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1 Introduction

This note is a survey of [9]. Let X be a Banach space. A closed subspace M of X is said
to be complemented in X if there exists a closed subspace N of X such that X=M\oplus N

(that is, X =  $\Lambda$ I+N and M\cap N= \{0\} ), or equivalently, there exists a bounded linear
projection from X onto M . The study on complementarity of closed subspaces of Banach
spaces has played a central role in the isomorphic theory; and is still of interest for many
mathematicians working around Banach space theory since some long‐standing problems
was solved in 1990\mathrm{s} by using (lìereditarily) indecomposable Banach spaces.

The first example of an uncomplemented closed subspace of a Banach space is the (null)
convergent sequence space c (or c_{0} ) in the bounded sequence space p_{\infty} . This appeared as
a consequence of the study on represeritation of linear operators on certain Banach spaces
by Phillips [8]. After a quarter century later, Whitley [10], gave a simplified proof which
based on an idea due to Nakamura and Kakutani [7]. Namely, he showed that (P_{\infty}/c_{0})^{*}
has no countable total subsets, where a subset F of the dual space X^{*} of a Banach space
X is said to be total if f(x) =0 for each f \in  F implies that x=0 . Since the property
that X^{*} has a countable total subset is preserved under taking subspaces or by linear
isomorphisms, Whitley’s argument is sufficient for denying the complementarity of c_{0} in
p_{\infty}.

In 1967, Lindenstrauss [5] characterized complemented subspaces of P_{\infty} by showing
that l_{\infty} is a prime Banach space, where an infinite dimensional Banach space X is said to
be prime if every infinite dimensional complemented subspace of X is isomorphic to X.

From this and the fact that \ell_{\infty} is injective, an infinite dimensional closed subspace of \ell_{\infty}
is complemented in \ell_{\infty} if and only if it is isomorphic to \ell_{\infty} . This powerful characterization
concludes, at least, any separable subspace of \ell_{\infty} cannot be complemented in \ell_{\infty} , which
drastically improves the result of Phillips. However, we note that it is not always effective
in determining the complementarity of concrete non‐separable subspaces of P_{\infty} . To do this,
we still have to investigate for case by case; because we do not know whether checking
an infinite dimensional subspace of \ell_{\infty} is (not) isomorphic to p_{\infty} is easier than examining
the complementarity of the subspace directly.

The aim of this note is to present a simple criterion for complementarity of subspaces
of \ell_{\infty} induced by bounded linear operators admitting matrix representations.

2 Matrix representations of operators on l_{\infty}

We begin with preliminary works on matrix representations of operators on \ell_{\infty} . In what
follows, let (e_{n}) be the standard unit vector basis for the space c_{00} of all complex sequences
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with finitely nonzero coordinates, that is, let, e_{n}= (0, \ldots , 0,1, 0, \ldots) and e_{n}^{*}a=a_{7/} for each
n\in \mathrm{N} and each a=(a_{n}) \in p_{\infty} , where 1 is in the n‐th position.

A linear operator T on p_{\infty} is said to admits a matrix representation if t,here exists an
infinite matrix (t_{ij}) of complex numbers such that e_{i}^{*}Ta=\displaystyle \sum_{j=1}^{\infty}t_{ij}a_{j} for each a= (a_{n}) \in

\ell_{\infty} and each i \in \mathbb{N} . Some basic facts about linear operators on \ell_{\infty} admitting matrix
representations are collected in the following proposition. The proof is routine; so it is
included only for the sake of completeness.

Proposition 2.1. Let T be a linear operator on \ell_{\infty}.

(i) T admits a matrix representation if and only if

e_{i}^{*}Ta=\displaystyle \lim_{n}e_{i}^{*}T(a_{1}, \ldots , a_{n}, 0, \ldots)
for each (a_{n}) \in p_{\infty} and each i\in \mathbb{N}.

(ii) Suppose that T admits a matrix representation (t_{ij}) . Then T is bounded if and only
if  M=\displaystyle \sup\{\sum_{j=1}^{\infty}|t_{ij}| : i\in \mathrm{N}\}<\infty . In that case, \Vert T\Vert=M.

