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In this note, we study the quantum dynamics of a charged particle moving
in the plane in the presence of some time‐dependent electromagnetic fields. The
results mentioned here have been obtained in Adachi‐Kawamoto [1] and [2].

1 Case 1

We consider a quantum system of a charged particle moving in the plane R^{2} in
the presence ofthe constant magnetic field B which is perpendicular to the plane,
and the time‐dependent electric field E(t) which always lies in the plane. We set
B=(0,0, B)\in R^{3} with B>0 , and E(t)=(E_{1}(t), E_{2}(t))\in R^{2} . Then the free
Hamiltonian acting on L^{2}(R^{2}) is defined by

H_{0}(t)=H_{0}^{B}-qE(t)\cdot x, H_{0}^{B}=(p-qA(x))^{2}/(2m) , (1.1)

where m > 0, q \in  R\backslash \{0\}, x= (x_{1}, x_{2}) and p= (p_{1},p_{2}) = (-i\partial_{1}, -i\partial_{2}) are

the mass, the charge, the position, and the canonical momentum of the charged
particle, respectively, and A(x) = (-Bx_{2}/2, Bx_{1}/2) is the vector potential in
the symmetric gauge. p-qA(x) is called the kinetic momentum of the charged
particle, and H_{0}^{B} is called the free Landau Hamiltonian.

The first result which we would like to mention in this case is concemed with

the factorization of the propagator U_{0}(t, s) generated by H_{0}(t) :

Theorem 1.1 (Adachi‐Kawamoto [1]). Thefollowing Avron‐Herbst typeformula
for U_{0}(t, 0)

U_{0}(t, 0)=e^{-ia(t)}e^{ib(t)\cdot x}T(c(t))e^{-itH_{0}^{B}}, T(c(t))=e^{-ic(t)\cdot qA(x)}e^{-ic(t)\cdot p} (1.2)
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holds, where b(t)=(b_{1}(t), b_{2}(t)) , c(t)=(c_{1}(t), c_{2}(t)) and a(t) are given by

b(t)=\displaystyle \int_{0}^{t}\hat{R}(- $\omega$(t-s))(qE(s))ds, c(t)=\int_{0}^{t}b(s)/md_{\mathcal{S}},
a(t)=\displaystyle \int_{0}^{t}\{b(s)^{2}/(2m)+b(s)\cdot qA(c(s))/m\}ds , (1.3)

(\hat{R}( $\eta$)v)^{\mathrm{T}}= \left(\begin{array}{llll}
\mathrm{c}\mathrm{o}\mathrm{s} &  $\eta$ & -\mathrm{s}\mathrm{i}\mathrm{n} &  $\eta$\\
\mathrm{s}\mathrm{i}\mathrm{n} $\eta$ &  & \mathrm{c}\mathrm{o}\mathrm{s} $\eta$ & 
\end{array}\right)v^{\mathrm{T}},  $\omega$=qB/m.
| $\omega$| is called the Larmor frequency, and T( $\xi$) =e^{-i $\xi$\cdot k} is called the magnetic

translation generated by the pseudomomentum k = p+qA(x) of the charged
particle. It is well known that

 $\sigma$(H_{0}^{B})=$\sigma$_{\mathrm{p}\mathrm{p}}(H_{0}^{B})=\{| $\omega$|(n+1/2) |n\in N\cup\{0\}\}

holds, which implies that there is no scattering state in the system govemed by
H_{0}^{B} . However, as is also well known, ifthe constant electric field E=(E_{1}, E_{2}) is
switched on, then the guiding center ofthe charged particle drifts with the drift ve‐
locity  $\alpha$=(E_{2}/B, -E_{1}/B) . This phenomenon implies the existence of scattering
states in the system govemed by H_{0}(t) with E(t)\equiv E . Such a drift phenomenon
implies that |c(t)| is growing as t\rightarrow\pm\infty.

