Complementarity of subspaces of ℓ_{∞} revisited

Ryotaro Tanaka

1 Introduction

This note is a survey of [9]. Let X be a Banach space. A closed subspace M of X is said to be *complemented* in X if there exists a closed subspace N of X such that $X = M \oplus N$ (that is, X = M + N and $M \cap N = \{0\}$), or equivalently, there exists a bounded linear projection from X onto M. The study on complementarity of closed subspaces of Banach spaces has played a central role in the isomorphic theory; and is still of interest for many mathematicians working around Banach space theory since some long-standing problems was solved in 1990s by using (hereditarily) indecomposable Banach spaces.

The first example of an uncomplemented closed subspace of a Banach space is the (null) convergent sequence space c (or c_0) in the bounded sequence space ℓ_{∞} . This appeared as a consequence of the study on representation of linear operators on certain Banach spaces by Phillips [8]. After a quarter century later, Whitley [10] gave a simplified proof which based on an idea due to Nakamura and Kakutani [7]. Namely, he showed that $(\ell_{\infty}/c_0)^*$ has no countable total subsets, where a subset F of the dual space X^* of a Banach space X is said to be *total* if f(x) = 0 for each $f \in F$ implies that x = 0. Since the property that X^* has a countable total subset is preserved under taking subspaces or by linear isomorphisms, Whitley's argument is sufficient for denying the complementarity of c_0 in ℓ_{∞} .

In 1967, Lindenstrauss [5] characterized complemented subspaces of ℓ_{∞} by showing that ℓ_{∞} is a prime Banach space, where an infinite dimensional Banach space X is said to be *prime* if every infinite dimensional complemented subspace of X is isomorphic to X. From this and the fact that ℓ_{∞} is injective, an infinite dimensional closed subspace of ℓ_{∞} is complemented in ℓ_{∞} if and only if it is isomorphic to ℓ_{∞} . This powerful characterization concludes, at least, any separable subspace of ℓ_{∞} cannot be complemented in ℓ_{∞} , which drastically improves the result of Phillips. However, we note that it is not always effective in determining the complementarity of concrete non-separable subspaces of ℓ_{∞} . To do this, we still have to investigate for case by case; because we do not know whether checking an infinite dimensional subspace of ℓ_{∞} is (not) isomorphic to ℓ_{∞} is easier than examining the complementarity of the subspace directly.

The aim of this note is to present a simple criterion for complementarity of subspaces of ℓ_{∞} induced by bounded linear operators admitting matrix representations.

2 Matrix representations of operators on ℓ_∞

We begin with preliminary works on matrix representations of operators on ℓ_{∞} . In what follows, let (e_n) be the standard unit vector basis for the space c_{00} of all complex sequences

with finitely nonzero coordinates, that is, let $e_n = (0, \ldots, 0, 1, 0, \ldots)$ and $e_n^* a = a_n$ for each $n \in \mathbb{N}$ and each $a = (a_n) \in \ell_{\infty}$, where 1 is in the *n*-th position.

A linear operator T on ℓ_{∞} is said to admits a matrix representation if there exists an infinite matrix (t_{ij}) of complex numbers such that $e_i^*Ta = \sum_{j=1}^{\infty} t_{ij}a_j$ for each $a = (a_n) \in \ell_{\infty}$ and each $i \in \mathbb{N}$. Some basic facts about linear operators on ℓ_{∞} admitting matrix representations are collected in the following proposition. The proof is routine; so it is included only for the sake of completeness.

Proposition 2.1. Let T be a linear operator on ℓ_{∞} .

(i) T admits a matrix representation if and only if

$$e_i^*Ta = \lim_n e_i^*T(a_1,\ldots,a_n,0,\ldots)$$

for each $(a_n) \in \ell_{\infty}$ and each $i \in \mathbb{N}$.

(ii) Suppose that T admits a matrix representation (t_{ij}) . Then T is bounded if and only if $M = \sup\{\sum_{j=1}^{\infty} |t_{ij}| : i \in \mathbb{N}\} < \infty$. In that case, ||T|| = M.

For a Banach spaces X, let B(X) be the Banach space of all bounded linear operators on X.

Corollary 2.2. Let $M(\ell_{\infty})$ be the subspace of $B(\ell_{\infty})$ consisting of all operators admitting matrix representations. Then $M(\ell_{\infty})$ is isometrically isomorphic to $\ell_{\infty}(\ell_1)$.

