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ABSTRACT. In this paper, we shall give a concrete relation between generalized
Karcher equation and operator means as its solution. Next, we shall show two types
of the Ando‐Hiai inequalities for the solution of the generalized Karcher equations.
In this discussion, we also give properties of relative operator entropy.

1. INTRODUCTION

The theory of operator means was firstly considered in [22]. In that paper, the
operator geometric mean has been defined. Then the axiom of operator means of
two‐operators was defined in [14]. However, this axiom cannot be extended over more
than three operators, especially, many people attempted to define operator geometric
mean of n‐operators with natural properties. For this problem, the first solution was
given in [2]. In that paper, a geometric mean of n‐positive definite matrices was
defined, and it haslO nice properties, for instance, operator monotonicity. Since then
operator geometric means has been discussed in many papers, for example, [5, 12, 13].
Especially, we pay attention to a geometric mean of n‐positive definite matrices which
is defined in [3]. It was defined by using the property that the set of all positive definite
matrices is a Riemannian manifold with non‐positive curvature. Then it was shown
that the geometric mean can be defined by a solution of a matrix equation in [19].

For bounded linear operators on a Hilbert space case, although, we can not define
the geometric mean of n‐operators by the same way to [3], it can be defined as a
solution of the same operator equation to [19] in [16]. This operator equation is
called the Karcher equation, and the geometric mean is called the Karcher mean.
It is shown in [4, 15] that the Karcher mean satisfies all 10 properties stated in [2].
Moreover the Karcher mean satisfies the Ando‐Hiai inequality —a one of the most
important operator inequality in the operator theory − [16 , 17, 24] , and the geometric
mean which satisfies the Ando‐Hiai inequality should be the Karcher mean [24]. Hence
a lot of people study the Karcher mean.

As an extension of the Karcher mean, the power mean is defined in [17]. It interpo‐
lates the arithmetic, geometric (Karcher) and harmonic means, and it is defined by a
solution of an operator equation. It is known that some operator inequalities relating
to the power mean has been obtained [18]. In a recent year, Pálfia [20] generalized the
Karcher mean by generalizing the Karcher equation. Then he obtained various kind
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of operator means of n‐operators. We can obtain the Karcher and power means as
special cases of the new operator means. But we have not known any concrete relation
between the generalized Karcher equation and operator means, i.e., we do not know
which operator mean can be obtained from a given generalized Karcher equation.

In this report, we shall give a concrete relation between the generalized Karcher
equation and operator means. In fact, we will give an inverse function of a represent‐
ing function of an operator mean which is derived from a given generalized Karcher
equation. In this discussion, representing function of relative operator entropy is very
important. Next we shall give the Ando‐Hiai type operator inequalities. Here we
shall show two‐types of Ando‐Hiai inequalities, and we shall give a property of rela‐
tive operator entropies. For the first type of the Ando‐Hiai inequality, we shall give
an Ando‐Hiai type operator inequality for a given operator mean. The second one
discusses an equivalence relation that the Ando‐Hiai type inequality holds. The Ando‐
Hiai inequality was shown in [1], firstly. Then it has been extended to the Karcher and
the power means in [16, 17, 18, 24]. On the other hand, the second type was firstly
considered in [23]. He considered an arbitrary operator mean of 2‐operators. In this
report, we shall generalize these results into several operator means of n‐operators
which are derived from the generalized Karcher equation. At the same time, we shall
study properties of relative operator entropies.

This report consists as follows: In Section 2, we shall introduce some basic nota‐
tions, definitions and theorems. In Section 3, we shall obtain a relation among the
generalized Karcher equation, relative operator entropy and operator means. In Sec‐
tion 4, we shall show the Ando‐Hiai type inequalities for operator means which are
derived from the solution of the generalized Karcher Equation.

2. PRELIMINARIES

In what follows let \mathcal{H} be a Hilbert space, and \mathcal{B}(\mathcal{H}) be a set of all bounded linear
operators on \mathcal{H} . An operator A \in \mathcal{B}(\mathcal{H}) is positive definite (resp. positive semi‐
definite) if \langle Ax,  x\rangle > 0 (resp. \langle Ax,  x\rangle \geq  0 ) holds for all non‐zero x \in \mathcal{H} . If A is
positive semi‐definite, we denote A\geq 0 . Let \mathcal{P}S, \mathcal{P}\subset \mathcal{B}(\mathcal{H}) be the sets of all positive
semi‐definite operators and positive definite operators, respectively. For self‐adjoint
operators A and B, A\geq\backslash B is defined by A-B\geq 0 . A real‐valued function f defined
on an interval I satisfying

B\leq A \Rightarrow f(B) \leq f(A)

for all self‐adjoint operators A, B \in \mathcal{B}(\mathcal{H}) such that  $\sigma$(A) ,  $\sigma$(B) \in  I is called an
operator monotone function, where  $\sigma$(X) means the spectrum of X\in \mathcal{B}(\mathcal{H}) .

