On quantum scattering in time-dependent electromagnetic fields

Tadayoshi ADACHI (Kyoto University)

In this note, we study the quantum dynamics of a charged particle moving in the plane in the presence of some time-dependent electromagnetic fields. The results mentioned here have been obtained in Adachi-Kawamoto [1] and [2].

1 Case 1

We consider a quantum system of a charged particle moving in the plane \mathbb{R}^2 in the presence of the constant magnetic field \mathbb{B} which is perpendicular to the plane, and the time-dependent electric field E(t) which always lies in the plane. We set $\mathbf{B} = (0, 0, B) \in \mathbb{R}^3$ with B > 0, and $E(t) = (E_1(t), E_2(t)) \in \mathbb{R}^2$. Then the free Hamiltonian acting on $L^2(\mathbb{R}^2)$ is defined by

$$H_0(t) = H_0^B - qE(t) \cdot x, \quad H_0^B = (p - qA(x))^2 / (2m), \tag{1.1}$$

where m > 0, $q \in \mathbf{R} \setminus \{0\}$, $x = (x_1, x_2)$ and $p = (p_1, p_2) = (-i\partial_1, -i\partial_2)$ are the mass, the charge, the position, and the canonical momentum of the charged particle, respectively, and $A(x) = (-Bx_2/2, Bx_1/2)$ is the vector potential in the symmetric gauge. p - qA(x) is called the kinetic momentum of the charged particle, and H_0^B is called the free Landau Hamiltonian.

The first result which we would like to mention in this case is concerned with the factorization of the propagator $U_0(t, s)$ generated by $H_0(t)$:

Theorem 1.1 (Adachi-Kawamoto [1]). *The following Avron-Herbst type formula* for $U_0(t, 0)$

$$U_0(t,0) = e^{-ia(t)}e^{ib(t)\cdot x}T(c(t))e^{-itH_0^B}, \quad T(c(t)) = e^{-ic(t)\cdot qA(x)}e^{-ic(t)\cdot p}$$
(1.2)

holds, where $b(t) = (b_1(t), b_2(t))$ *,* $c(t) = (c_1(t), c_2(t))$ *and* a(t) *are given by*

$$b(t) = \int_{0}^{t} \hat{R}(-\omega(t-s))(qE(s)) \, ds, \quad c(t) = \int_{0}^{t} b(s)/m \, ds,$$

$$a(t) = \int_{0}^{t} \{b(s)^{2}/(2m) + b(s) \cdot qA(c(s))/m\} \, ds,$$

$$(\hat{R}(\eta)v)^{\mathrm{T}} = \begin{pmatrix} \cos \eta & -\sin \eta \\ \sin \eta & \cos \eta \end{pmatrix} v^{\mathrm{T}}, \quad \omega = qB/m.$$
(1.3)

 $|\omega|$ is called the Larmor frequency, and $T(\xi) = e^{-i\xi \cdot k}$ is called the magnetic translation generated by the pseudomomentum k = p + qA(x) of the charged particle. It is well known that

$$\sigma(H_0^B) = \sigma_{\mathrm{pp}}(H_0^B) = \left\{ |\omega|(n+1/2) \mid n \in \mathbb{N} \cup \{0\} \right\}$$

holds, which implies that there is no scattering state in the system governed by H_0^B . However, as is also well known, if the constant electric field $E = (E_1, E_2)$ is switched on, then the guiding center of the charged particle drifts with the drift velocity $\alpha = (E_2/B, -E_1/B)$. This phenomenon implies the existence of scattering states in the system governed by $H_0(t)$ with $E(t) \equiv E$. Such a drift phenomenon implies that |c(t)| is growing as $t \to \pm \infty$.

Now we will consider the case where $E(t) = E_0(\cos(\nu t + \theta), \sin(\nu t + \theta))$ with $E_0 > 0, \nu \in \mathbf{R}$ and $\theta \in [0, 2\pi)$. For the sake of brevity, we set $\tilde{e}(\eta) = (\cos \eta, \sin \eta)$. Then E(t) is written as $E_0 \tilde{e}(\nu t + \theta)$, and the instantaneous drift velocity $(E_2(t)/B, -E_1(t)/B) = \hat{R}(-\pi/2)E(t)/B$ is written as $(E_0/B)\tilde{e}(\nu t + \theta - \pi/2)$. Since $\hat{R}(\omega s)(qE(s)) = qE_0\tilde{e}(\tilde{\nu}s + \theta)$ with $\tilde{\nu} = \nu + \omega$, we have

