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We consider scattering by star‐shaped obstacles in hyperbolic space and show that
for the Dirichlet problem resonances satisfy a universal bound

|{\rm Im} $\lambda$| \displaystyle \geq\frac{1}{2}
which is optimal in dimension 2. In odd dimensions we also show that

|{\rm Im} $\lambda$| \displaystyle \geq\frac{ $\mu$}{ $\rho$},
for a universal constant  $\mu$ , where  $\rho$ is the radius of a ball containing thc obstacle;
this gives an improvement for small obstacles. That gives lower bounds on the rate of
exponential dccay of waves outsidc of the obstacle.

In dimensions 3 and higher the proofs follow the classical vector field approach of
Morawetz, while in dimension 2 we obtain our bound by working with spaces coming
from gencral relativity. The lattter approach is inspired by the works of Vasy [Va13]
and Hintz‐Vasy [\mathrm{H}\mathrm{i}\mathrm{V}\mathrm{a}\mathrm{l}5] . We also show that in odd dimcnsions resonances of small
obstacles are close, in a suitable sense, to Euclidean resonances. The full account of
the results in presented in [\mathrm{H}\mathrm{i}\mathrm{Z}\mathrm{w}\mathrm{l}7\mathrm{a}].

For  $\kappa$>0 we define hyperbolic n‐space with constant curvature -$\kappa$^{2} as

(\mathbb{H}_{ $\kappa$}^{n}, g_{ $\kappa$})=(\mathbb{R}^{n}, dr^{2}+s_{ $\kappa$}^{2}h) , (1)

where (r,  $\omega$) are polar coordinates on \mathbb{R}^{n}, h= h (  $\omega$ , du) is the round metric on \mathbb{S}^{n-1},
and s_{ $\kappa$}(r)=$\kappa$^{-1}\sinh( $\kappa$ r) . We include Euclidean space as the case of  $\kappa$=0, s_{0}(r)=r.

Suppose that \mathcal{O} \subset \mathbb{R}^{rb} \simeq \mathbb{H}_{ $\kappa$}^{n} is a boundcd open set with smooth boundary, and
denote by

P_{ $\kappa$}:=-\displaystyle \triangle_{g_{ $\kappa$}}-(\frac{n-1}{2})^{2}$\kappa$^{2} (2)

the self‐adjoint operator on L^{2} ( \mathbb{H}_{ $\kappa$}^{n}\backslash \mathcal{O} , dvolg  $\kappa$ ) with domain

\mathcal{D}(P_{ $\kappa$}):=H^{2}(\mathbb{H}_{ $\kappa$}^{n}\backslash \mathcal{O})\cap H_{0}^{1}(\mathbb{H}_{ $\kappa$}^{n}\backslash \mathcal{O}) .

The resolvent of P_{ $\kappa$},  $\kappa$>0,

R_{ $\kappa$}( $\lambda$) :=(P_{ $\kappa$}-$\lambda$^{2})^{-1} : L^{2}(\mathbb{H}_{ $\kappa$}^{n}\backslash \mathcal{O})\rightarrow L^{2}(\mathbb{H}_{ $\kappa$}^{n}\backslash \mathcal{O}) , {\rm Im} $\lambda$>0 , (3)

continues meromorphically to a family of operators defined on \mathbb{C} :

R_{ $\kappa$}( $\lambda$):L_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{2}(\mathbb{H}_{ $\kappa$}^{n}\backslash \mathcal{O})\rightarrow L_{1\mathrm{o}\mathrm{c}}^{2}(\mathbb{H}_{ $\kappa$}^{n}\backslash \mathcal{O}) .
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FIGURE 1. Left: a star‐shaped obstacle in the Poincaré disc with reso‐
nances satisfying a universal bound {\rm Im} $\lambda$\leq -\displaystyle \frac{1}{2} . Right: resonances of a
disk with radius R=1 in \mathbb{H}^{2} . Highlighted are resonances corresponding
to the angular momentum \ell=12.

For  $\kappa$=0 , the same result is true when n is odd; in even dimensions the continuation
takes place on the logarithmic plane.

We denote the set of poles of R_{ $\kappa$}( $\lambda$) (included according to their multiplicities)
by {\rm Res}(\mathcal{O},  $\kappa$) . The elements of {\rm Res}(\mathcal{O},  $\kappa$) are called scattering resonances and they
determine decay and oscillations of reflected waves outside of \mathcal{O}- sce [Zw17] for a recent
survey and references. In the odd‐dimensional Euclidean case their study goes back
to classical works of Lax‐Phillips [\mathrm{L}\mathrm{a}\mathrm{P}\mathrm{h}68] and Morawetz [\mathrm{M}\mathrm{o}66\mathrm{a}] , and the relation
between the distribution of resonances and the geometry of obstacles has been much
studied, especially for high energies (|{\rm Re} $\lambda$|\rightarrow\infty)- see [Zw17, §2.4].