2.1. Operator mean.

Definition 1 (Operator mean, [14]). Let  $\sigma$ : \mathcal{P}S^{2}\rightarrow \mathcal{P}\mathcal{S} be a binary operation. If  $\sigma$

satisfies the following four conditions,  $\sigma$ is, called an operator mean.
(1) If  A\leq C and  B\leq  D , then  $\sigma$(A, B) \leq $\sigma$(C, D) ,
(2) X^{*} $\sigma$(A, B)X\leq $\sigma$(X^{*}AX, X^{*}BX) for all X\in B(\mathcal{H}) ,
(3)  $\sigma$ is upper semi‐continuous on \mathcal{P}S^{2},
(4)  $\sigma$(I, I)=I , where I means the identity operator.
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We notice that if X is invertible in (2), then equality holds.

Theorem \mathrm{A} ([14]). Let  $\sigma$ be an operator mean. Then there exists an operator mono‐
tone function  f on (0, \infty) such that f(1)=1 and

 $\sigma$(A, B)=A^{\frac{1}{2}}f(A\displaystyle \frac{-1}{2}BA\frac{-1}{2})A^{\frac{1}{2}}
for all A \in \mathcal{P} and B \in \mathcal{P}S . A function f is called a representing function of an
operator mean  $\sigma$.

Especially, if the assumption f(1)=1 is removed, then  $\sigma$(A, B) is called solidarity
[7] or perspective[6]. Let  $\epsilon$ >0 be a real number. Then we have A_{ $\epsilon$ i}=A+ $\epsilon$:I, B_{ $\varepsilon$} =

B+ $\varepsilon$ I\in \mathcal{P} for A, B\in \mathcal{P}\mathcal{S} , and we can define an operator mean  $\sigma$(A, B) by  $\sigma$(A, B)=
\displaystyle \lim_{ $\varepsilon$\searrow 0} $\sigma$(A_{ $\varepsilon$}, B_{ $\epsilon$:}) . We note that for an operator mean  $\sigma$ with a representing function
 f,  f'(1)= $\lambda$\in [0 , 1 ] (cf. [10, 21 and we call  $\sigma$ a  $\lambda$‐weighted operator mean. Typical
examples of operator means are the weighted geometric and weighted power means.
These representing functions are  f(x) =x^{ $\lambda$} and f(x) = [1- $\lambda$+ $\lambda$ x^{t}]^{\frac{1}{t}} , respectively,
where  $\lambda$\in [0 , 1 ] and t \in [-1, 1] (in the case t=0 , we consider t\rightarrow 0 ) .\mathrm{T}\mathrm{h}\mathrm{e} weighted
power mean interpolates the.arithmetic, geometric and harmonic means by putting
t= 1, 0, -1 , respectively. In what follows, the  $\lambda$‐weighted geometric and  $\lambda$‐weighted
power means of  A, B\in \mathcal{P}S are denoted by A\#_{ $\lambda$}B and P_{t}( $\lambda$;A, B) , respectively, \mathrm{i}. \mathrm{e}.,

A\displaystyle \#_{ $\lambda$}B=A^{\frac{1}{2}}(A\frac{-1}{2}BA\frac{-1}{2})^{ $\lambda$}A^{\frac{1}{2}},

P_{t}( $\lambda$;A, B)=A^{\frac{1}{2}} [1- $\lambda$+ $\lambda$(A\displaystyle \frac{-1}{2}BA\frac{-1}{2})^{t}]^{\frac{1}{t}}A^{\frac{1}{2}}.
2.2. The Karcher and the power means. Geometric and power means of two‐
operators can be extended over more than 3‐operators via the solution of operator
equations as follows. Let n be a natural number, and let \triangle_{n} be a set of all probability
vectors, i.e.,

\displaystyle \triangle_{n}=\{ $\omega$= (w_{1}, \prime u)_{n})\in(0, 1)^{n}| \sum_{i=1}^{n}w_{i}=1\}.
Definition 2 (The Karcher mean, [3, 16, 19 Let \mathrm{A}= (A_{1}, A_{n}) \in \mathcal{P}^{n} and  $\omega$=

(\mathrm{w}_{1}, w_{n}) \in \triangle_{n} . Then the weighted Karcher mean  $\Lambda$( $\omega$;\mathrm{A}) is defined by a unique
positive solution of the following operator equation;

\displaystyle \sum_{i=1}^{n}\mathrm{w}_{i}\log(X\frac{-1}{2}A_{i}X\frac{-1}{2})=0.
The Karchar mean of 2‐operators coincides with the geometric mean of 2‐operators,

i.e., for each  $\lambda$\in [0 , 1 ] , the solution of

(1- $\lambda$)\displaystyle \log(X\frac{-1}{2}Ax^{\frac{-1}{2}})+ $\lambda$\log(X\frac{-1}{2}BX\frac{-1}{2})=0
is X = A\#_{ $\lambda$}B = A^{\frac{1}{2}}(A\displaystyle \frac{-1}{2}BA\frac{-1}{2})^{ $\lambda$}A\mathrm{S} , easily. We can consider the Karcher mean as
a geometric mean of n‐operators. Properties of the Karcher mean are introduced in
[16], for example.

