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1 Introduction

For given positive definite matrices A and B , and an arbitrary matrix T , the matrix

equation

X^{*}A^{-1}X-T^{*}X-X^{*}T=B

is said to be an algebraic Riccati equation. In particular, the case T=0 in above,

that is,

X^{*}A^{-1}X=B.

is called a Riccati equation.

In the preceding paper [3], we discussed them. In this paper, we extend them by the

use of the Moore‐Penrose generalized inverse. Precisely, we consider the following

matrix equation;

X^{*}A^{ $\dagger$}X-T^{*}X-X^{*}T=B,

where  A $\dagger$ is the Moore‐Penrose generalized inverse of  A . So the Riccati equation is

of form

X^{*}A^{ $\dagger$}X=B.

We call them a generalized algebraic Riccati equation and a generalized Riccati equa‐

tion, respectively.

In this note, we first show that every generalized algebraic Riccati equation is re‐

duced to a generalized Riccati equation, and that solutions of a generalized Riccati

equation are analyzed. Next we show that under the kernel inclusion \mathrm{k}\mathrm{e}\mathrm{r}A\subset \mathrm{k}\mathrm{e}\mathrm{r}B,

the geometric mean A#B is a solution of a generalized Riccati equation XA^{\uparrow}X=B.

As an application, we give another proof to equality conditions of matrix Cauchy‐

Schwarz inequality due to J. I. Fujii [2]: Let X and Y be k \times  n matrices and
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Y^{*}X = U|Y^{*}X| a polar decomposition of an n \times  n matrix Y^{*}X with unitary U.

Then

|Y^{*}X| \leq X^{*}X\# U^{*}Y^{*}YU.

Finally we discuss an order relation between A#B and A^{1/2}((A^{1/2})^{ $\dagger$}B(A^{1/2})^{\uparrow})^{1/2}A^{1/2}
for positive semidefinite matrices A and B.

2 Solutions of generalized algebraic Riccati equation

Following after [3], we discuss solutions of a generalized algebraic Riccatfli equation.

Throughout this note, P_{X} means the projection onto the range of a matrix X.

Lemma 2.1. Let A and B be positive semidefinite matrices and T a arbitrary ma‐

trix. Then W is a solution of a generalized Riccati equation

W^{*}A^{ $\dagger$}W=B+T^{*}AT

if and only if X=W+AT is a solution of a generalized algebraic Riccati equation

X^{*}A^{ $\dagger$}X-T^{*}P_{A}X-X^{*}P_{A}T=B.

Proof. Put X=W+AT . Then it follows that

X^{*}A^{ $\dagger$}X-T^{*}P_{A}X-X^{*}P_{A}T=W^{*}A^{ $\dagger$}W-T^{*}AT,

so that we have the conclusion.

Theorem 2.2. Let A and B be positive \mathcal{S} emidefinite matrices. Then W is a solution

of a generalized Riccati equation

W^{*}A^{ $\dagger$}W=B with ran  W\subseteq ran  A

if and only if W=A^{\frac{1}{2}}UB^{\frac{1}{2}} for some partial isometry U such that U^{*}U \geq  P_{B} and

UU^{*}\leq P_{A}.

Proof. Suppose that W^{*}A^{\mathrm{t}}W=B and ran  W\subseteq ran  A . Since \Vert(A^{\frac{1}{2}})^{ $\dagger$}Wx\Vert= \Vert B^{\frac{1}{2}}x\Vert
for all vectors  x , there exists a partial isometry U such that UB^{\frac{1}{2}} = (A^{\frac{1}{2}})^{\uparrow}W with

U^{*}U=P_{B} and UU^{*} \leq P_{A} . Hence we have

A^{\frac{1}{2}}UB^{\frac{1}{2}} =P_{A}W=W.
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The converse is easily checked: If W = A^{\frac{1}{2}}UB^{\frac{1}{2}} for some partial isometry U such

that U^{*}U\geq P_{B} and UU^{*}\leq P_{A} , then ran  W\subseteq ran  A and

W^{*}A^{\mathrm{T}}W=B^{\frac{1}{2}}U^{*}P_{A}UB^{\frac{1}{2}} =B^{\frac{1}{2}}U^{*}UB^{\frac{1}{2}} =B.