Now we will consider the case where E(t) = E_{0}(\cos( $\nu$ t+ $\theta$), \sin(vt+ $\theta$))
with E_{0} > 0, v \in  R and  $\theta$ \in [0, 2 $\pi$). For the sake of brevity, we set ẽ (  $\eta$ ) =

(\cos $\eta$, \sin $\eta$) . Then E(t) is written as E0ẽ(vt + $\theta$), and the instantaneous drift
velocity (E_{2}(t)/B\wedge, -E_{1}(t)/B) =\hat{R}(- $\pi$/2)E(t)/B is written as (E0/B)ẽ(  $\nu$t +

 $\theta$- $\pi$/2) . Since R(  $\omega$ s)(qE(s)) = qE0ẽ(v\tilde {}\mathcal{S}+ $\theta$ ) with \tilde{v}= $\nu$+ $\omega$ , we have

 b(t)=\left\{\begin{array}{ll}
(qE_{0}/\tilde{v}) (\ovalbox{\tt\small REJECT}(vt+ $\theta$-- $\pi$/2)--\ovalbox{\tt\small REJECT}(- $\omega$ t+ $\theta$-- $\pi$/2)), & \tilde{ $\nu$}\neq 0,\\
qE0t\ovalbox{\tt\small REJECT}(- $\omega$ t+ $\theta$), & \tilde{v}=0,
\end{array}\right.
c(t)= \left\{\begin{array}{ll}
(E0/B)(( $\delta$\ovalbox{\tt\small REJECT})(v\tilde {}t; - $\omega$ t+ $\theta$)/v\tilde{}--( $\delta$\ovalbox{\tt\small REJECT})( $\nu$ t; $\theta$)/v), & v\tilde{v}\neq 0,\\
(E0/B)(( $\delta$\ovalbox{\tt\small REJECT})(- $\omega$ t; $\theta$)/(- $\omega$)+t\ovalbox{\tt\small REJECT}( $\theta$-- $\pi$/2)), & v=0,\\
(E0/B)(- t\ovalbox{\tt\small REJECT}(- $\omega$ t+ $\theta$-- $\pi$/2)--( $\delta$\ovalbox{\tt\small REJECT})(- $\omega$ t; $\theta$)/(- $\omega$)), & \tilde{v}=0,
\end{array}\right.

where we put (  $\delta$ ẽ) ( $\eta$;  $\zeta$) = ẽ ( $\eta$+ $\zeta$) —ẽ (  $\zeta$ ) for the sake of brevity. Since |c(t)|
is growing like (E_{0}/B)|t| as t \rightarrow \pm\infty when  v\tilde{ $\nu$} = 0 , then one can expect the
existence of scattering states even if the system under consideration is govemed
by the perturbed Hamiltonian H(t)=H_{0}(t)+V . The case where \tilde{v}=0 , that is,
 v=- $\omega$ , is closely related to the cyclotron resonance. Here we pose the following
assumption (V1)_{ $\rho$} with  $\rho$ > 0 on the time‐independent potential V , which we
make simpler than in [1] for the sake ofbrevity:
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(V1)_{ $\rho$}V is a real‐valued function belonging to C^{2} (R2), and satisfies the decaying
condition |(\partial^{ $\alpha$}V)(x)|\leq C_{ $\alpha$}\langle x\}^{- $\rho$-| $\alpha$|}(| $\alpha$| \leq 2) . Here \{x\rangle=\sqrt{1+|x|^{2}}.

Then we obtain the following result about the existence of (modified) wave
operators:

Theorem 1.2 ([1]). Suppose that V satisfies (V1)_{ $\rho$} for some  $\rho$ > 0, and that
E(t) = E0ẽ(vt + $\theta$ ) with  v\in \{0, - $\omega$\} and  $\theta$\in [0, 2 $\pi$ ). If  $\rho$> 1 , then the wave
operators

W^{\pm}=\displaystyle \mathrm{s}-\lim_{t\rightarrow\pm\infty}U(t, 0)^{*}U_{0}(t, 0) (1.4)

exist. If0< $\rho$\leq 1 , then the modified wave operators

W_{G}^{\pm}=\displaystyle \mathrm{s}-\lim_{t\rightarrow\pm\infty}U(t, 0)^{*}U_{0}(t, 0)e^{-i\int_{0}^{t}V(c(\mathrm{s}))ds} (1.5)

exist. Here U(t, s) standsfor the propagator generated by H(t) .