$$b(t) = \begin{cases} (qE_0/\tilde{\nu})(\tilde{e}(\nu t + \theta - \pi/2) - \tilde{e}(-\omega t + \theta - \pi/2)), & \tilde{\nu} \neq 0, \\ qE_0t\tilde{e}(-\omega t + \theta), & \tilde{\nu} = 0, \end{cases}$$

$$c(t) = \begin{cases} (E_0/B)((\delta\tilde{e})(\tilde{\nu}t; -\omega t + \theta)/\tilde{\nu} - (\delta\tilde{e})(\nu t; \theta)/\nu), & \nu\tilde{\nu} \neq 0, \\ (E_0/B)((\delta\tilde{e})(-\omega t; \theta)/(-\omega) + t\tilde{e}(\theta - \pi/2)), & \nu = 0, \\ (E_0/B)(-t\tilde{e}(-\omega t + \theta - \pi/2) - (\delta\tilde{e})(-\omega t; \theta)/(-\omega)), & \tilde{\nu} = 0, \end{cases}$$

where we put $(\delta \tilde{e})(\eta; \zeta) = \tilde{e}(\eta + \zeta) - \tilde{e}(\zeta)$ for the sake of brevity. Since |c(t)|is growing like $(E_0/B)|t|$ as $t \to \pm \infty$ when $\nu \tilde{\nu} = 0$, then one can expect the existence of scattering states even if the system under consideration is governed by the perturbed Hamiltonian $H(t) = H_0(t) + V$. The case where $\tilde{\nu} = 0$, that is, $\nu = -\omega$, is closely related to the cyclotron resonance. Here we pose the following assumption $(V1)_{\rho}$ with $\rho > 0$ on the time-independent potential V, which we make simpler than in [1] for the sake of brevity: $(V1)_{\rho} V$ is a real-valued function belonging to $C^{2}(\mathbf{R}^{2})$, and satisfies the decaying condition $|(\partial^{\alpha}V)(x)| \leq C_{\alpha} \langle x \rangle^{-\rho-|\alpha|} (|\alpha| \leq 2)$. Here $\langle x \rangle = \sqrt{1+|x|^{2}}$.

Then we obtain the following result about the existence of (modified) wave operators:

Theorem 1.2 ([1]). Suppose that V satisfies $(V1)_{\rho}$ for some $\rho > 0$, and that $E(t) = E_0 \tilde{e}(\nu t + \theta)$ with $\nu \in \{0, -\omega\}$ and $\theta \in [0, 2\pi)$. If $\rho > 1$, then the wave operators

$$W^{\pm} = \underset{t \to \pm \infty}{\text{s-lim}} U(t,0)^* U_0(t,0)$$
(1.4)

exist. If $0 < \rho \leq 1$, then the modified wave operators

$$W_G^{\pm} = \underset{t \to \pm \infty}{\text{s-lim}} U(t,0)^* U_0(t,0) e^{-i \int_0^t V(c(s)) \, ds}$$
(1.5)

exist. Here U(t, s) stands for the propagator generated by H(t).

Next we will consider the problem of the asymptotic completeness of wave operators. Here we need the additional assumptions that $\nu = 0$ and that V is of short-range, that is, $\rho > 1$. Since the Hamiltonians under consideration are independent of t in this case, we write $H_0(t)$ and H(t) as H_0 and H, respectively. Then we obtain the following result:

Theorem 1.3 ([1]). Suppose that V satisfies $(V1)_{\rho}$ for some $\rho > 1$, and that $E(t) \equiv E_0 \tilde{e}(\theta)$ with $\theta \in [0, 2\pi)$. Then W^{\pm} are asymptotically complete, that is,

$$\operatorname{Ran} W^{\pm} = L_{c}^{2}(H), \qquad (1.6)$$

where $L^2_{c}(H)$ is the continuous spectral subspace of the Hamiltonian H.

In the study in the case where $\nu = -\omega$, the rotating frame is useful: The Schrödinger equation under consideration is

$$i\partial_t \Psi(t) = H(t)\Psi(t), \quad H(t) = H_0^B - qE_0\tilde{e}(-\omega t + \theta) \cdot x + V(x).$$

 $\tilde{e}(-\omega t + \theta) \cdot x$ can be written as $(\hat{R}(-\omega t)\tilde{e}(\theta)) \cdot x = \tilde{e}(\theta) \cdot (\hat{R}(\omega t)x)$. Now we introduce the angular momentum $\tilde{L} = x_1p_2 - x_2p_1$. $e^{i\eta \tilde{L}}$ is a unitary operator on $L^2(\mathbf{R}^2)$ given by

$$(e^{i\eta L}u)(x) = u(\hat{R}(\eta)x).$$

For $\Psi(t) = \Psi(t, x)$, we introduce

$$\Phi(t,x) = (e^{-i\omega t\hat{L}}\Psi(t))(x) = \Psi(t,\hat{R}(-\omega t)x).$$

Then $\Phi(t) = \Phi(t, x)$ satisfies the Schrödinger equation

$$i\partial_t \Phi(t) = \hat{H}(t)\Phi(t), \quad \hat{H}(t) = \omega \tilde{L} + e^{-i\omega t\tilde{L}}H(t)e^{i\omega t\tilde{L}}.$$