Corollary 2.3. Notation as in above. Then X is a solution of a generalized algebraic

Riccati equation

X^{*}A^{ $\dagger$}X-T^{*}X-X^{*}T=B

with ran X \subseteq ran A if and only if X=A^{\frac{1}{2}}U(B+T^{*}AT)^{\frac{1}{2}}+AT for some partial

isometry U such that U^{*}U\geq P_{B+T^{*}AT} and UU^{*} \leq P_{A}.

Proof. By Lemma 2.1, X is a solution of a generalized algebraic Riccati equation

X^{*}A $\dagger$ X -T^{*}P_{A}X -X^{*}P_{A}T = B if and only if W = X -AT is a solution of

W^{*}A^{\uparrow}W=B+T^{*}AT . Since ran X \subseteq ran  A if and only if ran  W\subseteq ran  A , we have

the conclusion by Theorem 2.2.

3 Solutions of a generalized Riccati equation

Since A\# B=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2} for invertible A , the geometric mean A#B

is the unique solution of the Riccati equation XA^{-1}X=B if A>0 , see [5] for an

early work. So we consider it for positive semidefinite matrices by the use of the

Moore‐Penrose generalized inverse, that is,

XA^{ $\dagger$}X=B

for positive semidefinite matrices A, B.

Theorem 3.1. Let A and B be positive semidefinite matrices satisfying the kernel

inclusion \mathrm{k}\mathrm{e}\mathrm{r}A\subset \mathrm{k}\mathrm{e}\mathrm{r} B. Then A#B is a solution of a generalized Riccati equation

XA^{ $\dagger$}X=B.

Moreover, the uniqueness of its solution is ensured under the additional assumption

\mathrm{k}\mathrm{e}\mathrm{r}A\subset \mathrm{k}\mathrm{e}\mathrm{r}X.
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proof. We first note that (A^{1/2})^{\uparrow} = (A $\dagger$)^{1/2} and P_{A} =P_{A $\dagger$} . Putting X_{0}=A\# B, \mathrm{a}

recent result due to Fujimoto‐Seo [4, Lemma 2.2] says that

X_{0}=A^{1/2}[(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$}]^{1/2}A^{1/2}

Therefore we have

X_{0}A^{\uparrow}X_{0}=A^{1/2}[(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$}]^{1/2}P_{A}[(A^{1/2})^{\mathrm{T}}B(A^{1/2})^{ $\dagger$}]^{1/2}A^{1/2}

=A^{1/2}[(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$}]

=P_{A}BP_{A}=B

Since ran  X_{0}\subset ran  A^{1/2}, X_{0} is a solution of the equation.

The second part is proved as follows: If X is a solution of XA $\dagger$ X=B , then

(A^{1/2})^{ $\dagger$}XA^{ $\dagger$}X(A^{1/2})^{ $\dagger$}=(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$},

so that

(A^{1/2})^{ $\dagger$}X(A^{1/2})^{\uparrow}=[(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$}]^{1/2}

Hence we have

P_{A}XP_{A}=A^{1/2}[(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$}]^{1/2}A^{1/2}=X_{0}.

Since P_{A}XP_{A}=X by the assumption, X=X_{0} is obtained.

As an application, we give a simple proof of the case where the equality holds in

matrix Cauchy‐Schwarz inequality, see [4, Lemma 2.5].

Corollary 3.2. Let X and Y be k\times n matrices and Y^{*}X = U|Y^{*}X| a polar de‐

composition of an n\times n matrix Y^{*}X with unitary U. If \mathrm{k}\mathrm{e}\mathrm{r}X\subset \mathrm{k}\mathrm{e}\mathrm{r}YU , then

|Y^{*}X|=X^{*}X\# U^{*}Y^{*}YU

if and only if Y=XW for some n\times n matrix W.

proof. Since \mathrm{k}\mathrm{e}\mathrm{r}X^{*}X\subset \mathrm{k}\mathrm{e}\mathrm{r}U^{*}Y^{*}YU , the preceding theorem implies that |Y^{*}X| is

a solution of a generalized Riccati equation, i.e.,

U^{*}Y^{*}YU=|Y^{*}X|(X^{*}X)^{ $\dagger$}|Y^{*}X|=U^{*}Y^{*}X(X^{*}X)^{ $\dagger$}X^{*}YU,
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or consequently

Y^{*}Y=Y^{*}X(X^{*}X)^{ $\dagger$}X^{*}Y.