We next consider some special properties of elements T of $M(\ell_{\infty})$ satisfying $T(c_0) \subset c_0$. For this, we need the following basic lemma.

Lemma 2.3. Let $T \in B(c_0)$. Then there exists a unique weak*-to-weak* continuous operator T_{∞} on ℓ_{∞} with $||T_{\infty}|| = ||T||$ that extends T.

For weak*-to-weak* continuous linear operators T on ℓ_{∞} , the condition $T(c_0) \subset c_0$ can be characterized by a simple way.

Lemma 2.4. Let S be a weak*-to-weak* continuous linear operator on ℓ_{∞} . Then $S(c_0) \subset c_0$ if and only if $S = T_{\infty}$ for some $T \in B(c_0)$.

The following result helps us to understanding a position of bounded linear operators on ℓ_{∞} admitting matrix representations.

Proposition 2.5. Let $T \in B(\ell_{\infty})$.

(i) If T is weak*-to-weak* continuous then $T \in M(\ell_{\infty})$.

(ii) If $T \in M(\ell_{\infty})$ and $T(c_0) \subset c_0$, then T is weak*-to-weak* continuous.

Now let $M_0(\ell_{\infty}) = \{T \in M(\ell_{\infty}) : T(c_0) \subset c_0\}$. Then, by the preceding proposition, $T \in M_0(\ell_{\infty})$ if and only if T is a weak*-to-weak* continuous operator on ℓ_{∞} satisfying $T(c_0) \subset c_0$.

The following provides a simple characterization of $M_0(\ell_{\infty})$ in $M(\ell_{\infty})$.

Proposition 2.6. Let $T \in M(\ell_{\infty})$ with a matrix representation (t_{ij}) . Then $T \in M_0(\ell_{\infty})$ if and only if $t_{ij} \to 0$ as $i \to \infty$ for each $j \in \mathbb{N}$.

We conclude this section with another characterization of $M_0(\ell_{\infty})$ which shows that all elements of $M_0(\ell_{\infty})$ are induced by those of $B(c_0)$.

Corollary 2.7. $M_0(\ell_{\infty}) = \{T_{\infty} : T \in B(c_0)\}$. Consequently, $M_0(\ell_{\infty})$ is isometrically isomorphic to $B(c_0)$.

3 Subspaces of ℓ_{∞} induced by matrices

Let $B(\ell_{\infty})$ denote the Banach space of bounded linear operators on ℓ_{∞} . Suppose that $T \in B(\ell_{\infty})$. We consider the closed subspaces $c(T) := T^{-1}(c)$ and $c_0(T) := T^{-1}(c_0)$ of ℓ_{∞} , respectively. We note that c(I) = c and $c_0(I) = c_0$ while $c(0) = c_0(0) = \ell_{\infty}$.

A linear operator T on ℓ_{∞} is said to *admits a matrix representation* if there exists an infinite matrix (t_{ij}) of complex numbers such that $(Ta)_n = \sum_{j=1}^{\infty} t_{nj}a_j$ for each $a = (a_n) \in \ell_{\infty}$. If $T \in \mathcal{M}(\ell_{\infty})$, the spaces c(T) and $c_0(T)$ are closely related to objects studied in the monograph [1]. In particular, c(T) is called the *bounded summability field* of T; see also [2, 3].

We first consider some conditions equivalent to $c_0(T) = \ell_{\infty}$. The following is a key ingredient for the proof of the main theorem in this paper.

Theorem 3.1. Let $T \in M_0(\ell_{\infty})$ with a matrix representation (t_{ij}) . Then the following are equivalent:

- (i) $c_0(T) = \ell_{\infty}$.
- (ii) T is a compact operator on ℓ_{∞} .
- (iii) $\lim_{i \to \infty} \sum_{j=1}^{\infty} |t_{ij}| = 0.$

The following is the main theorem. The proof is based on a combination of a *gliding* hump argument and Whitley's method [10].

Theorem 3.2. Let T be a non-compact element of $M_0(\ell_{\infty})$ with a matrix representation (t_{ij}) . If M is a closed subspace with $c_0 \subset M \subset c(T)$, then $(\ell_{\infty}/M)^*$ has no countable total subsets. Consequently, M is not complemented in ℓ_{∞} .

As a consequence of Theorems 3.1 and 3.2, we have the following dichotomy.