We emphasis that $\hat{H}(t)$ can be written as

$$\hat{H}(t) = H_0^{-B} - qE_0\tilde{e}(\theta) \cdot x + V(\hat{R}(-\omega t)x), \quad H_0^{-B} = (p + qA(x))^2/(2m)$$

(see [1]). By using such a rotating frame, the problem under consideration can be reduced to the one in the case where $\nu = 0$, the magnetic field is given by $-\mathbf{B}$, and the potential is given as the rotating potential $V(\hat{R}(-\omega t)x)$, which is periodic in time. In particular, if V is radial, that is, V depends on |x| only, then $V(\hat{R}(-\omega t)x) \equiv V(x)$. Therefore the asymptotic completeness can be guaranteed by virtue of Theorem 1.3 if V is of short-range. In the same way as above, the scattering problems for the time-periodic Hamiltonian

$$\tilde{H}(t) = H_0^B - qE_0\tilde{e}(-\omega t + \theta) \cdot x + V(\hat{R}(\omega t)x)$$

can be reduced to the ones for the time-independent Hamiltonian

$$\hat{H} = H_0^{-B} - qE_0\tilde{e}(\theta) \cdot x + V(x).$$

Then the asymptotic completeness can be guaranteed by virtue of Theorem 1.3, even if the short-range potential V is not radial.

2 Case 2

We consider a quantum system of a charged particle moving in the plane \mathbf{R}^2 in the presence of a periodically pulsed magnetic field $\mathbf{B}(t)$ which is perpendicular to the plane. We suppose that $\mathbf{B}(t) = (0, 0, B(t)) \in \mathbf{R}^3$ is given by

$$B(t) = \begin{cases} B, & t \in \bigcup_{n \in \mathbb{Z}} I_{B,n} =: I_B, \\ 0, & t \in \bigcup_{n \in \mathbb{Z}} I_{0,n} =: I_0, \end{cases}$$
(2.1)
$$I_{B,n} = [nT, nT + T_B), \quad I_{0,n} = [nT + T_B, (n+1)T), \end{cases}$$

where B > 0 and $0 < T_B < T$. T is the period of B(t). We put $T_0 = T - T_B > 0$. The free Hamiltonian acting on $L^2(\mathbf{R}^2)$ is defined by

$$H_0(t) = (p - qA(t, x))^2 / (2m), \qquad (2.2)$$

where

$$A(t,x) = (-B(t)x_2/2, B(t)x_1/2)$$

=
$$\begin{cases} (-Bx_2/2, Bx_1/2) = A(x), & t \in I_B, \\ (0,0), & t \in I_0, \end{cases}$$
 (2.3)

is the vector potential in the symmetric gauge. Then $H_0(t)$ is represented as

$$H_0(t) = \begin{cases} H_0^B, & t \in I_B, \\ H_0^0, & t \in I_0, \end{cases}$$
(2.4)

where $H_0^0 = p^2/(2m)$ is the free Schrödinger operator. Let $U_0(t,s)$ be the propagator generated by $H_0(t)$. By (2.4) and the self-adjointness of H_0^B and H_0^0 , $U_0(t,0)$ is represented as

$$U_{0}(t,0) = \begin{cases} e^{-i(t-nT)H_{0}^{B}}U_{0}(T,0)^{n}, & t \in I_{B,n}, \\ e^{-i(t-(nT+T_{B}))H_{0}^{0}}e^{-iT_{B}H_{0}^{B}}U_{0}(T,0)^{n}, & t \in I_{0,n}, \end{cases}$$
(2.5)

with $n \in \mathbf{Z}$, where

$$U_0(T,0) = e^{-iT_0H_0^0}e^{-iT_BH_0^B}$$
(2.6)

is the Floquet operator associated with $H_0(t)$, $U_0(T,0)^0 = \text{Id}$, and $U_0(T,0)^n = (U_0(T,0)^*)^{-n}$ when $-n \in \mathbb{N}$. Put

$$\omega = qB/m, \quad \bar{\omega} = \omega/2, \quad \bar{\bar{\omega}} = \bar{\omega}/2 = \omega/4.$$
 (2.7)

Taking account of $e^{-i(2\pi/|\omega|)H_0^B} = e^{-i(\pi/|\bar{\omega}|)H_0^B} = -\text{Id}$, we always assume

$$0 < |\bar{\omega}| T_B < \pi \tag{2.8}$$

for the sake of simplicity.