For a Banach spaces X , let B(X) be the Banach space of all bounded linear operators
on X.

Corollary 2.2. Let M(P_{\infty}) be the subspace of B(\ell_{\infty}) consisting of all operators admitting
matrix representations. Then M(\ell_{\infty}) is isometrically isomorphic to \ell_{\infty}(\ell_{1}) .

We next consider some special properties of elements T of A4 (\ell_{\infty}) satisfying T(c_{0})\subset c_{0}.
For this, we need the following basic lemma.

Lemma 2.3. Let T \in  B(c_{0}) . Then there exists a unique weak^{*}-to-\mathrm{w}eak^{*} continuous
operator T_{\infty} on \ell_{\infty} with \Vert T_{\infty}\Vert =\Vert T|| that extends T.

For wesk *-\mathrm{t}\mathrm{o}-\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}^{*} continuous linear operators T on \ell_{\infty} , the condition T(c_{0})\subset c_{0} can
be characterized by a simple way.

Lemma 2.4. Let S be a weak* ‐to‐weak? continuous linear operator on \ell_{\infty} . Then  S(c_{0})\subset
 c_{0} if and only if S=T_{\infty} for some T\in B(c_{0}) .

The following result helps us to understanding a position of bounded linear operators
on l_{\infty} admitting matrix representations.

Proposition 2.5. Let T\in B(P_{\infty}) .

(i) If T is weak’ -to-weak^{*} continuous then T\in M(\ell_{\infty}) .

(ii) If T\in M(\ell_{\infty}) and T(c_{0})\subset c_{0} , then T is weak*-to-weak^{*} continuous.

Now let M_{0}(\ell_{\infty}) = \{T \in \mathrm{A}l(P_{\infty}) : T(c_{0}) \subset c_{0}\} . Then, by the preceding proposition,
T \in  M_{0}(\ell_{\infty}) if and only if T is a weak’‐to‐weak’ continuous operator on \ell_{\infty} satisfying
T(c_{0})\subset c_{0}.

The following provides a simple characterization of M_{0}(P_{\infty}) in M(\ell_{\infty}) .

Proposition 2.6. Let T\in M(\ell_{\infty}) with a matrix representation (t_{ij}) . Then T\in M_{0}(\ell_{\infty})
if and only if t_{ij}\rightarrow 0 as  i\rightarrow\infty for each  j\in \mathrm{N}.

We conclude this section with another characterization of M_{0}(\ell_{\infty}) which shows that

all elements of M_{0}(\ell_{\infty}) are induced by those of B(c_{0}) .

Corollary 2.7. M_{0}(\ell_{\infty}) = \{T_{\infty} : T \in B(c_{0})\} . Consequently, M_{0}(P_{\infty}) is isometrically
isomorphic to B(c_{0}) .

40



3 Subspaces of P_{\infty} induced by matrices

Let B(\ell_{\infty}) denote the Banach space of bounded linear operators on \ell_{\infty} . Suppose that
T \in  B(\ell_{\infty}) . We consider the closed subspaces c(T) := T^{-1}(c) and c_{0}(T) := T^{-1}(c_{0}) of
\ell_{\infty} , respectively. We note that c(I) =c and c_{0}(I)=c_{0} while c(0)=c_{0}(0)=P_{\infty}.

A linear operator T on P_{\infty} is said to admits a matrix representation if there exists
an infinite matrix (tíj) of complex numbers such that (Ta)_{n} = \displaystyle \sum_{j=1}^{\infty}t_{nj}a_{j} for each a =

(a_{n})\in\ell_{\infty} . If  T\in  M(\ell_{\infty}) , the spaces c(T) and c_{0}(T) are closely related to objects studied
in the monograph [1]. In particular, c(T) is called the bounded summability field of T ; see
also [2, 3].

We first consider some conditions equivalent to c_{0}(T) = \ell_{\infty} . The following is a key
ingredient for the proof of the main theorem in this paper.

