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Abstract

We briefly review the scattering theory for the Schrödinger operator related to the Aharonov‐
Bohm effect, by exhibiting some explicitly solvable models; an infinitesimally thin solenoid in \mathbb{R}^{2},
two infinitesimally thin solenoids with the quantized magnetic fluxes in \mathbb{R}^{2} , and an infinitesimally
thin ring solenoid with the quantized magnetic flux in \mathbb{R}^{3} . We give explicit formulas for the incoming
wave solution and the scattering amplitude for these models in terms of some special functions, with
the graphs obtained by a numerical method. We also review known high‐energy asymptotic formulas
related to these examples.

1 Introduction

In 1959, Y. Aharonov and D. Bohm published a remarkable paper [Ah‐Bo], in which they stated that
the magnetic field enclosed in an electrically shielded solenoid can affect the electron moving outside
the solenoid through the magnetic vector potential, in the formulation of non‐relativistic quantum
mechanics. This phenomenon is called the Aharonov‐Bohm effect, and there was a large controversy
concerning the existence of the Aharonov‐Bohm effect in the real world (for the detail, see e.g. Peshkin‐
Tonomura [Pe‐To]). The decisive experiment was done by A. Tonomura et al. [To]. They prepared
toroidal apparatus in which they succeeded to enclose the magnetic field completely with the aid of the
super‐conductive effect, and observed the interference pattern by two coherent electron beams going
through inside and outside the hole of the toroidal magnet. The obtained picture clearly shows that the
phase shift of the electron wave by the magnetic flux inside the torus1.

There are also numerous works concerning the direct and the inverse scattering theory related to
the Aharonov‐Bohm effect. First, we list the results about the Schrödinger operator H_{N} in \mathbb{R}^{2} with
N pointlike magnetic fields (for the definition of H_{N} , see (5) below), which models N infinitely long,
infinitesimally thin solenoids perpendicular to the plane. The case N=1 is studied by Aharonov‐Bohm
[Ah‐Bo], and later more mathematically rigorously by Ruijsenaars [Ru]. In the case N \geq  2 , Št
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ovíček
[St] constructs the Green function of H_{2} by path‐integral method, and the result is further developed
in Kocábová‐Štovíček [Ko‐Stl] and Koštáková‐Štovíček [Ko‐St2]. Nambu [Na] tries to calculate the
scattering amplitude for H_{N} , but it is not successful (instead, Nambu studies the dynamical vortices).
Ito‐Tamura [It‐Tal, It‐Ta2] obtain the asymptotic formula for the scattering amplitude for H_{N} , in
the limit the distance between solenoids tends to infinity. Roux‐Yafaev [Ro‐Ya] study the essential
spectrum of the scattering matrix for more general magnetic Schrödinger operator in \mathbb{R}^{2} , including the
Aharonov‐Bohm one. Yafaev [Ya] also studies the diagonal singularity of the scattering amplitude for
the magnetic Schrödinger operators in \mathbb{R}^{d} (d=2,3) .

There are a lot of results about the inverse scattering problem for H_{N} or related magnetic Schrödinger
operators in \mathbb{R}^{d} (d \geq 2) ; e.g. Arians [Ar] (d \geq 2) , Nicoleau [Ni] (d \geq 2) , Weder [We] (d = 2) , Es‐
kin [Esl, Es2] (d \geq 2) , Ballesteros‐Weder [Ba‐Wel, Ba‐We2, Ba‐We3] (d = 3) , and Eskin‐Isozaki‐
O’Dell [Es‐Is‐Od] (d=2) (for more comprehensive list, see Eskin [Es3]). Especially, Ballesteros‐Weder
[Ba‐Wel, Ba‐We2, Ba‐We3] give a detailed analysis of the scattering by toroidal magnetic fields in

\mathbb{R}^{3} , and the result in [Ba‐We2] is considered to be a mathematical justification of the experiment by
Tonomura et al. [To]. We also note that Iwatsuka−M−Shimada [Iw‐Mi‐Sh] prove the norm‐resolvent

1The picture can also bc sccn in Hitachi’s web‐site.
http: //\mathrm{v}m\mathrm{w} . hitachi. com/rd/portal/highlight/quant \mathrm{u}\mathrm{m}/\mathrm{a}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{v}-\mathrm{b}\mathrm{o}\mathrm{h}\mathrm{m}/ index.html
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convergence of the Schrödinger operators with toroidal magnetic fields in the limit as the thickness of
the torus tends to 0 with fixed magnetic flux through the section of the torus.

However, the paper by Gu‐Qian [Gu‐Qi] seems to be missed in the previous papers. Gu‐Qian
calculate the scattering amplitude for the Schrödinger operator H_{2} in \mathbb{R}^{2} with two pointlike magnetic
fields, by using the elliptic coordinate. The result of Gu‐Qian is mathematically not complete, and
the author justifies Gu‐Qian’s result in [Mil, Mi2] under the magnetic quantization condition (see (7)
below), that is, the magnetic flux of each pointlike field is an integer multiple of the quantum of magnetic
flux. The condition (7) comes from the covering structure of the elliptic coordinate as a map from \mathbb{R}^{2}

onto itself (see [Mil]). Interestingly, the condition (7) matches with the experiment by Tonomura et al.
[To] (the magnetic flux is quantized by a super‐conductive effect), and also plays an important role in
the nodal domain problem for the Schrödinger operators with AB‐magnetic fields (see Helffer [He] and
references therein).