When the obstacle is star‐shaped, a universal lower bound on resonance widths,
|{\rm Im} $\lambda$| , can be given in terms of the radius of the support of the obstacle. Follow‐
ing earlier contributions of Morawetz [\mathrm{M}\mathrm{o}66\mathrm{a}],[\mathrm{M}\mathrm{o}66\mathrm{b}] ,[Mo72] and using Lax‐Phillips
theory [\mathrm{L}\mathrm{a}\mathrm{P}\mathrm{h}68] , Ralston [Ra78] obtained the bound

\displaystyle \mathcal{O}\subset B_{\mathbb{R}^{n}}(x_{0},  $\rho$) \Rightarrow \inf_{ $\lambda$\in \mathrm{R} $\kappa$(\mathcal{O},0)}|{\rm Im} $\lambda$| \geq$\rho$^{-1} (4)

for odd n\geq 3 . Remarkably this bound is optimal in dimensions three and five—see
Fig. 2 and [\mathrm{H}\mathrm{i}\mathrm{Z}\mathrm{w}\mathrm{l}7\mathrm{b}] for a discussion of this result.

In this paper we investigate analogues of (4) for \mathcal{O} \subset  B_{\mathbb{H}_{ $\kappa$}^{n}}(x_{0},  $\rho$) . The first result
shows that the resonance widths have a universal lower bound independent of the
diameter of the obstacle. Intuitively this is due to the fact that infinity is much
“larger” in the hyperbolic case.

Theorem 1. Suppose that \mathcal{O}\subset \mathbb{H}_{ $\kappa$}^{n} is a star‐shapel obstacle. Then

\displaystyle \inf_{ $\lambda$\in \mathrm{R}ae\mathrm{s}(\mathcal{O}, $\kappa$)}|{\rm Im} $\lambda$|\geq $\kappa$/2 . (5)
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Whcn n\geq 3 the proof is based on the vector field method of Morawetz; to obtain an
argument valid also when n=2 (where the estimate is sharp when \mathcal{O}=\emptyset ) we use an
approach based on ideas from general relativity and estimates on resonant states. The
hyperbolic spacc version of Morawetz’s estimate for  n\geq 3 and a slight refinement of the
argument from [\mathrm{M}\mathrm{o}66\mathrm{a}] gives an improvement for small obstacles in odd dimensions;
this is due to the sharp Huyghens principle.

Theorem 2. Suppose that \mathcal{O} \subset \mathbb{H}_{ $\kappa$}^{n} is a \mathcal{S}tar‐shaped obstacle and that n \geq  3 is odd.
Then

\displaystyle \mathcal{O}\subset B_{\mathrm{H}_{ $\kappa$}^{n}}(x_{0},  $\rho$) \Rightarrow \inf_{ $\lambda$\in{\rm Res}(\mathcal{O}, $\kappa$)}|{\rm Im} $\lambda$| \geq $\mu \rho$^{-1} (6)

for a universal constant  $\mu$.

Remark. Jcns Marklof suggested a formulation of Theorems 1 and 2 which does not
depend on  $\kappa$ : there exist constants  c_{n} such that for star‐shaped obstacles \mathcal{O}\subset \mathbb{H}_{ $\kappa$}^{n}, n

odd,

\displaystyle \mathcal{O}\subset B_{\mathbb{H}_{ $\kappa$}^{n}}(x_{0},  $\rho$) \Rightarrow \inf_{ $\lambda$\in{\rm Res}(\mathcal{O}, $\kappa$)}|{\rm Im} $\lambda$| \geq c_{n}\frac{\mathrm{v}\mathrm{o}1(\partial B_{\mathbb{H}_{ $\kappa$}^{n}}(0, $\rho$))}{\mathrm{v}\mathrm{o}1(B_{\mathbb{H}_{ $\kappa$}^{n}}(0, $\rho$)))}.

FIGURE 2. Left: resonances for the ball of radius one in \mathbb{R}^{3} . For each
spherical momentum \ell they are given by solutions of  H_{\ell+1/2}^{(2)}( $\lambda$)=0 where

H_{ $\nu$}^{(2)} is the Hankel function of the second kind and order v . Each zero

appears as a resonance of multiplicity 2\ell+1 ; highlighted are resonances
corresponding to \ell = 12 . Right: resonances of thc ball with radius
R=0.25 in \mathbb{H}^{3} (red) and in \mathbb{R}^{3} (blue); this illustrates Theorem 3.

We expect that  $\mu$=1 in (6). (An adaptation of Ralston’s argument [Ra78] should
work but would require some buildup of scattering theory; for a proof of his crucial
estimate without using Lax‐Phillips theory, see [ \mathrm{D}_{\mathrm{c}}\mathrm{v}\mathrm{Z}\mathrm{w} , Exercise 3.5].) That the esti‐
matc (6) is indcpcndent of  $\kappa$ is related to rescaling: identifying an obstacle with a subset
of \mathbb{R}^{n} and denoting by x\mapsto $\varepsilon$ x the Euclidean dilation, we see that if  $\sigma$ \in {\rm Res}(6\mathcal{O}, 1)
then  $\varepsilon \sigma$ \in {\rm Res}(\mathcal{O}, \in) , and  $\Xi \sigma$ should be close to a resonance in {\rm Res}(\mathcal{O}, 0) . So even
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though the bound (5) gets worse for small  $\kappa$ , the bound in odd dimensions is close to
(4) and improves for small diameters. This is illustrated by Fig. 2 and confirmed by
the following theorem:

Theorem 3. Suppose that \mathcal{O}\subset \mathbb{H}_{ $\kappa$}^{n}\simeq \mathbb{R}^{n} is an arbitrary bounded obstacle with smooth
boundary and that n\geq 3 is odd. Then

{\rm Res}(\mathcal{O},  $\kappa$)\rightarrow{\rm Res}(\mathcal{O}, 0) ,  $\kappa$\rightarrow 0,

locally uniformly and with multiplicities.
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