The following power mean is an extension of the Karcher mean which interpolates
the arithmetic, harmonic and the Karcher (geometric) means.
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Definition 3 (The power mean, [16, 17 Let‐A = (A_{1}, A_{n}) \in \mathcal{P}^{n} and  $\omega$ =

(\mathrm{w}_{1}, w_{n}) \in \triangle . Then for  t \in [-1, 1] , the weighted power mean P_{t}( $\omega$;\mathrm{A}) is defined
by a unique positive solution of the following operator equation;

\displaystyle \sum_{i=1}^{n}w_{i}(X\frac{-1}{2}A_{i}X\frac{-1}{2})^{t}=I.
In fact, put t= 1 and t=-1 , then the arithmetic and harmonic means are easily

obtained, respectively. Also let t\rightarrow 0 , we have the Karcher mean [16, 17]. Properties
of the power mean are introduced in [16, 17].

Recently, the above operator equations are generalized as follows. Let \mathcal{M} be a set
of all operator monotone functions, and let

\mathcal{L}= { g\in \mathcal{M}| g(1)=0 and g'(1)=1 }.

Definition 4 (Generalized Karcher Equation (GKE), [20]). Let g\in \mathcal{L}, \mathrm{A}=(A_{1}, A_{?\mathrm{t}})\in
\mathcal{P}^{n} and  $\omega$ = (\mathrm{w}_{1}, w_{n}) \in \triangle_{n} . Then the following operator equation is called the
Generalized Karcher equation (GKE).

(2.1) \displaystyle \sum_{i=1}^{n}w_{i}g(X\frac{-1}{2}A_{i}X\frac{-1}{2})=0.
Theorem \mathrm{B} ([20]). Any GKE has a unique solution X\in \mathcal{P}.

The Karcher and the power means can be obtained by putting g(x) = \log x and
g(x) = \displaystyle \frac{x^{t}-1}{t} in (2.1), respectively. In what follows $\sigma$_{g}( $\omega$;\mathrm{A}) (or $\sigma$_{g} , simply) denotes
the solution X of (2.1). Properties of $\sigma$_{g} are obtained in [20], here we state some of
them as follows.

Theorem \mathrm{C} ([20]). Let g\in \mathcal{L} and \mathrm{A}=(A_{1}, A_{n}) , \mathrm{B}=(B_{1}, B_{n}) \in \mathcal{P}^{n} . Then $\sigma$_{g}
satisfies the following properties.

(1) $\sigma$_{g}( $\omega$;\mathrm{A}) \leq$\sigma$_{9}( $\omega$;\mathrm{B}) holds if A_{i}\leq B_{i} for all i=1 , n,

(2) X^{*}$\sigma$_{g}( $\omega$;\mathrm{A})X=$\sigma$_{g}( $\omega$;X^{*}\mathrm{A}X) for all invertible X\in B(\mathcal{H}) ,
where X^{*}\mathrm{A}X= (X^{*}A_{1}X, , X^{*}A_{n}X) ,

(3) $\sigma$_{g} is continuous on each operator \mathcal{P} , with respect to the Thompson metric,
(4) $\sigma$_{g}( $\omega$;\mathrm{I})=I , where \mathrm{I}=(I, I) .

Moreover, $\sigma$_{9}((1-v), w);A, B ) will be a w ‐weighted operator mean.

More generalization is discussed in [11, 20].

2.3. Ando‐Hiai inequality. The Ando‐Hiai inequality is one of the most important
inequalities in the operator theory.

Theorem \mathrm{D} (The Ando‐Hiai inequality [1]). Let A, B \in \mathcal{P}S and  $\lambda$ \in [0 , 1 ] . If
A\#_{ $\lambda$}B\leq I holds, then A^{r}\#_{ $\lambda$}B^{r}\leq I holds for all r\geq 1.

The Ando‐Hiai inequality has been extended into the following two‐types.

Theorem \mathrm{E} (Extension of the Ando‐Hiai inequality 1, [16, 17, 18, 24 Let \mathrm{A} =

(A_{1}, A_{n})\in \mathcal{P}^{n},  $\omega$\in\triangle_{n} and  t\in (0,1 ]. Then the following hold.
(1)  $\Lambda$( $\omega$;\mathrm{A})\leq I implies  $\Lambda$( $\omega$;\mathrm{A}^{r})\leq I for all r\geq 1,
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(2) P_{t}( $\omega$;\mathrm{A})\leq I implies P_{\frac{t}{f}}(w, \mathrm{A}^{r})\leq I for all r\geq 1,

(3) P_{-t}( $\omega$, \mathrm{A}) \geq I implies P_{-\frac{\mathrm{t}}{r}}( $\omega$;\mathrm{A}^{r}) \geq I for all  r\geq  1,

where \mathrm{A}^{r}= (A_{1}^{r}, , A_{n}^{r}) .