In this short note, we exhibit some explicitly solvable models, in the sense that we can calculate
the incoming plane wave and the scattering amplitude explicitly in terms of some special functions.
We also give the graphs obtained by a numerical method, which help an intuitive understanding of
the Aharonov‐Bohm effect. In sections 2 and 3, we study the Schrödinger operator with N pointlike
magnetic fields in \mathbb{R}^{2} , which models N infinitely long, infinitesimally thin solenoids perpendicular to
the plane. It is well‐known that the model is solvable when N = 1 ([Ah‐Bo, Ru]; see also Theorem
2.1 below). When N = 2 , the model is solvable in the elliptic coordinate, if the magnetic fluxes are
quantized to be integer multiples of the quantum of magnetic flux ([Gu‐Qi, Mil, Mi2]; see also Theorem
3.2 below). We also review the asymptotic formula of the scattering amplitude by Ito‐Tamura [It‐Tal],
and compare their result with the explicit formula. In section 4, we consider the Schrödinger operator
with a toroidal magnetic field in \mathbb{R}^{3} , which models the experiment by Tonomura et al., especially we
review the result by Ballesteros‐Weder [Ba‐We2]. In the limiting case the torus becomes a ring of
thickness 0 . and the flux through the section of the ring is quantized to be an integer multiple of the
quantum of magnetic flux, the model is solvable in the oblate spheroidal coordinate (Theorem 4.1). The
last result seems to be new (there is no proof here, and the proof will be written elsewhere). All the
figures except Figure 7 are obtained by using Wolfram Mathematica 10.3.

2 Scattering by single solenoid in \mathbb{R}^{2}

In the paper Aharonov‐Bohm [Ah‐Bo], they study the scattering of an electron by an infinitesimally
thin, infinitely long magnetic solenoid, parallel to the z‐axis. Because of the translational invariance
along the z‐axis, they consider the two‐dimensional Hamiltonian2

H= (\displaystyle \frac{1}{i}\nabla-A_{ $\alpha$})^{2} on \mathbb{R}^{2}, \nabla= (\displaystyle \frac{\partial}{\partial x'}\frac{\partial}{\partial y})
A_{ $\alpha$}=(A_{ $\alpha$,x}, A_{ $\alpha$,y})= $\alpha$(-\displaystyle \frac{y}{r^{2}}, \frac{x}{r^{2}}) , r=\sqrt{x^{2}+y^{2}} , (1)

with the regular boundary condition at (x, y) =O= (0,0) (we use the normalization \hslash=1, m= 1/2,
and e = 1 for simplicity). Here  $\alpha$ is a real constant, and the  z‐component of the magnetic field
corresponding to the magnetic vector potential A_{ $\alpha$} is given by

curl A_{ $\alpha$}=\displaystyle \frac{\partial A_{ $\alpha$,y}}{\partial x}-\frac{\partial A_{ $\alpha$,x}}{\partial y}=2 $\pi \alpha \delta$_{O},
where $\delta$_{O} is the Dirac measure at the origin. Aharonov and Bohm compute the incoming wave solution
 $\varphi$- =$\varphi$_{-}(\mathrm{x};\mathrm{p}) to the stationary Schrödinger equation H$\varphi$_{-} =k^{2}$\varphi$_{-} (k>0) , which behaves like

$\varphi$_{-}(\displaystyle \mathrm{x};\mathrm{p}) \sim e^{i\mathrm{x}\cdot \mathrm{p}}+f( $\tau$\rightarrow $\theta$;k^{2})\frac{e^{ikr}}{r^{1/2}} (r\rightarrow\infty) ,

'
Here the sign of  $\alpha$ is oppositc to the one used in Aharonov‐Bohm [Ah‐Bo] and Ruijsenaars [Ru], rather our choice

matches with the one in Ito‐Tamura [It‐Tal]. So the formula (3) does not seem to coincide with [Ru, (4.11)], but it
coincides with [It‐Tal, (1.2)].
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where \mathrm{x}= (x, y) = (rcos  $\theta$, r sine), and \mathrm{p} = (kcos  $\tau$ , ksin  $\tau$ ) is the momentum of the incident wave3.
The factor  f( $\tau$\rightarrow $\theta$;k^{2}) is called the scattering amplitude, and |f( $\tau$\rightarrow $\theta$;k^{2})|^{2} the differential scattering
cross section, which tells us the ratio of the particles coming from the incident direction  $\tau$ and scattered
into the final direction  $\theta$.

Ruijsenaars [Ru] studies this problem mathematically more rigorous way. Especially Ruijsenaars
proves that the incoming wave solution $\varphi$_{-} is also defined as the integral kernel of the wave operator
W_{-} =\displaystyle \mathrm{s}-\lim_{t\rightarrow-\infty}e^{itH}e^{-itH_{0}} in the time‐dependent formalism, as follows.

W_{-}u(\displaystyle \mathrm{x})=\frac{1}{2 $\pi$}\int_{\mathbb{R}^{2}}$\varphi$_{-} ( \mathrm{x} ; \mathrm{p} )û (\mathrm{p})d\mathrm{p} , (2)

where \displaystyle \^{u}(\mathrm{p})=(2 $\pi$)^{-1}\int_{\mathbb{R}^{2}}e^{-i\mathrm{x}\cdot \mathrm{p}}u(\mathrm{x})d\mathrm{x} is the Fourier transform of u . Since the expression (2) is obtained
by replacing e^{i\mathrm{x}\cdot \mathrm{p}} in the Fourier inversion formula by $\varphi$_{-}(\mathrm{x};\mathrm{p}) , we sometimes use the formal expression
 $\varphi$-(\mathrm{x};\mathrm{p}) = W_{-}e^{i\mathrm{x}\cdot \mathrm{p}} . Ruijsenaars also calculates the singularity of the scattering amplitude at the
forward direction  $\tau$= $\theta$ . Their results are summarized as follows.

