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On quantum scattering in time-dependent
electromagnetic fields

Tadayoshi ADACHI (Kyoto University)

In this note, we study the quantum dynamics of a charged particle moving
in the plane in the presence of some time-dependent electromagnetic fields. The
results mentioned here have been obtained in Adachi-Kawamoto [1] and [2].

1 Casel

We consider a quantum system of a charged particle moving in the plane R? in
the presence of the constant magnetic field B which is perpendicular to the plane,
and the time-dependent electric field E(¢) which always lies in the plane. We set
B =(0,0,B) € R® with B > 0, and E(t) = (E1(t), E2(t)) € R?. Then the free
Hamiltonian acting on L?(R?) is defined by

Ho(t) = Hf —qE(t)-z, HJ = (p—qA(z))*/(2m), (1.1)

where m > 0,q € R\ {0}, z = (z1,22) and p = (p1,p2) = (—i01, —i0s) are
the mass, the charge, the position, and the canonical momentum of the charged
particle, respectively, and A(z) = (—Bxy/2, Bz1/2) is the vector potential in
the symmetric gauge. p — qA(z) is called the kinetic momentum of the charged
particle, and HZ is called the free Landau Hamiltonian.

The first result which we would like to mention in this case is concerned with
the factorization of the propagator Uy(t, s) generated by Hy(t):

Theorem 1.1 (Adachi-Kawamoto [1]). The following Avron-Herbst type formula
Jor Uy(t,0)

U()(t, O) — e-ia(t)eib(t)~zT(c(t))e—itHé?, T(C(t)) — e ic(t)aA(z) p—ic(t)-p (1.2)



holds, where b(t) = (b1(t), b2(t)), c(t) = (c1(t), c2(t)) and a(t) are given by

b(t) = / R(—w(t - 5))(qB(s)) ds, elt) = / b(s)/m ds,
aft) = / {b(s)?/(2m) + b(s) - gA(e(s))/m} ds, (1.3)

A T _ [cosp —sinp\ _
(o)* = (Gon "o o, =B/

|w| is called the Larmor frequency, and T'(¢) = e~%* is called the magnetic
translation generated by the pseudomomentum k& = p + gA(z) of the charged
particle. It is well known that

o(Hy') = opp(Hy) = {lw|(n +1/2) [ n € N U{0}}

holds, which implies that there is no scattering state in the system governed by
Hég . However, as is also well known, if the constant electric field E = (Ey, Es) is
switched on, then the guiding center of the charged particle drifts with the drift ve-
locity @ = (E2/B, —E;/B). This phenomenon implies the existence of scattering
states in the system governed by Hy(t) with E(¢) = E. Such a drift phenomenon
implies that |c(t)]| is growing as t — +oo.

Now we will consider the case where E(t) = Ey(cos(vt + 6),sin(vt + 6))
with Ey > 0, v € R and 6 € [0,27). For the sake of brevity, we set é(n) =
(cosm,sinn). Then E(t) is written as Eyé(vt + ), and the instantaneous drift
velocity (E,(t)/B, —Ey(t)/B) = R(—m/2)E(t)/B is written as (Ey/B)é(vt +
6 — m/2). Since R(ws)(¢E(s)) = qEoé(vs + 0) with & = v + w, we have

b(t) {(qu/ﬂ)(é(vt 40— 1)2) —&(—wt +0—7/2)), 70,
-0

quté(—wt + 0), v 5
(Eo/B)((8€)(9t; —wt + 6) /7 — (6€)(vt; 6)/v), v # 0,
e(t) = { (Bo/B)((68)(~wt; 0)/(—w) + t6(0 — 7/2)), v =

0,
(Eo/B)(=té(-wt + 0 — m/2) — (6€)(—wt; 0)/(-w)), v =0,

where we put (d€)(n;¢) = é(n + ¢) — é(¢) for the sake of brevity. Since |c(t)]
is growing like (Ey/B)|t| as t — oo when v = 0, then one can expect the
existence of scattering states even if the system under consideration is governed
by the perturbed Hamiltonian H (t) = Ho(t) + V. The case where © = 0, that is,
v = —uw, is closely related to the cyclotron resonance. Here we pose the following
assumption (V'1), with p > 0 on the time-independent potential V', which we
make simpler than in [1] for the sake of brevity:



(V1), V is a real-valued function belonging to C?(R?), and satisfies the decaying
condition |(8°V)(z)| < Ca(z)~P71°l (|| < 2). Here (z) = /1 + |z]%.