Let $\tilde{S}_0^0(t; x, y)$ and $\tilde{S}_0^B(t; x, y)$ be integral kernels of $e^{-itH_0^0}$ and $e^{-itH_0^B}$, respectively. As is well known, these are represented as

$$\tilde{S}_{0}^{0}(t;x,y) = \frac{m}{2\pi i t} e^{im(x-y)^{2}/(2t)},
\tilde{S}_{0}^{B}(t;x,y) = \frac{m|\bar{\omega}|}{2\pi i \sin(|\bar{\omega}|t)} e^{im|\bar{\omega}|x^{2}/(2\tan(|\bar{\omega}|t))}
\times e^{-im|\bar{\omega}|(\hat{R}(\bar{\omega}t)x)\cdot y/\sin(|\bar{\omega}|t)} e^{im|\bar{\omega}|y^{2}/(2\tan(|\bar{\omega}|t))}.$$
(2.9)

By using these formulas, we obtained the representation of the intergral kernel $\tilde{S}_0(t; x, y)$ of $U_0(t, 0)$ (see Adachi-Kawamoto [2]). Here, for the sake of simplicity, we give it with t = nT $(n \in \mathbf{N})$ only:

$$\tilde{S}_0(nT; x, y) = \frac{1}{2\pi i c_n \theta_n} e^{ix^2/(2\theta_n)} e^{-i(\hat{R}(\phi_n)x) \cdot y/(c_n \theta_n)} e^{i\sigma_n y^2/(2\theta_n)}, \qquad (2.10)$$

where $\{\theta_n\}, \{c_n\}, \{\sigma_n\}$ and $\{\phi_n\}$ satisfy the recurrence relations

$$\frac{1}{\theta_{n+1}} = \left(1 - \frac{1}{c_1^2 \sigma_1}\right) \frac{1}{\theta_1} + \frac{1}{(c_1 \sigma_1)^2 (\theta_1 / \sigma_1 + \theta_n)},$$

$$\frac{1}{c_{n+1}\theta_{n+1}} = \frac{1}{c_1\sigma_1c_n(\theta_1/\sigma_1 + \theta_n)},\\ \frac{\sigma_{n+1}}{\theta_{n+1}} = \left(\sigma_n - \frac{1}{c_n^2}\right)\frac{1}{\theta_n} + \frac{1}{c_n^2(\theta_1/\sigma_1 + \theta_n)},\\ \phi_{n+1} = \phi_1 + \phi_n$$

with

$$\begin{aligned} \theta_1 &= \frac{L_{12}}{L_{22}}, \quad c_1 = L_{22}, \quad \phi_1 = \bar{\omega}T_B, \quad \sigma_1 = \sigma_0(T) = \frac{L_{11}}{L_{22}}, \\ L &= \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \\ &= \begin{pmatrix} \cos(\bar{\omega}T_B) - \bar{\omega}T_0 \sin(\bar{\omega}T_B) & \bar{\omega}T_0 \cos(\bar{\omega}T_B) + \sin(\bar{\omega}T_B) \\ -\sin(\bar{\omega}T_B) & \cos(\bar{\omega}T_B) \end{pmatrix}. \end{aligned}$$

One can obtain $\phi_n = n\bar{\omega}T_B$ immediately. We note that $L \in SL(2, \mathbf{R})$ and that the recurrence relation of $\{\theta_n\}$ can be written by L as follows:

$$\theta_{n+1} = \frac{L_{11}\theta_n + L_{12}}{L_{21}\theta_n + L_{22}}.$$

If $T_0 \neq T_{0,cr} = 1/(|\bar{\omega}| \tan(|\bar{\omega}|T_B)) > 0$, then θ_n , c_n and σ_n are represented as

$$\theta_n = \frac{L_{12}\mu_n}{L_{22}\mu_n - \mu_{n-1}}, \quad c_n = L_{22}\mu_n - \mu_{n-1}, \quad \sigma_n = \frac{L_{11}\mu_n - \mu_{n-1}}{L_{22}\mu_n - \mu_{n-1}},$$
$$\mu_n = \frac{\lambda_+^n - \lambda_-^n}{\lambda_+ - \lambda_-}, \quad \lambda_{\pm} = \lambda_0 \pm \sqrt{\lambda_0^2 - 1}, \quad \lambda_0 = (L_{11} + L_{22})/2.$$