Theorem 2.1 (Aharonov‐Bohm [Ah‐Bo], Ruijsenaars [Ru]). Put \mathrm{x}=(x, y)= (  r\cos $\theta$ , rsin  $\theta$ ), and
\mathrm{p}= (  k\cos $\tau$, ksin  $\tau$ ). Then, the following holds.

(i) The incoming wave solution  $\varphi$_{-} is given by

$\varphi$_{-}(\displaystyle \mathrm{x};\mathrm{p})=\sum_{m=-\infty}^{\infty}i^{|m|}e^{i$\delta$_{\uparrow n,k}}J_{|m-\mathrm{a}|}(kr)e^{im( $\theta$- $\tau$)},
where J_{ $\nu$} is the Bessel function of order v , and $\delta$_{m_{i}k}=(|m|-|m- $\alpha$|) $\pi$/2.

(ii) The scattering amplitude f( $\tau$\rightarrow $\theta$;k^{2}) is given by

f( $\tau$\rightarrow $\theta$;k^{2})

= (\displaystyle \frac{2 $\pi$}{ik})^{1/2} ( (\displaystyle \cos $\alpha \pi$-1) $\delta$( $\theta$- $\tau$)-\frac{i\sin $\alpha \pi$}{ $\pi$}e^{i[ $\alpha$]( $\theta$- $\tau$)} \mathrm{P} . \mathrm{V} . \displaystyle \frac{e^{i( $\theta$- $\tau$)}}{e^{i( $\theta$- $\tau$)}-1}), (3)
where [x] is the integer part ofx and P.V. denotes the principal value. In particular, the differential
scattering cross section |f( $\tau$\rightarrow $\theta$;k^{2})|^{2} is given by

|f( $\tau$\displaystyle \rightarrow $\theta$;k^{2})|^{2}=\frac{1}{2 $\pi$ k}\frac{\sin^{2}( $\alpha \pi$)}{\sin^{2}(( $\theta$- $\tau$)/2)} ( $\theta$\neq $\tau$) .

The number $\delta$_{m,k} is called the scattemng phase shift, which is determined by the asymptotic formula

J_{|m- $\alpha$|}(kr) \displaystyle \sim \sqrt{\frac{2}{ $\pi$ kr}}\cos(kr-\frac{|m- $\alpha$| $\pi$}{2}-\frac{ $\pi$}{4})
= \displaystyle \sqrt{\frac{2}{ $\pi$ kr}}\cos(kr-\frac{|m| $\pi$}{2}-\frac{ $\pi$}{4}+$\delta$_{m,k}) (r\rightarrow\infty) ,

so $\delta$_{m,k} measures the phase difference between the partial wave solution in the perturbed system and
that in the free system. Once we know all the scattering phase shifts $\delta$_{m,k} , we can calculate the scattering
amplitude f( $\tau$\rightarrow $\theta$;k^{2}) by the formula

f( $\tau$\displaystyle \rightarrow $\theta$;k^{2})=(2 $\pi$ ik)^{-1/2}\sum_{m=-\infty}^{\infty}(e^{2i$\delta$_{m,k}}-1)e^{im( $\theta$- $\tau$)} . (4)

The characteristic feature in Theorem 2.1 is that the phase shift $\delta$_{m,k} is independent of k , and the sum
(4) can be calculated explicitly.

3More precisely, Aharonov and Bohm consider the case \mathrm{p} is directed to the negative x‐axis, but the argument is
csscntially the same for other \mathrm{p}.
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In Figure 1, we give the density plot of the real part of  $\varphi$-
in the case the momentum of the incident wave \mathrm{p} = (1,0) and

 $\alpha$=1/2 . The arrow indicates the incident direction. We observe

the difference between the phase of $\varphi$_{-} above and below the pos‐
itive x‐axis. This reflects the singular behavior of the scattering
amplitude in the formula (3) at  $\theta$ = $\tau$ , caused by the magnetic

>_{\mathrm{s}}

flux at the origin.

Figure 1: The density plot of {\rm Re} $\varphi$-\cdot

3 Scattering by  N solenoids in \mathbb{R}^{2}

Next, we consider the case there are N solenoids (N\geq 2) perpendicular to the plane. The Hamiltonian
is given by

H_{N}= (\displaystyle \frac{1}{i}\nabla-A_{N})^{2} on \mathbb{R}^{2}, A_{N}=\displaystyle \sum_{j=1}^{N}A_{$\alpha$_{j}}(x-x_{j} , y — yj) , (5)

where A_{$\alpha$_{\mathrm{j}}} is the vector potential given in (1) with  $\alpha$ = $\alpha$_{j} , and 2 $\pi \alpha$_{j} is the magnetic flux through
the solenoid at \mathrm{x}_{j} = (x_{j}, y_{j}) (j = 1, \ldots, N) . We impose the regular boundary condition at each \mathrm{x}_{j}.

Below we review the results of Ito‐Tamura [It‐Tal] and the author [Mi2], concerning the incoming wave
solution and the scattering amplitude for the operator H_{N}.