Next we will consider the problem of the asymptotic completeness of wave
operators. Here we need the additional assumptions that v = 0 and that V is
of short‐range, that is,  $\rho$ > 1 . Since the Hamiltonians under consideration are
independent of t in this case, we write H_{0}(t) and H(t) as H_{0} and H , respectively.
Then we obtain the following result:

Theorem 1.3 ([1]). Suppose that V satisfies (V1)_{ $\rho$} for some  $\rho$ > 1 , and that
E(t) \equiv E0ẽ (  $\theta$ ) with  $\theta$\in [0, 2 $\pi$ ). Then  W^{\pm}are asymptotically complete, that is,

Ran W^{\pm}=L_{\mathrm{c}}^{2}(H) , (1.6)

where L_{\mathrm{c}}^{2}(H) is the continuous spectral subspace ofthe Hamiltonian H.

In the study in the case where v = - $\omega$ , the rotatming frame is useful: The
Schrödinger equation under consideration is

 i\partial_{t} $\Psi$(t)=H(t) $\Psi$(t) , H(t)=H_{0}^{B}-qE_{0}\tilde{e}(- $\omega$ t+ $\theta$)\cdot x+V(x) .

ẽ(‐  $\omega$t + $\theta$).  x can be written as ( \hat{R}(‐  $\omega$ t)ẽ(  $\theta$)). x = ẽ‐(  $\theta$ ) (\hat{R}( $\omega$ t)x) . Now we
introduce the angular momentum \tilde{L}=x_{1}p_{2}-x_{2}p_{1}. e^{i $\eta$ L} is a unitary operator on
L^{2}(R^{2}) given by

(e^{i $\eta$\overline{L}}u)(x)=u(\hat{R}( $\eta$)x) .

For  $\Psi$(t)= $\Psi$(t, x) , we introduce

 $\Phi$(t, x)=(e^{-i $\omega$ t\overline{L}} $\Psi$(t))(x)= $\Psi$(t,\hat{R}(- $\omega$ t)x) .
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Then  $\Phi$(t)= $\Phi$(t, x) satisfies the Schrödinger equation

i\partial_{t} $\Phi$(t)=\hat{H}(t) $\Phi$(t) , \hat{H}(t)= $\omega$\tilde{L}+e^{-i $\omega$ t\overline{L}}H(t)e^{i $\omega$ t\overline{L}}
We emphasis that \hat{H}(t) can be written as

\hat{H}(t)=H_{0}^{-B} —qE0ẽ (  $\theta$ ) .  x+V(\hat{R}(- $\omega$ t)x) , H_{0}^{-B}=(p+qA(x))^{2}/(2m)

(see [1]). By using such a rotating frame, the problem under consideration can
be reduced to the one in the case where v = 0 , the magnetic field is given by
-B , and the potential is given as the rotating potential V(\hat{R}(- $\omega$ t)x) , which is
periodic in time. In particular, if V is radial, that is, V depends on |x| only, then
V(\hat{R}(- $\omega$ t)x)\equiv V(x) . Therefore the asymptotic completeness can be guaranteed
by virtue of Theorem 1.3 if V is of short‐range. In the same way as above, the
scattering problems for the time‐periodic Hamiltonian

\tilde{H}(t)=H_{0}^{B}-qE_{0}\tilde{e}(- $\omega$ t+ $\theta$)\cdot x+V(\hat{R}( $\omega$ t)x)

can be reduced to the ones for the time‐independent Hamiltonian

\hat{H}=H_{0}^{-B} —qE0ẽ (  $\theta$ ) .  x+V(x) .

Then the asymptotic completeness can be guaranteed by virtue of Theorem 1.3,
even ifthe short‐range potential V is not radial.

2 Case 2

We consider a quantum system of a charged particle moving in the plane R^{2} in
the presence of a periodically pulsed magnetic field B(t) which is perpendicular
to the plane. We suppose that B(t)=(0,0, B(t))\in R^{3} is given by

B(t)= \left\{\begin{array}{ll}
B, t\in\bigcup_{n\in Z}I_{B,n}=:I_{B}, & \\
0, t\in\bigcup_{n\in Z}I_{0,n}=:I_{0}, & (2.1)
\end{array}\right.
I_{B,n}=[nT, nT+T_{B}) , I_{0,n}=[nT+T_{B}, (n+1)T) ,

where B>0 and 0<T_{B}<T. T is the period ofB(t) . We put T_{0}=T-T_{B}>0.