 λ_{\pm} are the eigenvalues of L. From now on we always assume $T_0 \neq T_{0,cr}$ and $L_{12} \neq 0$, that is, $T_0 \neq T_{0,res} = -\tan(|\bar{\omega}|T_B))/|\bar{\omega}|$. By (2.10), the following factorization of $U_0(nT, 0)$ can be given:

$$U_0(nT,0) = e^{i\phi_n \tilde{L}} M(\theta_n) D(c_n \theta_n) \mathscr{F} M\left(\frac{\theta_n}{\sigma_n}\right).$$
(2.11)

Here $M(\tau)$, $D(\tau)$ and \mathscr{F} are unitary operators on $L^2(\mathbb{R}^2)$ given by

$$(M(\tau)\varphi)(x) = e^{ix^2/(2\tau)}\varphi(x), \quad (D(\tau)\varphi)(x) = \frac{1}{i\tau}\varphi\left(\frac{x}{\tau}\right),$$

$$\mathscr{F}[\varphi](\xi) = \frac{1}{2\pi}\int_{\mathbf{R}^2} e^{-ix\xi}\varphi(x)\,dx.$$
(2.12)

In the study of some scattering problems for this system, the growing order of the argument $c_n\theta_n = L_{12}\mu_n$ of the dilation operator $D(c_n\theta_n)$ in (2.11) as $n \to \infty$

is an important factor. If $|\lambda_0| < 1$, then $|\lambda_{\pm}| = 1$, which implies that $|c_n\theta_n|$ is bounded with respect to n; while if $|\lambda_0| > 1$, then $\lambda_- < -1 < \lambda_+ < 0$ holds. Thus $|c_n\theta_n|$ is growing exponentially like $|\lambda_-|^n = e^{n\log|\lambda_-|}$ as $n \to \infty$. Such a phenomenon is called a parametric resonance. We note that $|\lambda_0| > 1$ is equivalent to $T_0 > T_{0,cr}$.

In the case where $T_0 > T_{0,cr}$, we will consider the problem of the asymptotic completeness of wave operators as in Case 1. We pose the following assumption $(V2)_{\rho}$ with $\rho > 0$ on the time-independent potential V:

 $(V2)_{\rho} V$ is a real-valued function belonging to $C(\mathbf{R}^2)$, and satisfies the decaying condition $|V(x)| \leq C \langle x \rangle^{-\rho}$.

Then we obtain the following result:

Theorem 2.1 ([2]). Suppose that T_0 satisfies $T_0 > T_{0,cr}$. When $\pi/2 < |\bar{\omega}|T_B < \pi$, assume that T_0 satisfies $T_0 \neq T_{0,res}$ additionally. Assume that V satisfies the condition $(V2)_{\rho}$ for some $\rho > 0$. Then the wave operators

$$W^{\pm} = \underset{t \to \pm \infty}{\text{s-lim}} U(t,0)^* U_0(t,0)$$
(2.13)

exist, and are asymptotically complete:

$$\operatorname{Ran}(W^{\pm}) = \mathscr{H}_{\operatorname{ac}}(U(T,0)). \tag{2.14}$$

Here U(t,s) stands for the propagator generated by $H(t) = H_0(t) + V$, and $\mathscr{H}_{ac}(U(T,0))$ is the absolutely continuous spectral subspace associated with the Floquet operator U(T,0).

Since we assume that V is time-independent, the existence of U(t, 0) can be guaranteed as follows: Since H(t) is represented as

$$H(t) = \begin{cases} H_0^B + V = H^B, & t \in I_B, \\ H_0^0 + V = H^0, & t \in I_0, \end{cases}$$
(2.15)

U(t,0) is represented as

$$U(t,0) = \begin{cases} e^{-i(t-nT)H^B}U(T,0)^n, & t \in I_{B,n}, \\ e^{-i(t-(nT+T_B))H^0}e^{-iT_BH^B}U_0(T,0)^n, & t \in I_{0,n}, \end{cases}$$
(2.16)

with $n \in \mathbf{Z}$, where

$$U(T,0) = e^{-iT_0 H^0} e^{-iT_B H^B}$$
(2.17)

is the Floquet operator associated with H(t).

References

- T. Adachi and M. Kawamoto, Avron-Herbst type formula in crossed constant magnetic and time-dependent electric fields, Lett. Math. Phys. 102 (2012), 65–90.
- [2] T. Adachi and M. Kawamoto, Quantum scattering in a periodically pulsed magnetic field, Ann. Henri Poincaré 17 (2016), 2409–2438.