £oo.

A linear operator T on {, is said to admits a matriz representation if there exists
an infinite matrix (t;;) of complex numbers such that (Ta), = } 2, tnja; for each a =
(an) € beo. If T € M (L), the spaces ¢(T) and ¢o(T) are closely related to objects studied
in the monograph [1]. In particular, ¢(T) is called the bounded summability field of T’; see
also [2, 3].

We first consider some conditions equivalent to ¢o(T) = f». The following is a key
ingredient for the proof of the main theorem in this paper.

Theorem 3.1. Let T € My(£s) with a matriz representation (t;;). Then the following
are equivalent:

(1) colT) = .
(i1) T is a compact operator on £,.

The following is the main theorem. The proof is based on a combination of a gliding
hump argument and Whitley’s method [10].

Theorem 3.2. Let T be a non-compact element of My(£s) with a matriz representation
(tij). If M is a closed subspace with co C M C ¢(T), then (€x/M)* has no countable total
subsets. Consequently, M is not complemented in {.

As a consequence of Theorems 3.1 and 3.2, we have the following dichotomy.

Corollary 3.3. Let T € My(£y). Then one and only one of the following two statements
holds:

(i) o(T) = o(T) = luo.
(ii) Al closed subspaces M of £y, with co C.M C ¢(T) are uncomplemented in £.

The rest of this section is devoted to presenting some applications of Theorem 3.2.
Recall that a sequence a = (a,) € £ is said to be mean convergent to « if the sequence
(n7? Z;;l a;) converges to «, and almost convergent to the almost limit o if p(a) = « for
each Banach limit ¢ on £ It is well-known as Lorentz’s theorem [6] that a = (a,) € 4
is almost convergent to « if and only if

1 m
E E Apij—1 —
J=1

The spaces of all mean convergent, almost convergent and almost null sequences are
denoted by M, f and fy, respectively. We note that ¢y C fo C f C M holds.

lim sup =0.

M neN

Corollary 3.4. All the spaces. M, f, fo are closed and uncomplemented in {,.
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Corollary 3.5. Let d and dy be subspaces of £, given by

d={a=(ay) € e : (an — an41) converges}
do = {a = (an) € Lo : (@n — Gny1) converges to 0}

Then d,dy are closed and uncomplemented in £.,.

4 A weak”® closed subspace
In this section, we show the limit of Whiﬂey’s method. The following is a key ingredient.

Theorem 4.1. There ezists an uncomplemented weak® closed subspace W of £,. More-
over, W contains an isometric copy of £o.

Moreover, weak* closed subspaces have a special property.

Proposition 4.2. Let M be a weak* closed subspace of Ls,. Then there ezists a countable
total subset of ({eo/M)*.

As a consequence, for a closed subspace M of £y, the property that (¢s,/M)* has a
countable total subset is necessary but not sufficient for assuring the complementarity
of M in £,,. We wonder what structural conditions are equivalent to this isomorphic
property. We finally mention an impact of the property that (¢,,/M)* has a countable
total subset, where M is a closed subspace of ¢, containing co.

Proposition 4.3 (Jameson [4]). Let M be a closed subspace of £y, containing co. If
(Yoo/M)* has a countable total subset. Then £x(N) C M for some infinite subset N of
N, where {,(N) = {a = (a,) € s : an =0 for eachn ¢ N}.
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