3.1 The result by Ito‐Tamura

In Ito‐Tamura [It‐Tal], they consider the case N=2, \mathrm{x}_{1} =O, \mathrm{x}_{2} =\mathrm{d} (\mathrm{d}\in \mathbb{R}^{2}\backslash \{O\}) , and calculate
the asymptotics of the scattering amplitude as |\mathrm{d}|\rightarrow\infty . In this result, we identify an angle  $\theta$\in[0, 2 $\pi$)
with a unit vector  $\omega$ = (coe  $\theta$, \sin $\theta$ ) \in  S^{1} (S_{1} = \{ $\omega$ \in \mathbb{R}^{2} | $\omega$| = 1 and we denote f( $\omega$ \rightarrow$\omega$';k^{2})
instead of f( $\theta$\rightarrow$\theta$';k^{2}) . For \mathrm{x}\in \mathbb{R}^{2}\backslash \{0\} and  $\omega$\in S^{1} , let  $\gamma$(\mathrm{x}; $\omega$) denotes the azimuth angle of \mathrm{x} from
the direction  $\omega$ with  0\leq $\gamma$(\mathrm{x}; $\omega$)<2 $\pi$ . We use the notation

\exp(i $\alpha \gamma$(\mathrm{x}; $\omega$))=\left\{\begin{array}{ll}
\exp(i $\alpha \gamma$(\mathrm{x}; $\omega$)) & (\mathrm{x}/|\mathrm{x}|\neq $\omega$) ,\\
(1+\exp(2 $\pi$ i $\alpha$))/2 & (\mathrm{x}/|\mathrm{x}|= $\omega$) ,
\end{array}\right.
\exp(i $\alpha \tau$(\mathrm{x}; $\omega$,  $\omega$ =\exp(i $\alpha \gamma$(\mathrm{x}; $\omega$))\exp(i $\alpha \gamma$(\mathrm{x};-$\omega$')) .

Theorem 3.1 (Ito‐Tamura [It‐Tal]). Let f_{j}( $\omega$\rightarrow$\omega$';k^{2}) be the scattering amplitude by the single
solenoid at \mathrm{x}_{j} with flux 2 $\pi$ a_{j} (j = 1,2) (f_{2} depends on d), and f_{\mathrm{d}}( $\omega$ \rightarrow $\omega$';k^{2}) be the scattering
amplitude by the two solenoids. Then, for  $\omega$\neq$\omega$', f_{\mathrm{d}}( $\omega$\rightarrow$\omega$';k^{2}) behaves like

f_{\mathrm{d}}( $\omega$\rightarrow$\omega$';k^{2}) = \exp(ia_{2} $\tau$(-\mathrm{d}; $\omega,\omega$'))f_{1}( $\omega$\rightarrow$\omega$';k^{2})
+ \exp(i$\alpha$_{1} $\tau$(\mathrm{d}; $\omega,\omega$'))f_{2}( $\omega$\rightarrow$\omega$';k^{2})+o(1) (6)

as |\mathrm{d}|\rightarrow\infty with fixed \hat{\mathrm{d}}=\mathrm{d}/|\mathrm{d}|.

The phase factors in the right hand side of (6) are considered to be an appearance of the AB‐effect.
Actually, Kostrykin‐Schrader [Ko‐Sc] also study a large distance limit of the scattering amplitude for
the Schrödinger operator H_{\mathrm{d}}=- $\Delta$+V_{1}+V_{2}(\cdot-\mathrm{d}) , and there is no such phase factor like (6) in their
formula [\mathrm{K}+\mathrm{S}\mathrm{c}, (1.19)] . In Ito‐Tamura [It‐Ta2], they also consider the case N\geq 3.
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3.2 Formulas in the elliptic coordinate

In the case N = 2, \mathrm{x}_{1} = (-a, 0) and \mathrm{x}_{2} = (a, 0) for some a > 0 , we can analyze the operator H_{2}

by using the elliptic coordinate. This idea is used in Gu‐Qian [Gu‐Qi], and further developed by the
author [Mil, Mi2]. For the detail in this subsection, see [Mil, Mi2]. For the Mathieu functions, see
Abramowitz‐Stegun [Ab‐St] or McLachlan [Mc].

The elliptic coordinate is defined by

\left\{\begin{array}{l}
x=a\cosh $\xi$\cos $\eta$,\\
y=a\sinh $\xi$\sin $\eta$,
\end{array}\right.  $\xi$\geq 0, - $\pi$< $\eta$\leq $\pi$,

where a is a positive constant. The coordinate curves  $\xi$= const.
are confocal ellipses, and  $\eta$= const. confocal hyperbolas. In the
elliptic coordinate, the Helmholtz equation −Au =  $\lambda$ u (An be
solved by separation of variables. The solutions are

u=\mathrm{C}\mathrm{e}_{n}( $\xi$, q)\mathrm{c}\mathrm{e}_{n}( $\eta$, q) (n=0,1,2 , . .

u=\mathrm{S}\mathrm{e}_{n}( $\xi$, q)\mathrm{s}\mathrm{e}_{n}( $\eta$, q) (n=1,2, . . Figure 2: Elliptic coordinate.

where q=a^{2} $\lambda$/4 . The functions \mathrm{c}\mathrm{e}_{n} and \mathrm{s}\mathrm{e}_{n} are called the Mathieu functions, and \mathrm{C}\mathrm{e}_{n} and \mathrm{S}\mathrm{e}_{n} are
called the modified Mathieu functions. The angular functions \mathrm{c}\mathrm{e}_{n} and \mathrm{s}\mathrm{e}_{n} are similar to the trigonometric
functions, e.g., \mathrm{c}\mathrm{e}_{n} and \mathrm{C}\mathrm{e}_{n} are even functions, and \mathrm{s}\mathrm{e}_{n} and \mathrm{S}\mathrm{e}_{n} are odd functions.