Then we obtain the following result about the existence of (modified) wave
operators:

Theorem 1.2 ([1]). Suppose that V satisfies (V1), for some p > 0, and that
E(t) = Eé(vt + 0) withv € {0, —w} and 0 € [0,27). If p > 1, then the wave
operators

W= = s-lim U(¢,0)*Uy(t,0) (1.4)

t—+oo

exist. If 0 < p < 1, then the modified wave operators
W& = slim U(t,0)"Up(t, 0)e™ JEV(e(s)) ds s

exist. Here U (t, s) stands for the propagator generated by H (t).

Next we will consider the problem of the asymptotic completeness of wave
operators. Here we need the additional assumptions that » = 0 and that V is
of short-range, that is, p > 1. Since the Hamiltonians under consideration are
independent of ¢ in this case, we write Hy(t) and H (t) as Hy and H, respectively.
Then we obtain the following result:

Theorem 1.3 ([1]). Suppose that V satisfies (V1), for some p > 1, and that
E(t) = Eoé(0) with § € [0,27). Then W= are asymptotically complete, that is,

Ran W* = L2(H), (1.6)
where L?(H) is the continuous spectral subspace of the Hamiltonian H.

In the study in the case where v = —w, the rotating frame is useful: The
Schrédinger equation under consideration is

i0,U(t) = H(t)U(t), H(t)= HE — qEé(—wt +0) -z + V(x).

é(—wt + ) - = can be written as (f?(—wt)é(@)) x = ¢&(0) - (R(wt)z). Now we

introduce the angular momentum L = z;p; — Z3p;. €"F is a unitary operator on
L*(R?) given by )

(€™ u)(z) = u(R(n)z).
For ¥(t) = (¢, z), we introduce

A

B(t,z) = (e LU(t))(z) = U(t, R(—wt)z).



Then ®(t) = ®(t, z) satisfies the Schrodinger equation
i6,®(t) = HO)®(t), H(t) =wl + e “LH(t)e.
We emphasis that H () can be written as
H(t) = Hy® — qBoé(6) - = + V(R(-wt)z), H;® = (p+qA(x))*/(2m)

(see [1]). By using such a rotating frame, the problem under consideration can
be reduced to the one in the case where v = 0, the magnetic field is given by
—B, and the potential is given as the rotating potential V (R(—wt)z), which is
periodic in time. In particular, if V' is radial, that is, V' depends on |z| only, then
V(R(—wt)x) = V(x). Therefore the asymptotic completeness can be guaranteed
by virtue of Theorem 1.3 if V' is of short-range. In the same way as above, the
scattering problems for the time-periodic Hamiltonian

H(t) = HP — qEoé(—wt + ) - z + V(R(wt)z)
can be reduced to the ones for the time-independent Hamiltonian

H=Hy5 — qE(9) -z + V(z).

Then the asymptotic completeness can be guaranteed by virtue of Theorem 1.3,
even if the short-range potential V' is not radial.

2 Case?2

We consider a quantum system of a charged particle moving in the plane R? in
the presence of a periodically pulsed magnetic field B(t) which is perpendicular
to the plane. We suppose that B(t) = (0,0, B(t)) € R? is given by

B, t Ig, =:Ip,
Bt)=15 €Uz lon=1p

0, t€U,ezlon=:1o, 2.1
IB,n = [’I’LT, nT + TB), IO,n = [nT + TB, (n + 1)T),

where B > 0and 0 < Tp < T'. T is the period of B(t). Weput T, = T'—Tp > 0.
The free Hamiltonian acting on L?(R?) is defined by

Ho(t) = (p — qA(t, ))?/(2m), 2.2)
where
A(t,z) = (=B(t)z2/2, B(t)x1/2)
_ {(—Bx2/2, Bz,/2) = A(z), te€ I, (2.3)
(0,0), t € I,



is the vector potential in the symmetric gauge. Then Hy(t) is represented as

B
Hy(t) = { o0 TE I 2.4)
Ho, tGI(),

where H = p?/(2m) is the free Schrodinger operator. Let Uy(t, s) be the prop-
agator generated by Ho(t). By (2.4) and the self-adjointness of HZ and HY,
Up(t,0) is represented as

e~it=nDHF 17 (T () t€lppy,
(t 0) —z(t (nT+TB))f§0 l?lﬂBHB " B, (25)
o U(T,0)", t € Iyn,
with n € Z, where , B
Uo(T, 0) = e~ ToH3 g=iTnHs (2.6)

is the Floquet operator associated with Hy(t), Uy(T,0)° = Id, and Uy(T,0)" =
(Uo(T,0)*)~" when —n € N. Put

w=gB/m, ©w=w/2, w=0/2=w/4 2.7
Taking account of e~i@™/WDHG — ¢=i(r/leDHF — _]d, we always assume
0<|@Tg<m (2.8)

for the sake of simplicity.
Let SO(t; z,y) and SB(t; z, y) be integral kernels of e~ and e~*H¢ | respec-
tively. As is well known, these are represented as