Theorem 3.1. Let T \in  M_{0}(P_{\infty}) with a matrix representation (t_{ij}) . Then the following
are equivalent:

(i) c_{0}(T)=\ell_{\infty}.

(ii) T is a compact operator on p_{\infty}.

(iii) \displaystyle \lim_{i}\sum_{j=1}^{\infty}|t_{ij}| =0.

The following is the main theorem. The proof is based on a combination of a gliding
hump argument and Whitley’s method [10].

Theorem 3.2. Let T be a non‐compact element of M_{0}(P_{\infty}) with a matrix representation
(t_{ij}) . If M is a closed subspace with c_{0}\subset M\subset c(T) , then (\ell_{\infty}/M)^{*} has no countable total
subsets. Consequently, M is not complemented in p_{\infty}.

As a consequence of Theorems 3.1 and 3.2, we have the following dichotomy.

Corollary 3.3. Let  T\in  M_{0}(\ell_{\infty}) . Then one and only one of the following two statements
holds:

(i) c_{0}(T)=c(T)=\ell_{\infty}.

(ii) All closed subspaces M of \ell_{\infty} with c_{0}\subset M\subset c(T) are uncomplemented in \ell_{\infty}.

The rest of this section is devoted to presenting some applications of Theorem 3.2.
Recall that a sequence a=(a_{n}) \in\ell_{\infty} is said to be mean convergent to  $\alpha$ if the sequence

(n^{-1}\displaystyle \sum_{j=1}^{n}a_{j}) converges to a , and almost convergent to the almost limit  $\alpha$ if  $\varphi$(a)= $\alpha$ for
each Banadi limit  $\varphi$ on \ell_{\infty} . It is well‐known as Lorentz’s theorem [6] that a=(a_{n}) \in p_{\infty}
is almost convergent to  $\alpha$ if and only if

\displaystyle \lim_{m}\sup_{n\in \mathrm{N}}|\frac{1}{m}\sum_{j=1}^{m}a_{n+j-1}- $\alpha$| =0.
The spaces of all mean convergent, almost convergent and almost null sequences are
denoted by \mathcal{M}, f and f_{0} , respectively. We note that c_{0}\subset f_{0} \subset f\subset \mathcal{M} holds.

Corollary 3.4. All the spaces \mathcal{M}, f, f_{0} are closed and uncomplemented in \ell_{\infty}.
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Corollary 3.5. Let d and d_{0} be subspaces of p_{\infty} given by

d= { a=(a_{n})\in\ell_{\infty} : (a_{n}-a_{n+1}) converges}
d_{0}= {a=(a_{n}) \in P_{\infty} : (a_{n}-a_{n+1}) converges to 0 }

Then d, d_{0} are closed and uncomplemented in \ell_{\infty}.

4 A weak
*

closed subspace

In this section, we show the limit of Whitley’s method. The following is a key ingredient.

Theorem 4.1. There exists an uncomplemented weak^{*} closed subspace W of p_{\infty} . More‐
over, W contains an zsometric copy of \ell_{\infty}.

Moreover, weak
*

closed subspaces have a special property.

Proposition 4.2. Let M be a weak* closed subspace of \ell_{\infty} . Then there exists a countable
total subset of (\ell_{\infty}/M)^{*}

As a consequence, for a closed subspace  $\Lambda$\prime I of p_{\infty\rangle} the property that (P_{\infty}/M)^{*} lìas a
countable total subset is necessary but not sufficient for assuring the complementarity
of M in \ell_{\infty} . We wonder what structural conditions are equivalent to this isomorphic
property. We finally mention an impact of the property that (P_{\infty}/M)^{*} has a countable
total subset, where M is a closed subspace of l_{\infty} containing c_{0}.

Proposition 4.3 (Jameson [4]). Let M be a closed subspace of \ell_{\infty} containing c_{0} . If
(P_{\infty}/M)^{*} has a countable total subset. Then \ell_{\infty}(N) \subset  M for some infinite subset N of

\mathrm{N} , where \ell_{\infty}(N)=\{a=(a_{n})\in P_{\infty} : a_{n}=0 for each n\not\in N\}.
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