Noting that X(X^{*}X)^{ $\dagger$}X^{*} is the projection P_{X} , we have Y^{*}Y=Y^{*}P_{X}Y and hence

Y=P_{X}Y=X(X^{*}X)^{ $\dagger$}X^{*}Y by (Y-P_{X}Y)^{*}(Y-P_{X}Y) =0 , so that Y=XW for

W=(X^{*}X)^{\uparrow}X^{*}Y.

4 Geometric mean in operator Cauchy‐Schwarz inequality

The origin of Corollary 3.2 is the operator Cauchy‐Schwarz inequality due to J.I.Fujii

[2], which says as follows:

OCS inequality If X, Y\in B(H) and Y^{*}X=U,|Y^{*}X| is a polar decomposition of

Y^{*}X , then

|Y^{*}X| \leq X^{*}X\# U^{*}Y^{*}YU.

In his proof of it, the following well‐known fact due to Ando [1] is used: For A, B\geq 0,

the geonietric mean A#B is given by

A\displaystyle \# B=\max\{X\geq 0; \left(\begin{array}{ll}
A & X\\
X & B
\end{array}\right) \displaystyle \geq 0\}
First of all, we discuss the case Y^{*}X\geq 0 in (OCS). That is,

Y^{*}X\leq X^{*}X\# Y^{*}Y

is shown: Noting that Y^{*}X=X^{*}Y\geq 0 , we have

\left(\begin{array}{ll}
X^{*}X & X^{*}Y\\
Y^{*}X & Y^{*}Y
\end{array}\right) = \left(\begin{array}{ll}
X & Y\\
0 & 0
\end{array}\right) \left(\begin{array}{ll}
X & \mathrm{y}\\
0 & 0
\end{array}\right) \geq 0,
which means Y^{*}X\leq X^{*}X\# Y^{*}Y.

The proof for a general case is presented by applying the above: Noting that

(YU)^{*}X=|\mathrm{Y}^{*}X| \geq 0 , it follows that

|Y^{*}X|=(YU)^{*}X\leq X^{*}X\#(YU)^{*}YU.

Remark 1. We can give a direct proof to the general case:

\left(\begin{array}{ll}
X^{*}X & |Y^{*}X|\\
|Y^{*}X| & U^{*}Y^{*}YU
\end{array}\right) = \left(\begin{array}{ll}
X & YU\\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
X & YU\\
0 & 0
\end{array}\right) \geq 0.
Remark 2. An equivalent condition which the equality holds in the matrix C‐S

inequality is known by Fujimoto‐Seo [4]: Under the assumption \mathrm{k}\mathrm{e}\mathrm{r}X \subset \mathrm{k}\mathrm{e}\mathrm{r}YU,
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the equality holds if and only if YU=XW for some W . In the proof, they use

(1) If \mathrm{k}\mathrm{e}\mathrm{r}A\subset \mathrm{k}\mathrm{e}\mathrm{r}B , then A\# BA^{\uparrow}B=B.

(2) If A\# B=A\# C and \mathrm{k}\mathrm{e}\mathrm{r}A\subset \mathrm{k}\mathrm{e}\mathrm{r}B\cap \mathrm{k}\mathrm{e}\mathrm{r}C , then B=C.

Related to matrix Cauchy‐Schwarz inequality, the following result is obtained by

Fujimoto‐Seo [4]:

Let \mathrm{A}= \left(\begin{array}{ll}
A & C\\
c* & B
\end{array}\right) be positive definite matrix. Then B\geq C^{*}A^{-1}C holds. Further‐

more it is known by them:

Theorem 4.1. Let A be as. in above and C = U|C| a polar decomposition of C

with unitary U. Then

|C|\leq U^{*}AU\# C^{*}A^{-1}C.

Proof. It can be also proved as similar as in above: Since |C| = U^{*}C=C^{*}U , we

have

\left(\begin{array}{ll}
U^{*}AU & |C|\\
|C| & C^{*}A^{-1}C
\end{array}\right) = \left(\begin{array}{ll}
A^{\mathrm{l}/2}U & A^{-1/2}C\\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
A^{\mathrm{l}/2}U & A^{-1/2}C\\
0 & 0
\end{array}\right) \geq 0.
The preceding result is generalized a bit by the use of the Moore‐Penrose generalized

inverse, for which we note that (A^{1/2})^{ $\dagger$}=(A^{\uparrow})^{1/2} for A\geq 0 :

Theorem 4.2. Let A be of form as in above and positive semidefinite, and C =

U|C| a polar decomposition of C with unitary U. If ran C \underline{\subseteq} ran A , then

|C| \leq U^{*}AU\# C^{*}A^{ $\dagger$}C.