The free Hamiltonian acting on L^{2}(R^{2}) is defined by

H_{0}(t)=(p-qA(t, x))^{2}/(2m) , (2.2)

where

A(t, x)=(-B(t)x_{2}/2, B(t)x_{1}/2)

= \left\{\begin{array}{ll}
(-Bx_{2}/2, Bx_{1}/2)=A(x) , & t\in I_{B}, (2.3)\\
(0,0), & t\in I_{0},
\end{array}\right.
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is the vector potential in the symmetric gauge. Then H_{0}(t) is represented as

H_{0}(t)= \left\{\begin{array}{ll}
H_{0}^{B}, & t\in I_{B},\\
H_{0}^{0}, & t\in I_{0},
\end{array}\right. (2.4)

where H_{0}^{0}=p^{2}/(2m) is the free Schrödinger operator. Let U_{0}(t, s) be the prop‐
agator generated by H_{0}(t) . By (2.4) and the self‐adjointness of H_{0}^{B} and H_{0}^{0},
U_{0}(t, 0) is represented as

U_{0}(t, 0)=\left\{\begin{array}{ll}
e^{-i(t-nT)H_{0}^{B}}U_{0}(T, 0)^{n}, & t\in I_{B,n},\\
e^{-i(t-(nT+T_{B}))H_{0}^{0}}e^{-iT_{B}H_{0}^{B}}U_{0}(T, 0)^{n}, & t\in I_{0,n},
\end{array}\right. (2.5)

with n\in Z , where

U_{0}(T, 0)=e^{-iT_{0}H_{0}^{0}}e^{-iT_{B}H_{0}^{B}} (2.6)

is the Floquet operator associated with H_{0}(t) , U_{0}(T, 0)^{0} = Id, and U_{0}(T, 0)^{n} =

(U_{0}(T, 0)^{*})^{-n} when -n\in N . Put

 $\omega$=qB/m, \overline{ $\omega$}= $\omega$/2,  $\omega$=\overline{ $\omega$}=/2= $\omega$/4 . (2.7)

Taking account of e^{-i(2 $\pi$/| $\omega$|)H_{0}^{B}}=e^{-i( $\pi$/|\overline{ $\omega$}|)H_{0}^{B}} = −Id, we always assume

 0<|\overline{ $\omega$}|T_{B}< $\pi$ (2.8)

for the sake of simplicity.
Let \tilde{S}_{0}^{0}(t;x, y) and \tilde{S}_{0}^{B}(t;x, y) be integral kernels of e^{-itH_{0}^{0}} and e^{-itH_{0}^{B}} , respec‐

tively. As is well known, these are represented as

\displaystyle \tilde{S}_{0}^{0}(t;x, y)=\frac{m}{2 $\pi$ it}e^{im(x-y)^{2}/(2t)},
\displaystyle \tilde{S}_{0}^{B}(t;x, y)=\frac{m|\overline{ $\omega$}|}{2 $\pi$ i\sin(|\overline{ $\omega$}|t)}e^{im|\overline{ $\omega$}|x^{2}/(2\tan(|\overline{ $\omega$}|t))} (2.9)

\times e^{-im|\overline{ $\omega$}|(\hat{R}(\overline{ $\omega$}t)x)\cdot y/\sin(|\overline{ $\omega$}|t)}e^{im|\overline{ $\omega$}|y^{2}/(2\tan(|\overline{ $\omega$}|t))}.

By using these formulas, we obtained the representation of the intergral kernel
\tilde{S}_{0}(t;x, y) of U_{0}(t, 0) (see Adachi‐Kawamoto [2]). Here, for the sake of simplic‐
ity, we give it with t=nT(n\in N) only:

\displaystyle \tilde{S}_{0}(nT;x, y)=\frac{1}{2 $\pi$ ic_{n}$\theta$_{n}}e^{ix^{2}/(2$\theta$_{n})}e^{-i(\hat{R}($\phi$_{n})x)\cdot y/(c_{n}$\theta$_{n})}e^{i$\sigma$_{n}y^{2}/(2$\theta$_{n})} , (2.10)

where \{$\theta$_{n}\} , {cn}, \{$\sigma$_{n}\} and \{$\phi$_{n}\} satisfy the recurrence relations