When N=2, \mathrm{x}_{1}=(-a, 0) and \mathrm{x}_{2}=(a, 0) , the AB Hamiltonian H_{2} is represented as

H_{2}=e^{i($\alpha$_{1}$\theta$_{1}+$\alpha$_{2}$\theta$_{2})}(- $\Delta$)e^{-i($\alpha$_{1}$\theta$_{1}+$\alpha$_{2}$\theta$_{2})},
$\theta$_{1}=\arg((x+a)+yi) , $\theta$_{2}=\arg((x-a)+yi) .

Put v=e^{-i($\alpha$_{1}$\theta$_{1}+$\alpha$_{2}$\theta$_{2})}\mathrm{u} . Then, the eigenequation H_{2}u= $\lambda$ u is equivalent to - $\Delta$ v= $\lambda$ v , but v becomes
a multi‐valued function unless a_{1} and a_{2} are integers. Analyzing the latter equation, we conclude the
eigenequation H_{2}u= $\lambda$ u can be solved by separation of variables in the elliptic coordinate if and only if

$\alpha$_{1}, $\alpha$_{2}\in(1/2)\mathbb{Z} . (7)

The condition (7) is called the magnetic quantization condition, since  2 $\pi$ (1/2) =  $\pi$ is equal to the
quantum of magnetic flux  h/(2e) under our normalization \hslash=h/(2 $\pi$)=1 and e=1 . In the case both
$\alpha$_{1} and $\alpha$_{2} are odd multiples of 1/2, the solutions are

u=e^{i($\alpha$_{1}$\theta$_{1}+$\alpha$_{2}$\theta$_{2})} $\Gamma$ \mathrm{e}_{n}( $\xi$, q)\mathrm{c}\mathrm{e}_{n}( $\eta$, q) (n=0,1,2_{\rangle} . .

u=e^{i($\alpha$_{1}$\theta$_{1}+$\alpha$_{2}$\theta$_{2})}\mathrm{G}\mathrm{e}_{n}( $\xi$, q)\mathrm{s}\mathrm{e}_{n}( $\eta$, q) (n=1,2 , . .

where q=a^{2} $\lambda$/4 . The functions \mathrm{F}\mathrm{e}_{n} and \mathrm{C}\mathrm{e}_{n} satisfy the same ordinary differential equation with respect
to  $\xi$ , but \mathrm{F}\mathrm{e}_{n} has the opposite parity to that of \mathrm{C}\mathrm{e}_{n} , that is, \mathrm{C}\mathrm{e}_{n} is even and \mathrm{F}\mathrm{e}_{n} is odd. The same
relation holds for \mathrm{G}\mathrm{e}_{n} and \mathrm{S}\mathrm{e}_{n}.

We introduce the normalized modified Mathieu functions \mathrm{J}\mathrm{c}_{n}, \mathrm{J}\mathrm{s}_{n}, \mathrm{J}\mathrm{f}_{n} , and \mathrm{J}\mathrm{g}_{n} , which are constant
multiples of \mathrm{C}\mathrm{e}_{n}, \mathrm{S}\mathrm{e}_{n}, \mathrm{F}\mathrm{e}_{n} , and \mathrm{G}\mathrm{e}_{n} , respectively, and behave like

\displaystyle \mathrm{J}\mathrm{c}_{n}( $\xi$, q)\sim \mathrm{J}\mathrm{s}_{n}( $\xi$, q)\sim\sqrt{\frac{2}{ $\pi$ kr}}\cos(kr-\frac{n $\pi$}{2}-\frac{ $\pi$}{4}) ,

\displaystyle \mathrm{J}\mathrm{f}_{n}( $\xi$, q)\sim\sqrt{\frac{2}{ $\pi$ kr}}\cos(kr-\frac{n $\pi$}{2}-\frac{ $\pi$}{4}+$\delta$_{n,k}))
\displaystyle \mathrm{J}\mathrm{g}_{n}( $\xi$, q)\sim\sqrt{\frac{2}{ $\pi$ kr}}\cos(kr-\frac{n $\pi$}{2}-\frac{ $\pi$}{4}+$\epsilon$_{n,k})

as  $\xi$\rightarrow \infty , where  q=a^{2}k^{2}/4 and r=a \cosh $\xi$\sim |\mathrm{x}| . The first formula means \mathrm{J}\mathrm{c}_{n} and \mathrm{J}\mathrm{s}_{n} have the
same asymptotics as that of the Bessel function \mathrm{J}_{n} . The constants $\delta$_{n,k} and $\epsilon$_{n,k} are the scattering phase
shifts in this context, which can be computed at least numerically.
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Theorem 3.2 ([Mi2]). Assume N=2, \mathrm{x}_{1} =(-a, 0) , \mathrm{x}_{2}=(a, 0) , $\alpha$_{1} =-1/2 , and $\alpha$_{2} =1/2 . We
use the elliptic coordinate in \mathrm{x} ‐space and the polar coordinate in \mathrm{p} ‐space, that is,

\mathrm{x}= (a \cosh $\xi$\cos $\eta$ , asinh  $\xi$\sin $\eta$), \mathrm{p}= (  k\cos $\tau$ , ksin  $\tau$ ),

and put  q=a^{2}k^{2}/4 . Then, the following holds.