Proof. Let P_{A} be the projection onto the range of A . Since P_{A}C=C and C^{*}P_{A}=

C^{*} , we have |C|=U^{*}P_{A}C=C^{*}P_{A}U . Hence it follows that

\left(\begin{array}{ll}
U^{*}AU & |C|\\
|C| & C^{*}A $\dagger$ C
\end{array}\right) = \left(\begin{array}{ll}
A^{1/2}U & (A $\dagger$)^{1/2}C\\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
A^{1/2}U & (A^{\uparrow})^{1/2}C\\
0 & 0
\end{array}\right) \geq 0.
5 A generalization of formulae for geometric mean

Since A\# B=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2} for invertible A , the geometric mean A#B

for positive semidefinite matrices A and B might be expected the same formulae as

for positive definite matrices, i.e.,

A\# B=A^{1/2}((A^{1/2})^{\uparrow}B(A^{1/2})^{ $\dagger$})^{1/2}A^{1/2}
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As a matter of fact, the following result is known by Fujimoto and Seo:

Theorem 5.1. Let A and B be positive semidefinite matrices. Then

A\# B\leq A^{1/2}((A^{1/2})^{\uparrow}B(A^{1/2})^{ $\dagger$})^{1/2}A^{1/2},

If the kernel inclusion \mathrm{k}\mathrm{e}\mathrm{r}A\subset \mathrm{k}\mathrm{e}\mathrm{r}B is assumed, then the equality holds in above.

Proof. For the first half, it suffices to show that if \left(\begin{array}{ll}
A & X\\
X & B
\end{array}\right) \geq 0 , then

X\leq A^{1/2}((A^{1/2})^{ $\dagger$}B(A^{1/2})^{\uparrow})^{1/2}A^{1/2}

because of Ando’s definition of the geometric mean. We here use the facts that

(A^{1/2})^{ $\dagger$} = (A^{\uparrow})^{1/2} , and that if \left(\begin{array}{ll}
A & X\\
X & B
\end{array}\right) \geq  0 for positive semdefinite X , then X =

AA^{\uparrow}X=P_{A}X and B\geq XA^{\mathrm{T}}X.

Now, since B\geq XA $\dagger$ X , we have

(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$}\geq[(A^{1/2})^{ $\dagger$}X(A^{1/2})^{ $\dagger$}]^{2},

so that Löwner‐Heinz inequality implies

[(A^{1/2})^{\uparrow}B(A^{1/2})^{ $\dagger$}]^{1/2}\geq(A^{1/2})^{ $\dagger$}X(A^{1/2})^{ $\dagger$}.

Hence it follows from X=P_{A}X that

A^{1/2}[(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$}]^{1/2}A^{1/2}\geq X.

Next suppose that \mathrm{k}\mathrm{e}\mathrm{r}A\subset \mathrm{k}\mathrm{e}\mathrm{r}B . Then we have ran  B\subset ran  A and so

A^{1/2}(A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$}A^{1/2}=B.

Therefore, putting C=(A^{1/2})^{\mathrm{t}}B(A^{1/2})^{\uparrow} and

Y=A^{1/2}((A^{1/2})^{ $\dagger$}B(A^{1/2})^{ $\dagger$})^{1/2}A^{1/2}=A^{1/2}C^{1/2}A^{1/2},

we have

\left(\begin{array}{ll}
A & Y\\
Y & B
\end{array}\right) = \left(\begin{array}{ll}
A^{\mathrm{l}/2} & 0\\
0 & A^{\mathrm{l}/2}
\end{array}\right) \left(\begin{array}{ll}
I & C^{1/2}\\
C^{1/2} & C
\end{array}\right) \left(\begin{array}{ll}
A^{\mathrm{l}/2} & 0\\
0 & A^{\mathrm{l}/2}
\end{array}\right) \geq 0,
which implies that Y \leq A\# B and thus Y=A\# B by combining the result in the

first half.

