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Riccati equation for positive semidefinite matrices
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1 Introduction
For given positive definite matrices A and B, and an arbitrary matrix 7, the matrix
equation
X*A'X -T*X -X'T=B
is said to be an algebraic Riccati equation. In particular, the case T' = 0 in above,

that is,
X*A7'X = B.

is called a Riccati equation.
In the preceding paper [3], we discussed them. In this paper, we extend them by the
use of the Moore-Penrose generalizea inverse. Precisely, we consider the following

matrix equation;

X*A'X —T*X — X*T = B,

where A" is the Moore-Penrose generalized inverse of A. So the Riccati equation is

of form
X*AtX = B.

We call them a generalized algebraic Riccati equation and a generalized Riccati equa-
tion, respectively. A

In this note, we first show that every generalized algebraic Riccati equation is re-
duced to a generalized Riccati equation, and that solutions of a generalized Riccati
equation are analyzed. Next we show that under the kernel inclusion ker A C ker B,
the geometric mean A# B is a solution of a generalized Riccati equation X AT X = B.
As an application, we give another proof to equality conditions of matrix Cauchy-
Schwarz inequality due to J. I. Fujii [2]: Let X and Y be k X n matrices and
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Y*X = U|Y*X]| a polar decomposition of an n x n matrix Y*X with unitary U.
Then
[Y*X| < X*X#UY*YU.

Finally we discuss an order relation between A# B and AY/2((A'Y/2)t B(AY/?)1)1/2A1/2

for positive semidefinite matrices A and B.

2 Solutions of generalized algebraic Riccati equation
Foilowing after [3], we discuss solutions of a generalized algebraic Riccati equation.

Throughout this note, Px means the projection onto the range of a matrix X.

Lemma 2.1. Let A and B be positive semidefinite matrices and T a arbitrary ma-

triz. Then W is a solution of a generalized Riccati equation
W*A'W = B+ T*AT
if and only if X = W + AT is a solution of a generalized algebraic Riccati equation
X*A'X —T*PsX — X*P,T = B.
Proof. Put X =W + AT. Then it follows that
X*AIX — T*PyX — X*PyT = W*A'W — T* AT,
so that we have the conclusion.

Theorem 2.2. Let A and B be positive semidefinite matrices. Then W is a solution

of a generalized Riccati equation
W*A'W =B with ran W C ran A

if and only if W = A3UB3 for some partial isometry U such that U*U > Pg and
UU* < Py.

Proof. Suppose that W*A'W = B and ran W C ran A. Since ||(A2)!Wz|| = || B3z
for all vectors z, there exists a partial isometry U such that UB2 = (A2)!W with
U*U = Pg and UU* < P4. Hence we h'ave

AIUBI = PAW = W.
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The converse is easily checked: If W = A3UB3? for some partial isometry U such

that U*U > Pg and UU* < P4, then ran W C ran A and

W*A'W = B:U*P,UB? = B:U*UB? = B.

Corollary 2.3. Notation as in above. Then X is a solution of a generalized algebraic
Riccati equation

X*AtX —-T*X - X*T =B

with ran X C ran A if and only if X = A%U(B + T*AT)% + AT for some partial
isometry U such that U*U > Pgyp+ar and UU* < Py.

Proof. By Lemma 2.1, X is a solution of a generalized algebraic Riccati equation
X*A'X —T*PyX — X*P,T = B if and only if W = X — AT is a solution of
W*A'W = B+ T*AT. Since ran X C ran A if and only if ran W C ran A, we have

the conclusion by Theorem 2.2.

3 Solutions of a generalized Riccati equation

Since A#B = AY?(A~Y/2BA~1/2)1/2 AY/2 for invertible A, the geometric mean A#B
is the unique solution of the Riccati equation X A~'X = B if A > 0, see [5] for an
early work. So we consider it for positive semidefinite matrices by the use of the

Moore-Penrose generalized inverse, that is,
XA'X =B
for positive semidefinite matrices A, B.

Theorem 3.1. Let A and B be positive semidefinite matrices satisfying the kernel

inclusion ker A C ker B. Then A#B is a solution of a generalized Riccati equation
XA'X = B.