We remark that opposite inequalities of Theorems \mathrm{D} and \mathrm{E} (1) hold because
 $\Lambda$( $\omega$;\mathrm{A})^{-1}= $\Lambda$( $\omega$;\mathrm{A}^{-1}) holds for all \mathrm{A}\in \mathcal{P}^{n} and w\in\triangle_{n} , where \mathrm{A}^{-1}=(A_{1}^{-1}, A_{n}^{-1}) .
Moreover, the Karcher mean characterizes the property in Theorem \mathrm{E}(1) [24].

We notice for Theorem \mathrm{E}(2) and (3). Different power means appear in each state‐
ment, more precisely, there are power means with different parameters. Relating to
the fact, the Ando‐Hiai inequality has been extended to the following another form.

Theorem \mathrm{F} (Extension of the Ando‐Hiai inequality 2, [23]). Let  $\sigma$ be an operator
mean with a representing function  f . Then the following are equivalent.

(1) f(x^{r})\leq f(x)^{r} holds for all  x\in (0, \infty) and r\geq 1,
(2)  $\sigma$(A, B) \leq I implies  $\sigma$(A^{r}, B^{r})\leq I for all A, B\in \mathcal{P}S and r\geq 1.

3. RELATIONS AMONG GENERALIZED KARCHER EQUATION, RELATIVE OPERATOR
ENTROPY AND OPERATOR MEANS

In this section, we shall give a relation between GKE and operator means. First,
we shall give a concrete form of an inverse function of a representing function of an
operator mean derived from GKE. Before introducing results, we notice as follows.
A representing function of an operator mean is defined for only operator means of
two operators. In this report, we usually treat operator means of 7l‐operators, and
as a special case, we can treat operator means of two‐operators. Here we shall use a
representing function of an operator mean which is defined by an operator mean of
two‐operators. More precisely, let $\sigma$_{g}( $\omega$;\mathrm{A}) be a solution of (2.1). Then for  $\lambda$\in (0,1) ,
its representing function f is defined by

f_{ $\lambda$}(x)=$\sigma$_{g}((1- $\lambda$,  $\lambda$);1, x) ,

i.e., f_{ $\lambda$}(x) satisfies the following GKE:

(3.1) (1- $\lambda$)g(\displaystyle \frac{1}{f_{ $\lambda$}(x)}) + $\lambda$ g(\frac{x}{f_{ $\lambda$}(x)}) =0
for all x>0 . We note that f_{1}(x)=x and f_{0}(x)=1 by (3.1). Hence we can define f_{ $\lambda$}
for all  $\lambda$\in [0 , 1 ].

Proposition 1 (see also [21]). Let g\in \mathcal{L} . Then for each  $\lambda$\in (0,1) , the inverse of f_{ $\lambda$}
in (3.1) is given by

f_{ $\lambda$}^{-1}(x)=xg^{-1} (-\displaystyle \frac{1- $\lambda$}{ $\lambda$}g(x))
Proof. Let $\sigma$_{g} be an operator mean derived from the GKE. Then for each  $\lambda$\in (0,1) ,
y=f_{ $\lambda$}(x) satisfies the following equation

(1- $\lambda$)g(\displaystyle \frac{1}{y}) + $\lambda$ g(\frac{x}{y}) =0.
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It is equivalent to

g(\displaystyle \frac{x}{y}) =-\frac{1- $\lambda$}{ $\lambda$}g(\frac{1}{y}) ,

and thus

f_{ $\lambda$}^{-1}(y)=x=yg^{-1} (-\displaystyle \frac{1- $\lambda$}{ $\lambda$}g(\frac{1}{y})) .

The proof is completed. \square 

Proposition 2. Let g\in \mathcal{L} . Then for each  $\lambda$ \in [0 , 1], f_{ $\lambda$} in (3.1) is differentiable on
 $\lambda$\in(0,1) and

\displaystyle \frac{\partial}{\partial $\lambda$}f_{ $\lambda$}(x)  $\lambda$=0=\lim_{ $\lambda$\searrow 0}\frac{\partial}{\partial $\lambda$}f_{ $\lambda$}(x)=g(x) .