By checking the p.roof carefully, we have an improvement:
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Theorem 5.2. Let A and B be positive semidefinite matrices. Then

A\# B\leq A^{1/2}((A^{1/2})^{\uparrow}B(A^{1/2})^{ $\dagger$})^{1/2}A^{1/2},

In particular, the equality holds in above if and only if  P_{A}=AA $\dagger$ commutes with  B.

Proof. Notation as in above. If P_{A} =  AA $\dagger$ (= A^{1/2}(A^{1/2})^{\uparrow}) commutes with B , we

have P_{A}BP_{A} \leq B . Therefore we have

\left(\begin{array}{ll}
A & Y\\
Y & B
\end{array}\right) \geq \left(\begin{array}{ll}
A & Y\\
Y & P_{A}BP_{A}
\end{array}\right) = \left(\begin{array}{ll}
A^{\mathrm{l}/2} & 0\\
0 & A^{1/2}
\end{array}\right) \left(\begin{array}{ll}
I & C^{\mathrm{l}/2}\\
C^{1/2} & C
\end{array}\right) \left(\begin{array}{ll}
A^{1/2} & 0\\
0 & A^{\mathrm{l}/2}
\end{array}\right) \geq 0,

Conversely assume that the equality holds. Then \left(\begin{array}{ll}
A & Y\\
Y & B
\end{array}\right) \geq 0 . Hence we have

B\geq YA^{ $\dagger$}Y=A^{1/2}CA^{1/2}=P_{A}BP_{A},

which means P_{A} commutes with B.

Finally we cite the following lemma which we used in the proof of Theorem 5.1.

Lemma 5.3. If \left(\begin{array}{ll}
A & X\\
x* & B
\end{array}\right) \geq 0 , then X=AA $\dagger$ X=P_{A}X and B\geq XA^{\uparrow}X.

Proof. The assumption implies that

\left(\begin{array}{ll}
(A^{\mathrm{l}/2})^{ $\dagger$} & 0\\
0 & 1
\end{array}\right) \left(\begin{array}{ll}
A & X\\
x* & B
\end{array}\right) \left(\begin{array}{ll}
(A^{\mathrm{l}/2})^{\uparrow} & 0\\
0 & \mathrm{l}
\end{array}\right) = \left(\begin{array}{ll}
P_{A} & (A^{1/2})^{\uparrow}X\\
X^{*}(A^{1/2})^{\uparrow} & B
\end{array}\right) \geq 0.
Moreover, since

0\leq \left(\begin{array}{ll}
1 & -(A^{\mathrm{l}/2})^{ $\dagger$}X\\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
P_{A} & (A^{\mathrm{l}/2})^{ $\dagger$}X\\
X^{*}(A^{1/2})^{\uparrow} & B
\end{array}\right) \left(\begin{array}{ll}
1 & -(A^{1/2})^{\uparrow}X\\
0 & 1
\end{array}\right)
= \left(\begin{array}{ll}
P_{A} & 0\\
0 & B-X^{*}A^{\uparrow}X
\end{array}\right)

we have \dot{B}\geq X^{*}A $\dagger$ X.

Next we show that X = P_{A}X . It is equivalent to \mathrm{k}\mathrm{e}\mathrm{r}A \subseteq \mathrm{k}\mathrm{e}\mathrm{r}X^{*} Suppose that

Ax=0 . Putting y=-\displaystyle \frac{1}{\Vert B\Vert}X^{*}x , we have

0\leq (\left(\begin{array}{ll}
A & X\\
x* & B
\end{array}\right) \left(\begin{array}{l}
x\\
y
\end{array}\right) \left(\begin{array}{l}
x\\
y
\end{array}\right))
=(Xy, x)+(X^{*}x, y)+(By, y)

=-\displaystyle \frac{2}{\Vert B\Vert}\Vert X^{*}x\Vert^{2}+\frac{1}{\Vert B\Vert^{2}}(BX^{*}x, X^{*}x)
\displaystyle \leq-\frac{\Vert X^{*}x\Vert^{2}}{\Vert B\Vert} \leq 0.

Hence we have X^{*}x=0 , that is, \mathrm{k}\mathrm{e}\mathrm{r}A\subseteq \mathrm{k}\mathrm{e}\mathrm{r}X^{*} is shown.
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