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The understanding of transport properties of quantum systems out of equilib‐
rium is a crucial challenge in statistical mechanics. A long term goal is to explain
the conductivity properties of solids starting from first principles, as \mathrm{e}.g . from the
Schrödinger equation governing the dynamics of electrons and ionic cores. While
the general goal appears to be beyond the horizon, some results can be obtained
for specific models, in particular for independent electrons in a periodic or random
background.

As a general paradigm, in this case the electronic transport properties are re‐
lated to the spectral type of the Hamiltonian and to the (de‐)localization of the
corresponding (generalized) eigenstates. However, when periodic systems are
considered, the Hamiltonian operator has generically purely absolutely continuous
spectrum(1). Therefore, one needs a finer notion of localization, which allows for
example to predict when a crystal, in the absence of any external magnetic field,
exhibits a zero transverse conductivity, as it happens for ordinary insulators, and
when a non‐vanishing one, as in the case of the recently realized Chern insulators
[BFK, CZK] predicted by Haldane [Hal, HK].

Our main message is that such a finer notion of localization is provided by the
rate of decay of composite Wannier functions (\mathrm{C}\mathrm{W} $\Gamma$) associated to the gapped
periodic Hamiltonian operator. Equipped with this notion of localization, we are
able to identify two different regimes:
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(1) A remarkable exception is the well‐known Landau Hamiltonian. Notice, however, that if a

periodic background potential is included in the model, one is generically back to the absolutely‐
continuous setting.
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(i) whenever thc system is time‐reversal (TR) symmetric, there exist exponen‐
tially localized composite Wannier functions which are associated to the Bloch
bands below the Fcrmi encrgy, assuming that the latter is in a spectral gap;
correspondingly, the Hall conductivity vanishes;

(ii) vicevcrsa, as soon as the Hall conductivity is non‐zero, as it happens for Chern
insulators, the composite Wannier functions are delocalized.

Moreover, the relevant information to discriminate between the tworegimes is of
topological nature, being provided by the thc triviality of the Bloch bundle associ‐
ated to the occupied states, that is, the vector bundle over the Brillouin torus whose
fiber over k is spanned by the occupied Bloch states at fixed crystal momentum k.

We rigorously prove a Localization‐Topology Correspondence. We consider
a gapped periodic (magnetic) Schrödingcr opcrator, and we assume that thc Fermi
projector corresponds to a non‐trivial (magnetic) Bloch bundle, as it may happen
when TR‐symmetry is broken. For examplc, one might think of the opcrators mod‐
eling Chern insulators or Quantum Hall systems. The rate of decay of composite
Wannier functions changes drastically in this case, from exponential to polynomial.
We prove that the optimal decay for a system w=(w_{1}, \ldots, w_{m}) of CWFs in a non‐
trivial topological phase is characterized by the divergence of the second moment of
the position operator, defined as

\displaystyle \langle X^{2}\rangle_{w}\equiv\sum_{a=1}^{m}\int_{\mathbb{R}^{d}}|x|^{2}|w_{a}(x)|^{2}\mathrm{d}x.
Heuristically, this corresponds to a power‐law decay |w_{a}(x)|_{\wedge}\cdot|x|^{- $\alpha$} , with  $\alpha$=2 for
d=2 and  $\alpha$=5/2 for d=3 . The former cxponent was foreseen by Thoulcss [Th],
who also argued that the exponential decay of the Wannier functions is intimately
related to the vanishing of the Hall current. More precisely, we prove‐ under suitable
technical hypothesis— the following statement:

Localization‐Topology Correspondence: Consider a gapped periodic (mag‐
netic) Schrödinger operator. Then it is always possible to construct a system w=

(wl, . . . , w_{m} ) of CWFs for the occupied state\mathcal{S} such that

(0.1) \displaystyle \sum_{a=1}^{m}\int_{\mathbb{R}^{d}}|x|^{2s}|w_{a}(x)|^{2}\mathrm{d}x<+\infty for every  s<1.

Moreover, the following statements are equivalent:

(a) Finite second moment: there exists a choice of Bloch gauge \mathcal{S}uch that the
corresponding CWF_{\mathcal{S}}w=(w_{1}, \ldots, w_{rr $\iota$}) \mathcal{S} atisfy

\displaystyle \langle X^{2}\rangle_{w}=\sum_{a=1}^{m}\int_{\mathbb{R}^{d}}|x|^{2}|w_{a}(x)|^{2}\mathrm{d}x<+\infty ;
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(b) Exponential localization: there exists  $\alpha$ > 0 and a choice of Bloch gauge
such that the corresponding CWFs \overline{w}=(\overline{w}_{1}, \ldots,\overline{w}_{m}) satisfy

\displaystyle \sum_{a=1}^{m}\int_{\mathbb{R}^{d}}\mathrm{e}^{2 $\beta$|x|}|\overline{w}_{a}(x)|^{2}\mathrm{d}x<+\infty for every  $\beta$\in [0,  $\alpha$ );
(c) Trivial topology: the Bloch bundle associated to the occupied states is trivial.

In case (a) holds, then there exist a sequence \{w^{(\ell)}\} of systems of exponentially
localized CWFs such that w^{(\ell)}\rightarrow w in L^{2}(\mathbb{R}^{d}, \{x\}^{2}\mathrm{d}x)^{m} as \ell\rightarrow\infty.

Our result can be reformulated in terms of the localization functional introduced

by Marzari and Vanderbilt [MV, MYSV], which with our notation reads
(0.2)

F_{\mathrm{M}\mathrm{V}}(w)=\displaystyle \sum_{a=1}^{m}\int_{\mathbb{R}^{d}}|x|^{2}|w_{a}(x)|^{2}\mathrm{d}x-\sum_{a=1}^{m}\sum_{j=1}^{d} ( \displaystyle \int_{\mathbb{R}^{d}}x_{j}|w_{a}(x)|^{2} dx)2 = : \{X^{2}\}_{w}-\{X\rangle_{w}^{2}.

In view of the first part of the statement, there always exists a system of CWFs
satisfying (0.1) for fixed s=1/2 , so that the first moment \langle X\}_{w} is finite. Hence, the
Marzari‐Vanderbilt functional is fimite if and only if \{X^{2}\}_{w} is. By the second part of
the Localization‐Topology Correspondence, the latter condition is equivalent to the
triviality of the Bloch bundle. The result is in agreement with previous numerical
and analytic investigations on the Haldane model [TV]. As a consequence, the
minimization of F_{\mathrm{M}\mathrm{V}} is possible only in the topologically trivial case, and numerical
simulations in the topologically non‐trivial regime should be handled with care: we
expect that the numerics become unstable when the mesh in k‐space becomes finer
and finer.

Further possible applications of the Localization‐Topology Correspondence go
beyond the realm of crystalline solids, including superfluids and superconductors
[PT, TPTH], and tensor network states [Rd]. In view of that, we hope that our
results will trigger new dcvclopmcnts in the theory of superconductors and of many‐
body systems, and possibly in other realms of solid‐state physics.
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