\displaystyle \frac{1}{$\theta$_{n+1}}= (1-\frac{1}{c_{1}^{2}$\sigma$_{1}})\frac{1}{$\theta$_{1}}+\frac{1}{(c_{1}$\sigma$_{1})^{2}($\theta$_{1}/$\sigma$_{1}+$\theta$_{n})},
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\displaystyle \frac{1}{c_{n+1}$\theta$_{n+1}}=\frac{1}{c_{1}$\sigma$_{1}c_{n}($\theta$_{1}/$\sigma$_{1}+$\theta$_{n})},
\displaystyle \frac{$\sigma$_{n+1}}{$\theta$_{n+1}}= ($\sigma$_{n}-\frac{1}{c_{n}^{2}})\frac{1}{$\theta$_{n}}+\frac{1}{c_{n}^{2}($\theta$_{1}/$\sigma$_{1}+$\theta$_{n})},
$\phi$_{n+1}=$\phi$_{1}+$\phi$_{n}

with

$\theta$_{1}=\displaystyle \frac{L_{12}}{L_{22}}, c_{1}=L_{22}, $\phi$_{1}=\overline{ $\omega$}T_{B}, $\sigma$_{1}=$\sigma$_{0}(T)=\frac{L_{11}}{L_{22}},
L= \left(\begin{array}{ll}
L_{\mathrm{l}1} & L_{\mathrm{l}2}\\
L_{2\mathrm{l}} & L_{22}
\end{array}\right)

= \left(\begin{array}{lll}
\mathrm{c}\mathrm{o}\mathrm{s}(\overline{ $\omega$}T_{B})- & \overline{ $\omega$}T_{0}\mathrm{s}\mathrm{i}\mathrm{n}(\overline{ $\omega$}T_{B}) & \overline{ $\omega$}T_{0}\mathrm{c}\mathrm{o}\mathrm{s}(\overline{ $\omega$}T_{B})+\mathrm{s}\mathrm{i}\mathrm{n}(\overline{ $\omega$}T_{B})\\
-\mathrm{s}\mathrm{i}\mathrm{n}(\overline{ $\omega$}T_{B}) &  & \mathrm{c}\mathrm{o}\mathrm{s}(\overline{ $\omega$}T_{B})
\end{array}\right)
One can obtain $\phi$_{n}=n\overline{ $\omega$}T_{B} immediately. We note that L\in \mathrm{S}\mathrm{L}(2, R) and that the
recurrence relation of \{$\theta$_{n}\} can be written by L as follows:

$\theta$_{n+1}=\displaystyle \frac{L_{11}$\theta$_{n}+L_{12}}{L_{21}$\theta$_{n}+L_{22}}.
If T_{0}\neq T_{0,\mathrm{c}\mathrm{r}}=1/(| $\omega$=|\tan(| $\omega$=|T_{B}))>0 , then $\theta$_{n}, c_{n} and $\sigma$_{n} are represented as

$\theta$_{n}=\displaystyle \frac{L_{12}$\mu$_{n}}{L_{22}$\mu$_{n}-$\mu$_{n-1}}, c_{n}=L_{22}$\mu$_{n}-$\mu$_{n-1}, $\sigma$_{n}=\displaystyle \frac{L_{11}$\mu$_{n}-$\mu$_{n-1}}{L_{22}$\mu$_{n}-$\mu$_{n-1}},
$\mu$_{n}=\displaystyle \frac{$\lambda$_{+}^{n}-$\lambda$^{\underline{n}}}{$\lambda$_{+}-$\lambda$_{-}},  $\lambda$\pm=$\lambda$_{0}\pm\sqrt{$\lambda$_{0}^{2}-1}, $\lambda$_{0}=(L_{11}+L_{22})/2.