For the Karcher mean case, f_{ $\lambda$}(x) =x^{ $\lambda$} and g(x) = \displaystyle \frac{\partial}{\partial $\lambda$}x^{ $\lambda$}|_{ $\lambda$=0} =\log x , and g(x) =

\log x is a representing function of the relative operator entropy [8]. In fact let A,  B\in

\mathcal{P} . Then the relative operator entropy S(A|B) is defined by

S(A|B)=A^{\frac{1}{2}}\displaystyle \log(A\mathrm{X}^{1}BA\frac{-1}{2})A^{\frac{1}{2}}.
For the power mean case,  f_{ $\lambda$}(x)=[1- $\lambda$+$\lambda$_{X^{t}\rfloor^{\frac{1}{t}}}\urcorner and  g(x)=\displaystyle \frac{\partial}{\partial $\lambda$}[1- $\lambda$+ $\lambda$ x^{t}]^{\frac{1}{t}}|_{ $\lambda$=0}=\frac{x^{t}-1}{t},
and g(x)=\displaystyle \frac{x^{t}-1}{t} is a representing function of the Tsallis relative operator entropy [25].
In fact let A, B\in \mathcal{P} . Then the Tsallis relative operator entropy T_{t}(A|B) is defined by

T(A|B)=A^{\frac{1}{2}}\displaystyle \frac{(A\frac{-1}{2}BA\frac{-1}{2})^{t}-I}{t}A^{\frac{1}{2}} =\frac{A\#_{t}B-A}{t}.
So relative operator entropy is closely related to the GKE and operator means.

Proof of Proposition 2. First of all, g \in \mathcal{L} is a differentiable function since g is an
operator monotone function. By g\in \mathcal{L} and Proposition 1, the representing function
f_{ $\lambda$}(x) is differentiable on  $\lambda$\in(0,1) , and it satisfies (3.1). By differentiating (3.1) both
side on  $\lambda$ , we have

-g(\displaystyle \frac{1}{f_{ $\lambda$}(x)}) +(1- $\lambda$)g'(\frac{1}{f_{ $\lambda$}(x)}) (-\frac{1}{f_{ $\lambda$}(x)^{2}}) \frac{\partial}{\partial $\lambda$}f_{ $\lambda$}(x)
+g(\displaystyle \frac{x}{f_{ $\lambda$}(x)}) + $\lambda$ g'(\frac{x}{f_{ $\lambda$}(x)}) (\frac{-x}{f_{ $\lambda$}(x)^{2}})\frac{\partial}{\partial $\lambda$}f_{ $\lambda$}(x)=0.

Here we take a limit  $\lambda$\searrow 0 , by f_{ $\lambda$}(x)\rightarrow 1 , g(1)=0 and g'(1)=1 , we have

(-\displaystyle \frac{\partial}{\partial $\lambda$}f_{ $\lambda$}(x) $\lambda$=0) +g(x)=0.
Hence we have

\displaystyle \frac{\partial}{\partial $\lambda$}f_{ $\lambda$}(x)  $\lambda$=0^{=g(x)}.
\square 
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4. THE ANDO‐HIAI INEQUALITIES FOR THE SOLUTION OF THE GKE

In this section, we shall show extensions of Ando‐Hiai inequalities. To prove them,
the following result is very important.

Theorem 3. Let g\in \mathcal{L}, \mathrm{A}= (A_{1}, A_{n})\in \mathcal{P}^{n} and  $\omega$=(w_{1}, \mathrm{w}_{n}) \in\triangle_{n} . Then the

following hold.

(1) \displaystyle \sum_{i=1}^{n}w_{i}g(A_{i}) \geq 0 implies $\sigma$_{g}( $\omega$;\mathrm{A})\geq I , and
(2) \displaystyle \sum_{i=1}^{n}w_{l}g(A_{i}) \leq 0 implies $\sigma$_{g}( $\omega$;\mathrm{A})\leq I.

To prove Theorem 3, we shall prepare the following property of $\sigma$_{g}.

Lemma 4. Let g\in \mathcal{L}_{2} $\omega$= (w_{1}, w_{n})\in\triangle_{n} and \mathrm{A}=(A_{1)} A_{n}) \in \mathcal{P}^{n} . Then

[\displaystyle \sum_{i=1}^{n}w_{i}A_{i}^{-1}]^{-1} \leq$\sigma$_{g}( $\omega$;\mathrm{A}) \leq\sum_{i=1}^{n}w_{i}A_{i}.
Proof. We note that for each g\in \mathcal{L},

1-x^{-1} \leq g(x) \leq x-1
holds for all  x\in (0, \infty) [20 , (18) ] . Let X=$\sigma$_{g}( $\omega$;\mathrm{A}) . Then we have

0=\displaystyle \sum_{i=1}^{n}x^{\frac{-1}{2}A_{i}X\frac{-1}{2}} \leq\sum_{i=1}^{n}\mathrm{w}_{i}(X\frac{-1}{2}A_{i}X\frac{-1}{2}-I) ,

i.e., X \leq \displaystyle \sum_{k=1}^{n}w_{i}A_{i} . The latter part can be shown by the same way by using
g(x)\geq 1-x^{-1} \square 