(i) The incoming wave solution $\varphi$_{-}=W_{-}e^{i\mathrm{x}\cdot \mathrm{p}} to H_{2}$\varphi$_{-}=k^{2}$\varphi$_{-} with momentum \mathrm{p} is

$\varphi$_{-}(\displaystyle \mathrm{x};\mathrm{p}) = e^{i(-$\theta$_{1}+$\theta$_{2})/2}(\sum_{n=0}^{\infty}i^{n}e^{i$\delta$_{rk}},\mathrm{J}\mathrm{f}_{n}( $\xi$, q)\mathrm{c}\mathrm{e}_{n}( $\eta$, q)\mathrm{c}\mathrm{e}_{n}( $\tau$, q)
+\displaystyle \sum_{n=1}^{\infty}i^{n}e^{i$\epsilon$_{ $\iota$,k}\prime}\mathrm{J}\mathrm{g}_{n}( $\xi$, q)\mathrm{s}\mathrm{e}_{n}( $\eta$, q)\mathrm{s}\mathrm{e}_{n}( $\tau$, q)) .

(ii) The scattering amplitude f( $\tau$\rightarrow $\theta$;k^{2}) is given by

f( $\tau$\displaystyle \rightarrow $\theta$;k^{2}) = \sqrt{\frac{2}{ $\pi$ ik}}(\sum_{n=0}^{\infty}(e^{2i$\delta$_{n,k}}-1)\mathrm{c}\mathrm{e}_{n}( $\theta$, q)\mathrm{c}\mathrm{e}_{n}( $\tau$, q)
+\displaystyle \sum_{n=1}^{\infty}(e^{2i$\epsilon$_{ $\iota$,k}\prime}-1)\mathrm{s}\mathrm{e}_{n}( $\theta$, q)\mathrm{s}\mathrm{e}_{n}( $\tau$, q)) . (8)

Formally the formula (8) is obtained by replacing \infty \mathrm{s}n $\theta$ by \mathrm{c}\mathrm{e}_{n}( $\theta$, q) , \sin n $\theta$ by \mathrm{s}\mathrm{e}_{n}( $\theta$, q) , and $\delta$_{m,k} by
$\delta$_{n,k} or $\epsilon$_{n,k} , in the formula (4) (the term m=0 needs a slight modification). Actually, both formulae
can be proved by the plane wave expansion formula rin each coordinate. In Figure 3‐4, we give the
density plots of the real part of the incoming wave solutions for k=4 and  $\tau$=0,  $\pi$/2 , which describe
the AB‐phase shift in this model. In Figure 5 and 6, we give the graphs of the differential scattering
cross sections (DSCS) |f( $\tau$\rightarrow $\theta$;1000)|^{2} obtained by the Ito‐Tamura asymptotic formula (6) and that
by the elliptic coordinate (8), respectively. A small difference is seen near  $\theta$=0 , which is the direction
of \mathrm{d}=\mathrm{x}_{2}-\mathrm{x}_{1} , where the convergence of the Ito‐Tamura formula (6) is not uniform.

\sim

-4 -2 0 2 4

\mathrm{x}

Figure 3: Plot of {\rm Re}$\varphi$_{-} , for k=4,  $\tau$=0.
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x

Figure 4: Plot of {\rm Re}$\varphi$_{-} , for k=4,  $\tau$= $\pi$/2.

4 Scattering by the toroidal magnetic field in \mathbb{R}^{3}

4.1 The result by Ballesteros‐Weder

In Ballesteros‐Weder [Ba‐We2], they study the Schröùnger operator with the magnetic field enclosed
inside the torus

T=\{(x, y, z)\in \mathbb{R}^{3}|R_{1}^{2}\leq|x|^{2}+|y|^{2}\leq R_{2}^{2}, |z|\leq H\}
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1 z

Figure 5: DSCS by the Ito‐Tamura formula,
 $\tau$= $\pi$/2.

for some 0<R_{1} <R_{2} and H>0. Put

1 1

Figure 6: DSCS by the elliptic coordinate,  $\tau$=

 $\pi$/2.

 $\Omega$=\mathbb{R}^{3}\backslash (T\cup S) , S=\{(x, y, z)\in \mathbb{R}^{3}| |x|^{2}+|y|^{2}>R_{2}^{2}, z=0\}.

Since  $\Omega$ is simply connected, in the set  $\Omega$ the magnetic Schrödinger operator  H is represented as
H= $\Phi$ H_{0}$\Phi$^{-1},  H_{0}=- $\Delta$ , by some gauge function  $\Phi$ (see (10) below). So, for a Gaussian wave packet
 $\varphi$_{\mathrm{v}} going through the hole of the torus with velocity \mathrm{v} , we can use the approximation

e^{-itH}$\varphi$_{\mathrm{v}}  $\Phi$ e^{-itH_{0}}$\Phi$^{-1}$\varphi$_{\mathrm{v}}.

This kind of approximation is also used by Aharonov‐Bohm [\mathrm{A}\mathrm{h}-\mathrm{B}\mathrm{o}]_{\rangle} so Ballesteros‐Weder call the
approximation Aharonov‐Bohm ansatz. Ballesteros‐Weder give a very precise error estimate for this
approximation under the situation of the experiment by Tonomura et al. [Ba‐We2, Theorem 1.1], which
justifies the experiment qualitatively.

4.2 Infimitesimally thin ring magnetic field

Here we take another approach to this problem. We
consider a ring R of thickness 0 in \mathbb{R}^{3} , given by

R=\{\mathrm{x}=(x, y,0)\in \mathbb{R}^{3}||\mathrm{x}|=a\},

for some a>0 . We consider the magnetic Schrödinger R

operator Figure 7: Zero thickness ring magnetic field.
H= (\displaystyle \frac{1}{i}\nabla -A)^{2} on \mathbb{R}^{3},

where  A\in  C^{\infty}(\mathbb{R}^{3}\backslash R;\mathbb{R}^{3}) is the magnetic vector po‐
tential satisfying

\nabla\times A=0 in \mathbb{R}^{3}\backslash R,

\displaystyle \int_{D}(\nabla\times A)\cdot \mathrm{n}dS=\int_{\partial D}A\cdot d\ell=0$\pi$_{\rangle} (9)

for any small disc D pierced by the ring R , where 0 is
an odd integer, and \mathrm{n} is the unit normal vector on D

(the direction of \mathrm{n} is appropriately fixed), with supp A
bounded set in \mathbb{R}^{3} (9) is the magnetic quantization Figure 8: The oblate spheroidal coordinate.
condition in this context.