Corollary 3.3. Let $T \in M_0(\ell_{\infty})$. Then one and only one of the following two statements holds:

- (i) $c_0(T) = c(T) = \ell_{\infty}$.
- (ii) All closed subspaces M of ℓ_{∞} with $c_0 \subset M \subset c(T)$ are uncomplemented in ℓ_{∞} .

The rest of this section is devoted to presenting some applications of Theorem 3.2. Recall that a sequence $a = (a_n) \in \ell_{\infty}$ is said to be *mean convergent* to α if the sequence $(n^{-1}\sum_{j=1}^{n} a_j)$ converges to α , and almost convergent to the almost limit α if $\varphi(a) = \alpha$ for each Banach limit φ on ℓ_{∞} . It is well-known as Lorentz's theorem [6] that $a = (a_n) \in \ell_{\infty}$ is almost convergent to α if and only if

$$\lim_{m} \sup_{n \in \mathbb{N}} \left| \frac{1}{m} \sum_{j=1}^{m} a_{n+j-1} - \alpha \right| = 0.$$

The spaces of all mean convergent, almost convergent and almost null sequences are denoted by \mathcal{M} , f and f_0 , respectively. We note that $c_0 \subset f_0 \subset f \subset \mathcal{M}$ holds.

Corollary 3.4. All the spaces \mathcal{M} , f, f_0 are closed and uncomplemented in ℓ_{∞} .

Corollary 3.5. Let d and d_0 be subspaces of ℓ_{∞} given by

$$d = \{a = (a_n) \in \ell_{\infty} : (a_n - a_{n+1}) \text{ converges} \}$$

$$d_0 = \{a = (a_n) \in \ell_{\infty} : (a_n - a_{n+1}) \text{ converges to } 0\}$$

Then d, d_0 are closed and uncomplemented in ℓ_{∞} .

4 A weak* closed subspace

In this section, we show the limit of Whitley's method. The following is a key ingredient.

Theorem 4.1. There exists an uncomplemented weak^{*} closed subspace W of ℓ_{∞} . Moreover, W contains an isometric copy of ℓ_{∞} .

Moreover, weak* closed subspaces have a special property.

Proposition 4.2. Let M be a weak^{*} closed subspace of ℓ_{∞} . Then there exists a countable total subset of $(\ell_{\infty}/M)^*$.

As a consequence, for a closed subspace M of ℓ_{∞} , the property that $(\ell_{\infty}/M)^*$ has a countable total subset is necessary but not sufficient for assuring the complementarity of M in ℓ_{∞} . We wonder what structural conditions are equivalent to this isomorphic property. We finally mention an impact of the property that $(\ell_{\infty}/M)^*$ has a countable total subset, where M is a closed subspace of ℓ_{∞} containing c_0 .

Proposition 4.3 (Jameson [4]). Let M be a closed subspace of ℓ_{∞} containing c_0 . If $(\ell_{\infty}/M)^*$ has a countable total subset. Then $\ell_{\infty}(N) \subset M$ for some infinite subset N of \mathbb{N} , where $\ell_{\infty}(N) = \{a = (a_n) \in \ell_{\infty} : a_n = 0 \text{ for each } n \notin N\}.$

References

- [1] J. Boos, *Classical and modern methods in summability*, Oxford University Press, Oxford, 2000.
- [2] R. M. DeVos and F. W. Hartmann, Sequences of bounded summability domains, Pacific J. Math., 74 (1978), 333-338.
- [3] J. D. Hill and W. T. Sledd, Approximation in bounded summability fields, Canad. J. Math., 20 (1968), 410-415.
- [4] G. J. O. Jameson, Whitley's technique and K_{δ} -subspaces of Banach spaces, Amer. Math. Monthly, 84 (1977), 459–461.
- [5] J. Lindenstrauss, On complemented subspaces of m, Israel J. Math., 5 (1967), 153-156.
- [6] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167–190.

- [7] M. Nakamura and S. Kakutani, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Tokyo, 19 (1943), 224–229.
- [8] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc., 48 (1940), 516– 541.
- [9] R. Tanaka, Complementarity of subspaces of ℓ_{∞} revisited, submitted.
- [10] R. Whitley, Mathematical Notes: Projecting m onto c₀, Amer. Math. Monthly, 73 (1966), 285–286.

Ryotaro Tanaka Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan E-mail: r-tanaka@math.kyushu-u.ac.jp