Moreover, the uniqueness of its solution is ensured under the additional assumption
ker A C ker X .
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proof. We first note that (A/2)f = (A)Y/2 and P4 = P,:. Putting X, = A#B, a

recent result due to Fujimoto-Seo [4, Lemma 2.2] says that
XO — A1/2[(Al/z)"B(A1/2)7]1/2A1/2.
Therefore we have

X()ATX() — AI/Z[(Al/2)TB(A1/2)1']I/ZPA[(.AI/Z)'[B(AI/2)T]1/2A1/2
= AP(AY B4
= P\BPy=B

Since ran X, C ran A2, X, is a solution of the equation.

The second part is proved as follows: If X is a solution of X ATX = B, then
(A XATX (A = () B,

so that
(A2 X (AVE)] = (A2 B2

Hence we have
PAXPA — A1/2[(A1/2)1B(A1/2)T]1/2A1/2 — X0~

Since P4 X P4 = X by the assumption, X = X, is obtained.

As an application, we give a simple proof of the case where the equaiity holds in

matrix Cauchy-Schwarz inequality, see [4, Lemma 2.5].

Corollary 3.2. Let X and Y be k x n matrices and Y*X = U|Y*X| a polar de-

composition of an n x n matriz Y*X with unitary U. If ker X C ker YU, then

[Y*X| = X*X#U*Y*YU

if and only if Y = XW for some n X n matriz W.

proof. Since ker X*X C ker U*Y*Y U, the preceding theorem implies that |Y*X| is

a solution of a generalized Riccati equation, i.e.,

UY*'YU = [V X|[(XXONY*X| = U*Y* X (X*X) XY,
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or consequently

Y'Y =YX (X*X) XY
Noting that X (X*X)!X* is the projection Px, we have Y*Y = Y*PxY and hence
Y = PxY = X(X*X)IX*Y by (Y — PxY)*(Y — PxY) = 0, so that Y = XW for
W= (X*X)IX*Y.

4 Geometric mean in operatof Cauchy-Schwarz inequality
The origin of Corollary 3.2 is the operator Cauchy-Schwarz inequality due to J.I.Fujii
[2], which says as follows:
OCS inequality If XY € B(H) and Y*X = U|Y*X]| is a polar decomposition of
Y*X, then

Y*X| < X*X#U*'Y*YU.

In his proof of it, the following well-known fact due to Ando [1] is used: For A, B > 0,

the geometric mean A#B is given by
A X
A#B=ma.x{X >0; (X B) 20}
First of all, we discuss the case Y*X > 0 in (OCS). That is,
Y*'X < X*X#Y'Y
is shown: Noting that Y*X = X*Y > 0, we have
X*XX*Y_XY*XY>0
Y"XY*Y_OO_OO—’
which means Y*X < X*X#Y*Y.

The proof for a general case is presented by applying the above: Noting that
(YU)*X =|Y*X]| >0, it follows that

Y*X|=(YU)'X < X*X#(YU)*'YU.
Remark 1. We can give a direct proof to the general case:
(X*X |Y*X| ) _ (X YU)* (X YU> >0,
Y*X| U*Y*YU 0 o0 0 0 /)™
Remark 2. An equivalent condition which the equality holds in the matrix C-S
inequality is known by Fujimoto-Seo [4]: Under the assumption ker X C kerYU,
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the equality holds if and only if YU = XW for some W. In the proof, they use
(1) If ker A C ker B, then A#BA'B = B.
(2) If A#B = A#C and ker A C ker BNker C, then B = C.

Related to matrix Cauchy-Schwarz inequality, the following result is obtained by
Fujimoto-Seo [4]:

Let A = C,A* g be positive definite matrix. Then B > C*A~'C holds. Further-

more it is known by them:
Theorem 4.1. Let A be as.in above and C = U|C| a polar decomposition of C
with unitary U. Then
|C| < U*AU # C*A~'C.

Proof. It can be also proved as similar as in above : Since |C| = U*C = C*U, we
have

U*AU (O] \ _ (AU ATVPCNT (AU ATVPCN 0

|Cc| C*A7'C) 0 0 0 0 =

The preceding result is generalized a bit by the use of the Moore-Penrose generalized

inverse, for which we note that (A/2)t = (A")/2 for A > 0:

Theorem 4.2. Let A be of form as in above and positive semidefinite, and C =

U|C| a polar decomposition of C with unitary U. If ran C' C ran A, then
|C| < U*AU # C*A'C.