 $\lambda$\pm are the eigenvalues of  L . From now on we always assume T_{0} \neq  T_{0,\mathrm{c}\mathrm{r}} and
L_{12} \neq  0 , that is, T_{0} \neq  T_{0,\mathrm{r}\mathrm{e}\mathrm{s}} = -\tan(|\overline{ $\omega$}|T_{B}) ) /|\overline{ $\omega$}| . By (2.10), the following
factorization of U_{0}(nT, 0) can be given:

U_{0}(nT, 0)=e^{i$\phi$_{n}\overline{L}}M($\theta$_{n})D(c_{n}$\theta$_{n})\displaystyle \mathscr{F}M(\frac{$\theta$_{n}}{$\sigma$_{n}}) . (2.11)

Here M( $\tau$) , D( $\tau$) and \mathscr{F} are unitary operators on L^{2}(R^{2}) given by

(M( $\tau$) $\varphi$)(x)=e^{ix^{2}/(2 $\tau$)} $\varphi$(x) , (D( $\tau$) $\varphi$)(x)=\displaystyle \frac{1}{i $\tau$} $\varphi$(\frac{x}{ $\tau$}) ,

(2.12)

\displaystyle \mathscr{F}[ $\varphi$]( $\xi$)=\frac{1}{2 $\pi$}\int_{R^{2}}e^{-ix $\xi$} $\varphi$(x)dx.
In the study of some scattering problems for this system, the growing order ofthe
argument c_{n}$\theta$_{n} = L_{12}$\mu$_{n} of the dilation operator D(c_{n}$\theta$_{n}) in (2.11) as n \rightarrow \infty
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is an important factor. If |$\lambda$_{0}| < 1 , then |$\lambda$_{\pm}| = 1 , which implies that |c_{n}$\theta$_{n}| is
bounded with respect to n ; while if |$\lambda$_{0}| > 1 , then $\lambda$_{-} < -1 <  $\lambda$+ < 0 holds.
Thus |c_{n}$\theta$_{n}| is growing exponentially like |$\lambda$_{-}|^{n} = e^{n\log|$\lambda$_{-}|} as  n\rightarrow \infty . Such a
phenomenon is called a parametric resonance. We note that |$\lambda$_{0}|>1 is equivalent
to T_{0}>T_{0,\mathrm{c}\mathrm{r}}.

In the case where T_{0}>T_{0,\mathrm{c}\mathrm{r}} , we will consider the problem of the asymptotic
completeness of wave operators as in Case 1. We pose the following assumption
(V2)_{ $\rho$} with  $\rho$>0 on the time‐independent potential V :

(V2)_{ $\rho$}V is a real‐valued function belonging to C(R^{2}) , and satisfies the decaying
condition |V(x)| \leq C\{x\rangle^{- $\rho$}.

Then we obtain the following result:

Theorem 2.1 ([2]). Suppose that T_{0} satisfies T_{0}>T_{0,\mathrm{c}\mathrm{r}} . When  $\pi$/2<|\overline{ $\omega$}|T_{B}< $\pi$,
assume that T_{0} satisfies T_{0} \neq  T_{0,\mathrm{r}\mathrm{e}\mathrm{s}} additionally. Assume that V satisfies the
condition (V2)_{ $\rho$} for some  $\rho$>0 . Then the wave operators

W^{\pm}=\displaystyle \mathrm{s}-\lim_{t\rightarrow\pm\infty}U(t, 0)^{*}U_{0}(t, 0) (2.13)

exist, and are asymptotically complete:

Ran (W^{\pm})=\mathscr{H}_{\mathrm{a}\mathrm{c}}(U(T, 0 (2.14)

Here U(t, s) stands for the propagator generated by H(t) = H_{0}(t)+V, and
\mathscr{H}_{\mathrm{a}\mathrm{c}}(U(T, 0)) is the absolutely continuous spectral subspace associated with the
Floquet operator U(T, 0) .

Since we assume that V is time‐independent, the existence of U(t, 0) can be
guaranteed as follows: Since H(t) is represented as

H(t)= \left\{\begin{array}{ll}
H_{0}^{B}+V=H^{B}, & t\in I_{B},\\
H_{0}^{0}+V=H^{0}, & t\in I_{0},
\end{array}\right. (2.15)

U(t, 0) is represented as

U(t, 0)= \left\{\begin{array}{ll}
e^{-i(t-nT)H^{B}}U(T, 0)^{n}, & t\in I_{B,n},\\
e^{-i(t-(nT+T_{B}))H^{0}}e^{-iT_{B}H^{B}}U_{0}(T, 0)^{n}, & t\in I_{0,n},
\end{array}\right. (2.16)

with n\in Z , where

U(T, 0)=e^{-iT_{0}H^{0}}e^{-iT_{B}H^{B}} (2.17)

is the Floquet operator associated with H(t) .
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