Sot; z,y) = mte m(z—y)?/(2)

mlLTJ| 5|2 ”
S t: _ M imw|z? /(2 tan(|@t)) (29)
o (5zy) = 2mi sm(|w|t)e

% g~ iml@|(R@t)z)-y/ sin(|@]t) giml@ly?/ (2 tan(|@]t)
By using these formulas, we obtained the representation of the intergral kernel
So(t; z,y) of Uy(t, 0) (see Adachi-Kawamoto [2]). Here, for the sake of simplic-
ity, we give it with t = nT (n € N) only:

~ 1 ) S )
So(nT,a: y) = WC0__6'“'72/(20")e_Z(R(qsn)x)'LU/(Cn‘f’)n)e“:’ny2/(20n)7 (210)
nVn

where {0,,}, {c,}, {on} and {¢,} satisfy the recurrence relations

I (1_ 1 )1 n 1
en—i—l 010'1 01 (610‘1)2(01/0’1+0n)’



1 1
Cni1Oni1  C101¢,(61 /01 + 6,)’
on+1~(0_1)1+ 1
N 2/ 6, c(61/o1+6,)
¢n+l = ¢’1 + ¢n
with
L L
0 ==2 ¢ =Ly, ¢ =aTs o1=0o(T)=="2,
Ly Ly

_ (L1 L
Ly Ly
_ (cos(@Tg) — @Tpsin(wTp) @Tpcos(wTp)+ sin(@ls)

B ( —sin(wTp) cos(@wTg) ) ‘

One can obtain ¢,, = nwTp immediately. We note that L € SL(2, R) and that the
recurrence relation of {6,,} can be written by L as follows:

9 _ L1160, + L1o
n L2160, + Lao

IfTp # Toer = 1/(|@] tan(|@|TB)) > 0, then 6, ¢, and o, are represented as

0 _ L12,U'n _ Lllﬂ'n — Mn—1
" Loopin, — ,Un-1, Loopin, — )ttn—17

AT — A /
Nn=):—-)\_’ Ar =Xt A -1, Ao=(Lu+Lxn)/2

Cp = L22,Ufn — Mn—-1, On

A+ are the eigenvalues of L. From now on we always assume T # Ty, and
Ly # 0, that is, Ty # Tores = —tan(|@|Tg))/|@]. By (2.10), the following
factorization of Uy(nT, 0) can be given:

Up(nT,0) = ewniM(an)D(cnan)yM(gﬁ). @.11)

On

Here M(7), D(7) and % are unitary operators on L?(R?) given by
(M(T)p)(@) = 1 *p(a), (D(r)e)(z) = —o(Z), (
| 2.12)

ZIAO = 57 [ e ela)da,

In the study of some scattering problems for this system, the growing order of the
argument c,0, = Liou, of the dilation operator D(c,6,) in (2.11) as n — oo



is an important factor. If [A\¢| < 1, then |A| = 1, which implies that |c,0,| is
bounded with respect to n; while if [Ag| > 1, then A\_ < —1 < Ay < 0 holds.
Thus |c,8,| is growing exponentially like [A_|" = e"'°&*-l as n — oo. Such a
phenomenon is called a parametric resonance. We note that |Ag| > 1 is equivalent
to Tg > TO,cr-

In the case where T, > Tp ., we will consider the problem of the asymptotic
completeness of wave operators as in Case 1. We pose the following assumption
(V2), with p > 0 on the time-independent potential V:

(V2), V is a real-valued function belonging to C(R?), and satisfies the decaying
condition |V (z)| < C(z)~".

Then we obtain the following result:

Theorem 2.1 ([2]). Suppose that Ty, satisfies Ty > Ty ;. When /2 < |0|Tg <,
assume that Ty satisfies Ty # Tpres additionally. Assume that V satisfies the
condition (V2), for some p > 0. Then the wave operators

W* = s-lim U(t,0)*Uy(t,0) (2.13)
t—+too

exist, and are asymptotically complete:
Ran(W*) = 4.(U(T,0)). (2.14)

Here U(t,s) stands for the propagator generated by H(t) = Hy(t) + V, and
Hac(U(T,0)) is the absolutely continuous spectral subspace associated with the
Floquet operator U(T,0).

Since we assume that V' is time-independent, the existence of U (¢, 0) can be
guaranteed as follows: Since H () is represented as

HE+V =HP tel
H(t)y=407F » tE€B 2.15)
HY+V =H, tel,
U(t,0) is represented as
e~it=nDHZ (T 0)n, telpy,
U(t7 O) = {e—i(t—(nT+TB))HOe‘iTBHB UO(T) O)", t 6 Io’n, (2.16)
with n € Z, where . .
U(T,0) = ¢ ToHg=iTH" (2.17)

is the Floquet operator associated with H (¢).
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