We impose the regular boundary condition along R , or more precisely, H is the Friedrichs extension
of the operator H|_{C_{0}^{\infty}(\mathrm{R}^{3}\backslash R)} . This is an idealized model to the experiment by Tonomura et al., and the
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advantage is that this model is explicitly solvable in the oblate spheroidal coordinate, defined as follows.

\left\{\begin{array}{l}
x=a\cosh $\xi$\sin $\eta$\cos $\phi$,\\
y=a\cosh $\xi$\sin $\eta$\sin $\phi$,\\
z=a\sinh $\xi$\cos $\eta$,
\end{array}\right. \left(\begin{array}{ll}
 $\xi$ & \geq 0\\
0\leq &  $\eta$\leq $\pi$\\
- $\pi$< $\phi$\leq $\pi$ & 
\end{array}\right)
where a is a positive constant. The surface  $\xi$=const . is a flattened elhpsoid,  $\eta$=const . a hyperboloid
of one sheet,  $\phi$=const . a half‐plane (see Figure 8). In the oblate spheroidal coordinate, the equation
- $\Delta$ u=k^{2}u can be solved by separation of variables, and the solutions are

u=S_{m\ell} ( ‐iak, \cos $\eta$)R_{m\ell}^{(1)} (‐iak, isinh  $\xi$ ) \cos m$\phi$_{j}

u=S_{m\ell}( ‐iak, \cos $\eta$)R_{m\ell}^{(1)} (‐iak, isinh  $\xi$ ) \sin m $\phi$ (m\neq 0) ,
(m=0,1,2, \ldots, \ell=m, m+1, m+2, . .

where S_{m\ell} is the angular spheroidal wave function, and R_{m\ell}^{(1)} the radial spheroidal wave function of the
first kind. For the detail of these functions, see Abramowitz‐Stegun [Ab‐St] or Flammer [F1].

Take \mathrm{x}_{0} \in \mathbb{R}^{3} sufficiently large, and put

 $\Phi$(\displaystyle \mathrm{x})=\exp(i\int_{\mathrm{x}_{0}}^{\mathrm{x}}A\cdot d\ell) (\mathrm{x}\in \mathbb{R}^{3}) ,

where the path of the integral is in the region \mathbb{R}^{3}\backslash R . The function  $\Phi$ is two‐valued, since

\displaystyle \exp(i\int_{\partial D}A\cdot d\ell) =e^{io $\pi$}=-1
for any small disc D pierced by the ring R . Moreover, we have

Hu= $\Phi$(-\triangle)$\Phi$^{-1}u . (10)

Then, as in the two‐dimensional case, the solutions to Hu=k^{2}u are given as

u= $\Phi$\cdot S_{m\ell} ( ‐iak, \cos $\eta$)R_{m\ell}^{(5)} (‐iak, isinh  $\xi$ ) \cos m $\phi$,

u= $\Phi$\cdot S_{m\ell} ( ‐iak, \cos $\eta$)R_{m\ell}^{(5)} (‐iak, isinh  $\xi$ ) \sin m $\phi$ (m\neq 0) ,

(m=0,1,2, \ldots, \ell=m, m+1, m+2, \ldots.)

The functions R_{m\ell}^{(1)}(c, z) and R_{m\ell}^{(5)}(c, z) (c= −iak) satisfy the same ordinary differential equation with re‐
spect to z , and have different parities. Both functions  $\Phi$ and  S_{m\ell} ( ‐iak, \cos $\eta$)R_{m\ell}^{(5)} (‐iak, isinh  $\xi$ ) \cos m $\phi$
(or \sin m $\phi$) are two‐valued with respect to the original coordinate  x , and the product of these func‐
tions is single‐valued. The scattering phase shift $\delta$_{\ell,k}^{m} is defined by the asymptotics

R_{m\ell}^{(1)}(c, z)\displaystyle \sim\frac{1}{cz}\cos(cz-\frac{\ell+1}{2} $\pi$) ,

R_{m\ell}^{(5)}(c, z)\displaystyle \sim\frac{1}{CZ}\cos(cz-\frac{\ell+1}{2} $\pi$+$\delta$_{l,k}^{m})
as z \rightarrow  i\infty . When  c = −iak and z = isinh  $\xi$ , we have  cz= k a \sinh $\xi$ \sim kr (r = |\mathrm{x}|) and the

limit  z\rightarrow i\infty corresponds the limit  r\rightarrow\infty . Thus  R_{m\ell}^{(1)}(c, z) has the same asymptotic behavior as the
asymptotics of the spherical Bessel function. Our main result is formulated as follows.