Proof. Let P4 be the projection onto the range of A. Since P4C = C and C*P4 =
C*, we have |C| = U*P4,C = C*P4U. Hence it follows that

U*AU |CI _ A1/2U (Af)l/ZC * A1/2U (A'[)l/ZC >0
iIc| c=Aatc) —\ o 0 0 0 =

5 A generalization of formulae for geometric mean
Since A#B.= AY?(A"Y/2BA~1/2)1/2 A/2 for invertible A, the geometric mean A# B
for positive semidefinite matrices A and B might be expected the same formulae as

for positive definite matrices, i.e.,

A#B — Al/z((AI/Z)TB(A1/2)T)1/2A1/2.
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As a matter of fact, the following result is known by Fujimoto and Seo:

Theorem 5.1. Let A and B be positive semidefinite matrices. Then
A#B < AI/Z((A1/2)1'B(AI/2)T)1/2A1/2,
If the kernel inclusion ker A C ker B is assumed, then the equality holds in above.

Proof. For the first half, it suffices to show that if <A X

X B) > 0, then

X< A1/2((AI/Z)TB(Al/z)f)l/zAl/Q
because of Ando’s definition of the geometric mean. We here use the facts that
(AV2)F = (A2, and that if (A X

X B
AA'X = P4X and B> XA'X.
Now, since B > X At X, we have

> 0 for positive semdefinite X, then X =

(A2 BAIR) > [(AV2) X (AV2)T,
so that Lowner-Heinz inequality implies

[(AI/Z)tB(Alﬂ)f]l/Z > (Al/z)TX(Al/Z)T.
Hence it follows from X = P4,X that

A1/2[(A1/2)TB(A1/2)]‘]1/2A1/2 > X.
Next suppose that ker A C ker B. Then we have ran B C ran A and so
A1/2(A1/2)TB(A1/2)1A1/2 = B.

Therefore, putting C' = (AY/?)t B(AY/?)! and

Yy — Al/z((Al/z)tB(Al/z)f)l/zAl/é — AV2CA2 712,

A Y\ (A2 0 I cUR\ A2 o
(Y B) = ( 0 A1/2> (cvz c ) ( 0 AW) 20,

which implies that Y < A#B and thus Y = A#B by combining the result in the
first half.

we have

By checking the proof carefully, we have an improvement:
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Theorem 5.2. Let A and B be positive semidefinite matrices. Then
A#B < A1/2((A1/2)1'B(Al/2)1)1/2A1/2,
In particular, the equality holds in above if and only if Py = AAT commutes with B.

Proof. Notation as in above. If Py = AAf(= AY2(AY?)!) commutes with B, we
have P4BP, < B. Therefore we have

AY\ (A Y \_(A” 0 I CY? A1/20>O
Y B)=\Y P4BPy) \ 0 AV2)\CYV?* C 0 AYV2)="

AY

y B) > 0. Hence we have

Conversely assume that the equality holds. Then (
B > YA'Y = AV2CAY? = P,BP,,

which means P, commutes with B.

Finally we cite the following lemma which we used in the proof of Theorem 5.1.

A X
X* B

Proof. The assumption implies that

((AIO/‘Z)f (1)> ( )?* );) ((Al()/’)r (1)> _ (x*(if}ﬂ)f (Al/;)fx) >0.

Moreover, since

s (ol 4P

Lemma 5.3. If < > >0, then X = AA'X = P, X and B > XA'X.

_ <PA 0 >

T\ 0 B-X*AlX)’

we have B > X*A'X.

Next we show that X = P4X. It is equivalent to ker A C ker X*. Suppose that
Az = 0. Putting y = —ﬁX*x, ‘we have

o=<((# 2)()())
= (Xy,z) + (X"z,y) + (By,y)

1
| X*z|? + —=—(BX*z, X*1)

2
Bl I1B]I?

* 2
IBll

Hence we have X*x = 0, that is, ker A C ker X* is shown.
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