Proof of Theorem 3. Proof of (1). Assume that \displaystyle \sum_{i=1}^{n}\mathrm{w}_{i}g(A_{i}) \geq  0 holds. Since an
operator monotone function g satisfies g(1)=0 , there exists X\leq I such that

\displaystyle \sum_{i=1}^{n}\frac{\mathrm{w}_{i}}{2}g(A_{i})+\frac{1}{2}g(X)=0.
Hence we have

I=$\sigma$_{9}((\displaystyle \frac{ $\omega$}{2}, \frac{1}{2});(\mathrm{A}, X)) ,

where (\displaystyle \frac{ $\omega$}{2}, \frac{1}{2}) = (\displaystyle \frac{w1}{2}, , \frac{w_{n}}{2}, \frac{1}{2}) \in\triangle_{n+1} and (\mathrm{A}, X) = (A_{1}, A_{n}, X) \in \mathcal{P}^{n+1} . Here we

define an operator sequence \{X_{k}\}\subset \mathcal{P} by

X_{0}=I, X_{k+1}=$\sigma$_{g}((\displaystyle \frac{ $\omega$}{2}, \frac{1}{2}) ;(\mathrm{A}, X_{k}))
Then

X_{0}=I=$\sigma$_{g} ((\displaystyle \frac{ $\omega$}{2}, \frac{1}{2}) )(\mathrm{A}, X))
\displaystyle \leq$\sigma$_{g}((\frac{ $\omega$}{2}, \frac{1}{2});(\mathrm{A}, I)) =X_{1}
\displaystyle \leq$\sigma$_{g}((\frac{ $\omega$}{2}, \frac{1}{2});(\mathrm{A}, X_{1})) =X_{2}\leq\cdots\leq X_{n},
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where the inequalities hold by operator monotonicity of $\sigma$_{g} , i.e., Theorem \mathrm{C} (1). By
Lemma 4, we have

X_{k}\displaystyle \leq$\sigma$_{g} ((\frac{ $\omega$}{2}, \frac{1}{2}) ;(\mathrm{A}, X_{k})) \leq\sum_{i=1}^{n}\frac{w_{i}}{2}A_{i}+\frac{1}{2}X_{k},
and we have X_{k} \leq \displaystyle \sum_{i=1}^{n}\mathrm{w}_{i}A_{i} for all k= 1 , 2, Hence there exists a unique limit
point \displaystyle \lim_{k\rightarrow\infty}X_{k}=X_{\infty}\in \mathcal{P} . It satisfies

X_{\infty}=$\sigma$_{g} ((\displaystyle \frac{ $\omega$}{2}, \frac{1}{2}) ;(\mathrm{A}, X_{\infty})) ,

and then we have

\displaystyle \sum_{i=1}^{n}w_{i}g(X^{\frac{-1}{\infty 2}}A_{i}X^{\frac{-1}{\infty 2}})=0,
that is,

I\leq X_{\infty}=$\sigma$_{9}( $\omega$;\mathrm{A}) .

Proof of (2) is shown by the same way and using [\displaystyle \sum_{i=1}^{n}w_{j}A_{i}^{-1}]^{-1} \leq$\sigma$_{9}( $\omega$;\mathrm{A}) . \square 

Using Theorem 3, we can get an elementary property of the solution of the GKE.

Theorem 5. Let f, g\in \mathcal{L} . Then g(x) \leq  f(x) holds for all  x\in (0, \infty) if and only if
$\sigma$_{9}( $\omega$;\mathrm{A}) \leq$\sigma$_{f}( $\omega$;\mathrm{A}) holds for all  $\omega$\in\triangle_{n} and \mathrm{A}\in \mathcal{P}^{n}.

Proof. Proof of ( \Rightarrow ) . Let  $\omega$ = (\mathrm{w}_{1}, w_{n}) \in \triangle_{n}, \mathrm{A} = (A_{1}, A_{n}) \in \mathcal{P}^{n} and X =

$\sigma$_{g}( $\omega$;\mathrm{A}) . Assume that g(x)\leq f(x) holds for all  x\in (0, \infty) . Then

0=\displaystyle \sum_{i=1}^{n}\mathrm{w}_{i}g(X\frac{-1}{2}A_{i}X\frac{-1}{2})\leq\sum_{i=1}^{n}w_{i}f(X\frac{-1}{2}A_{i}X\frac{-1}{2}) .

By Theorem 3, we have I\displaystyle \leq$\sigma$_{j}( $\omega$, X\frac{-1}{2}\mathrm{A}x^{\frac{-1}{2}})=x_{$\sigma$_{f}( $\omega$;\mathrm{A})X\frac{-1}{2}}^{\frac{-1}{2}} , i.e.,

$\sigma$_{g}( $\omega$;\mathrm{A})=X\leq$\sigma$_{f}( $\omega$;\mathrm{A}) .