Theorem 4.1. (i) We introduce the oblate spheroidal coordinate in \mathrm{x} ‐space and the spherical
coordinate in \mathrm{p} ‐space, that is,

\mathrm{x}= (a \cosh $\xi$\sin $\eta$\cos $\phi$ , acosh  $\xi$\sin $\eta$\sin $\phi$ , asinh  $\xi$\cos $\eta$ ),
\mathrm{p}= (  k\sin $\tau$\cos $\psi$ , ksin  $\tau$\sin $\psi$ , kcos  $\tau$ ).
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Then, the incoming wave solution  $\varphi$_{-} =W_{-}e^{i\mathrm{x}\cdot \mathrm{p}} with momentum \mathrm{p} for the quantized ring mag‐
netic fidd \dot{u}

$\varphi$_{-}(\mathrm{x};\mathrm{p}) =  $\Phi$\displaystyle \cdot\sum_{m=0}^{\infty}\sum_{\ell=m}^{\infty}i^{\ell}c_{l,m}^{2}e^{i$\delta$_{p}^{rn_{k}}},R_{m\ell}^{(5)} (‐iak, isinh  $\xi$ )

 S_{m\ell} (‐iak, \cos $\eta$)S_{ $\pi$ d}( ‐iak, \cos $\tau$)\cos(m( $\phi$- $\psi$)) ,

where c_{\ell,m}=\sqrt{(2-$\delta$_{0m})(2\ell+1)(\ell-m)!}/(P+m)!.

(ii) We introduce the spherical coordinate in S^{2} as

 $\omega$=(\sin $\tau$\cos $\psi$, \sin $\tau$\sin $\psi$, \cos $\tau$) ,

$\omega$'=(\sin$\tau$'\cos$\psi$', \sin$\tau$'\sin$\psi$', \cos$\tau$')

for  $\omega$, $\omega$' \in  S^{2} Then, the scattering amplitude with energy k^{2} (k > 0) for the quantized ring
magnetic field is

f($\omega$'\displaystyle \rightarrow $\omega$;k^{2}) = \frac{1}{2ik}\sum_{m=0}^{\infty}\sum_{\ell=m}^{\infty}(e^{2i$\delta$_{\ell,\mathrm{k}}^{lr $\iota$}}-1)c_{\ell,m}^{2}
S_{ml} ( ‐iak, \cos $\tau$)S_{m\ell}( ‐iak, \cos$\tau$')\cos(m( $\psi$- $\psi$

where  c_{\ell,m} is as in (i).

Let us try to reproduce the interference pattern in the experiment by Tonomura et al. by using
the above formula. We put a = 1 , and consider the object wave  $\varphi$-,1 = W_{-}e^{i\mathrm{p}_{1}\cdot \mathrm{x}} with the incident
momentum \mathrm{p}_{1}=(0,0,8) , which goes through the hole of the ring solenoid vertically. We also consider
the reference wave $\varphi$_{-,2}=W_{-}e^{i\mathrm{p}_{2}\cdot \mathrm{x}} with \mathrm{p}_{2} =(0,4\sqrt{3},4) . The two vectors \mathrm{p}_{1} and \mathrm{p}_{2} have the same

length, and make the angle  $\pi$/3 . The density plot of the real part of $\varphi$_{-,1} and that of $\varphi$_{-,2} on the
yz‐plane are given in Figure 9, 10, respectively. The central segment represents the ring R . We observe
the phase shift occurs behind the ring, depending on the incident direction of the electron beam. In
these figures, we take  $\Phi$=1 for simplicity, so  $\varphi$-,j are discontinuous on the disc enclosed by the ring.

\mathrm{N}

Figure 9: The density plot of {\rm Re}$\varphi$_{-,1}.

\mathrm{M}

-4 -2 0 2 4

y

Figure 10: The density plot of {\rm Re}$\varphi$_{-,2}.

Of course, the real part of the wave function is gauge‐dependent, and not an observable quantity.
The interference pattern caused by the superposition of these two waves is defined by |$\varphi$_{-,1}+$\varphi$_{-,2}|^{2},
which is a gauge‐independent quantity. In Figure 11‐14, we give the density plots of the interference
pattern on several planes. Especially, Figure 12, the interference pattern behind the ring magnet, is
similar to the picture by Tonomura et al. We also give the spherical density plots of the differential
scattering cross section |f( $\omega$'\rightarrow $\omega$;k^{2})|^{2} in Figure 15 and 16.
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At present we do not have an asymptotic formula for the scattering amplitude in the high energy limit
in terms of elementary functions, like the Ito‐Tairiura formula (6). To our knowledge, the only known
result is the Aharonov‐Bohm ansatz by Ballesteros‐Weder [Ba‐We2]; when the velocity \mathrm{v} is directed
to the z‐axis, the scattering operator acts on the Gaussian wave packet $\varphi$_{\mathrm{v}} as the multiplication by
\exp(2 $\pi \alpha$ i) (  2 $\pi \alpha$ is the magnetic flux through the section of the torus) in the high energy limit. Finding
more general asymptotic formula, which explains Figure 9 and 10 more clearly, is an interesting problem.

In the computational side, the rapid computation of the spheroidal wave function is desired recently,
mainly in application to the signal processing analysis (see e.g. Kirby [Kil, Ki2 We hope the progress
in this area, which will give us more detailed information about our scattering problem.

\mathrm{N}

-4 -2 0 2 4

 $\gamma$

Figure 11: Interference pattern on yz‐plane.

\sim

-3 -2 -1 0 I 2 3

 $\chi$

Figure 13: Interference pattern on  z=0.

Figure 15: DSCS for $\tau$'=0, $\psi$'=0, k=8.

\sim

-3 -2 -1 0 1 2 3

\mathrm{x}

Figure 12: Interference pattern on z=3.

\Rightarrow

-3 -2 -1 0 1 2 3

 $\chi$

Figure 14: Interference pattern on  z=-2.

Figure 16: DSCS for $\tau$'= $\pi$/2, $\psi$'=0, k=8.
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