Proof of ( \Leftarrow ) . It is enough to consider the two‐operators case. For  $\lambda$\in [0 , 1 ] , let
r_{g, $\lambda$} and r_{f, $\lambda$} are the representing functions of $\sigma$_{g}(1- $\lambda$,  $\lambda$;A, B) and $\sigma$_{f}(1- $\lambda$,  $\lambda$;A, B) ,
respectively. Then r_{g, $\lambda$}(x) \leq  r_{f, $\lambda$}(x) holds for all x \in (0, \infty) and  $\lambda$ \in [0 , 1 ] , and we
have

\displaystyle \frac{r_{g, $\lambda$}(x)-1}{ $\lambda$}\leq\frac{r_{f, $\lambda$}(x)-1}{ $\lambda$\prime}
holds for all x\in(0, \infty) and  $\lambda$\in (0,1]. Let  $\lambda$\searrow 0 , we have g(x)\leq f(x) by Proposition
2. \square 

Here, we shall show extensions of the Ando‐Hiai inequality.

Theorem 6 (Extension of the Ando‐Hiai inequality, 1). Let g \in \mathcal{L}, \mathrm{A} \in \mathcal{P}^{n} and
 $\omega$ \in \triangle_{n} . If $\sigma$_{g}(w;\mathrm{A}) \leq I holds, then $\sigma$_{g_{p}}( $\omega$, \mathrm{A}^{p}) \leq Iholds for all  p \geq  1 , where
g_{p}(x) = pg(x^{1/p}) . Moreover the representing function of $\sigma$_{g_{\mathrm{p}}} is f_{p, $\lambda$}(x) = f_{ $\lambda$}(x^{1/p})^{p},
where f_{ $\lambda$} is a representing function of  $\lambda$ ‐weighted operator mean  $\sigma$_{g}.
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We notice that g_{p}(x^{1/p}) \in \mathcal{L} for all p\geq 1.
By putting g(x) =\log x in Theorem 6, $\sigma$_{g} coincides with the Karcher mean. Then

we have Theorem \mathrm{E} (1). Moreover put g(x) = \displaystyle \frac{x^{t}-1}{t} in Theorem 6, $\sigma$_{9} coincides with
the power mean. Then we have Theoreni \mathrm{E}(2) .

Proof of Theorem 6. Let X=$\sigma$_{g}(w;\mathrm{A})\leq I . For  p\in [1 , 2] , we have

0=\displaystyle \sum_{i=1}^{n}x^{\frac{-1}{2}A_{i}X\frac{-1}{2}}=\sum_{i=1}^{n}x^{\frac{-1}{2}A_{i}X\frac{-1}{2}} \displaystyle \geq\sum_{i=1}^{n}w_{i}g((X\frac{-1}{2}A_{i}^{p}X\frac{-1}{2})^{\frac{1}{p}}) ,

where the last inequality holds by the Hansen’s inequality [9].
Hence

0\displaystyle \geq\sum_{i=1}^{n}x^{\frac{-1}{2}A_{i}^{p}X\frac{-1}{2}}=\sum_{i=1}^{n}x^{\frac{-1}{2}A_{i}^{p}X\frac{-1}{2}},
and we have $\sigma$_{9p}( $\omega$, X\displaystyle \frac{-1}{2}\mathrm{A}^{p}x^{\frac{-1}{2}})\leq I by Theorem 3, i.e.,

$\sigma$_{g_{p}}( $\omega$;\mathrm{A}^{p}) \leq X\leq I

for p \in [1 , 2] . Applying the same way to $\sigma$_{9p}( $\omega$;\mathrm{A}^{p}) \leq  I , we have $\sigma$_{g_{pp}}, ( $\omega$;\mathrm{A}^{pp'}) \leq  I

for  p'\in [1 , 2] and  pp'\in [1 , 4] . Repeating this method, we have $\sigma$_{g_{p}}( $\omega$\cdot, \mathrm{A}^{p}) \leq I for all
p\geq 1.

Let f_{ $\lambda$} be a representing function of a  $\lambda$‐weighted operator  $\iota$1iean  $\sigma$_{g} , aiid let f_{p, $\lambda$} be
a representing function of $\sigma$_{g_{\mathrm{p}}} . We note that the inverse function of g_{p}(x)=pg(x^{1/p})
is \displaystyle \{g^{-1}(\frac{x}{p})\}^{p} . Hence by Proposition 1, we have

f_{p, $\lambda$}^{-1}(x)=xg_{p}^{-1} (-\displaystyle \frac{1- $\lambda$}{ $\lambda$}g_{p}(\frac{1}{x}))
=x\displaystyle \{g^{-1} (-\frac{1- $\lambda$}{p $\lambda$}\cdot pg(\frac{1}{x^{1/p}}))\}^{p}
= \displaystyle \{x^{\frac{1}{p}}g^{-1} (-\frac{1- $\lambda$}{ $\lambda$}g(\frac{1}{x^{1/p}}))\}^{p}
=f_{ $\lambda$}^{-1}(x^{1/p})^{p}.

Therefore f_{p, $\lambda$}(x)=f_{ $\lambda$}(x^{1/p})^{p}. \square 

We can prove the opposite inequalities in Theorem 6 by the same way.

Theorem 7 (Extension of the Ando‐Hiai inequality, 2). Let g\in \mathcal{L} . Assume f_{ $\lambda$} is a
representing function of an operator mean $\sigma$_{g}(1- $\lambda$,  $\lambda$;A, B) . Then the following are
equivalent.

(1) f_{ $\lambda$}(x)^{p}\leq f_{ $\lambda$}(x^{p}) holds for all p\geq 1,  $\lambda$\in[0 , 1 ] and x\in(0, \infty) ,
(2) pg(x) \leq g(x^{p}) for all p\geq 1 and x\in(0, \infty) ,
(3) $\sigma$_{g}( $\omega$;\mathrm{A}) \geq I implies $\sigma$_{g}( $\omega$;\mathrm{A}^{p}) \geq I for all  $\omega$\in\triangle_{n_{2}} \mathrm{A}\in \mathcal{P}^{n} and p\geq 1.

For the two‐operators case, Theorem 7 coincides with the opposite inequality of
Theorem  $\Gamma$ (it was shown in [23]). Moreover, we can obtain a property of relative
operator entropy in the above theorem but it is not given in Theorem  $\Gamma$.
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Proof. Proof of (1) \Rightarrow(2) . Since 1+p(x-1)\leq x^{p} holds for all p\geq 1 and  x\in (0, \infty) ,
we have

p(\displaystyle \frac{f_{ $\lambda$}(x)-1}{ $\lambda$}) \leq\frac{f_{ $\lambda$}(x)^{p}-1}{ $\lambda$} \leq \frac{f_{ $\lambda$}(x^{p})-1}{ $\lambda$}
holds for all  p\geq  1,  $\lambda$\in (0,1 ] and x \in (0, \infty) by the assumption. By letting  $\lambda$\searrow 0,
we have pg(x)\leq g(x^{ $\rho$}) by Proposition 2.

Proof of (2) \Rightarrow(3). Let X=$\sigma$_{g}( $\omega$;\mathrm{A}) \geq I . For  p\in [1 , 2],

0=\displaystyle \sum_{i=1}^{n}\mathrm{c}u_{i}pg(X\frac{-1}{2}A_{i}X\frac{-1}{2})
\displaystyle \leq\sum_{i=1}^{n}x^{\frac{-1}{2}A_{i}X\frac{-1}{2}} (by (2))

\displaystyle \leq\sum_{i=1}^{n}w_{i}g(X\frac{-1}{2}A_{i}^{p}X\frac{-1}{2}) ,

where the last inequality holds by the Hansen’s inequality [9]. Hence by Theorem 3,
we have I\displaystyle \leq$\sigma$_{g}( $\omega$, X\frac{-1}{2}\mathrm{A}^{p}X\frac{-1}{2}) , i.e.,

I\leq X\leq$\sigma$_{g}( $\omega$;\mathrm{A}^{p}) .

Applying the same way to I\leq$\sigma$_{g}( $\omega$;\mathrm{A}^{p}) , we have I\leq$\sigma$_{g}( $\omega$;\mathrm{A}^{pp'}) for p' \in [1 , 2] and
 pp'\in [1 , 4] . Repeating this method, we have I\leq$\sigma$_{g}( $\omega$;\mathrm{A}^{p}) for all  p\geq  1.

Proof of (3) \Rightarrow(1) is shown in [23]. \square 

By the similar way, we have the following result.

Theorem 7’. Let g\in \mathcal{L} . Assume f_{ $\lambda$} is a representing function of an operator mean
$\sigma$_{g}(1- $\lambda$,  $\lambda$;A, B) . Then the following are equivalent.

(1) f_{ $\lambda$}(x)^{p}\geq f_{ $\lambda$}(x^{p}) holds for all p\geq 1,  $\lambda$\in[0 , 1 ] and  x\in (0, \infty) ,
(2) pg(x) \geq g(x^{\mathrm{p}}) for all p\geq 1 and  x\in (0, \infty) ,
(3) $\sigma$_{g}( $\omega$;\mathrm{A})\leq I implies $\sigma$_{9}( $\omega$;\mathrm{A}^{p}) \leq I for all  $\omega$\in $\Delta$, \mathrm{A}\in \mathcal{P}^{n} and p \geq Ì.

It is just an extension of Theorem  $\Gamma$.
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