RESONANCES FOR OBSTACLES IN HYPERBOLIC SPACE

PETER HINTZ AND MACIEJ ZWORSKI

We consider scattering by star-shaped obstacles in hyperbolic space and show that for the Dirichlet problem resonances satisfy a universal bound

$$|\operatorname{Im} \lambda| \ge \frac{1}{2}$$

which is optimal in dimension 2. In odd dimensions we also show that

$$|\operatorname{Im} \lambda| \ge \frac{\mu}{\rho},$$

for a universal constant μ , where ρ is the radius of a ball containing the obstacle; this gives an improvement for small obstacles. That gives lower bounds on the rate of exponential decay of waves outside of the obstacle.

In dimensions 3 and higher the proofs follow the classical vector field approach of Morawetz, while in dimension 2 we obtain our bound by working with spaces coming from general relativity. The latter approach is inspired by the works of Vasy [Va13] and Hintz–Vasy [HiVa15]. We also show that in odd dimensions resonances of small obstacles are close, in a suitable sense, to Euclidean resonances. The full account of the results in presented in [HiZw17a].

For $\kappa > 0$ we define hyperbolic *n*-space with constant curvature $-\kappa^2$ as

$$(\mathbb{H}^n_{\kappa}, g_{\kappa}) = (\mathbb{R}^n, dr^2 + s_{\kappa}^2 h), \tag{1}$$

where (r, ω) are polar coordinates on \mathbb{R}^n , $h = h(\omega, d\omega)$ is the round metric on \mathbb{S}^{n-1} , and $s_{\kappa}(r) = \kappa^{-1} \sinh(\kappa r)$. We include Euclidean space as the case of $\kappa = 0$, $s_0(r) = r$.

Suppose that $\mathcal{O} \subset \mathbb{R}^n \simeq \mathbb{H}^n_{\kappa}$ is a bounded open set with smooth boundary, and denote by

$$P_{\kappa} := -\Delta_{g_{\kappa}} - \left(\frac{n-1}{2}\right)^2 \kappa^2 \tag{2}$$

the self-adjoint operator on $L^2(\mathbb{H}^n_{\kappa} \setminus \mathcal{O}, d \operatorname{vol}_{q_{\kappa}})$ with domain

 $\mathcal{D}(P_{\kappa}) := H^{2}(\mathbb{H}_{\kappa}^{n} \setminus \mathcal{O}) \cap H^{1}_{0}(\mathbb{H}_{\kappa}^{n} \setminus \mathcal{O}).$

The resolvent of P_{κ} , $\kappa > 0$,

$$R_{\kappa}(\lambda) := (P_{\kappa} - \lambda^2)^{-1} \colon L^2(\mathbb{H}^n_{\kappa} \setminus \mathcal{O}) \to L^2(\mathbb{H}^n_{\kappa} \setminus \mathcal{O}), \quad \text{Im } \lambda > 0,$$
(3)

continues meromorphically to a family of operators defined on \mathbb{C} :

$$R_{\kappa}(\lambda) \colon L^2_{\text{comp}}(\mathbb{H}^n_{\kappa} \setminus \mathcal{O}) \to L^2_{\text{loc}}(\mathbb{H}^n_{\kappa} \setminus \mathcal{O}).$$

FIGURE 1. Left: a star-shaped obstacle in the Poincaré disc with resonances satisfying a universal bound Im $\lambda \leq -\frac{1}{2}$. Right: resonances of a disk with radius R = 1 in \mathbb{H}^2 . Highlighted are resonances corresponding to the angular momentum $\ell = 12$.

For $\kappa = 0$, the same result is true when n is odd; in even dimensions the continuation takes place on the logarithmic plane.

We denote the set of poles of $R_{\kappa}(\lambda)$ (included according to their multiplicities) by $\operatorname{Res}(\mathcal{O}, \kappa)$. The elements of $\operatorname{Res}(\mathcal{O}, \kappa)$ are called *scattering resonances* and they determine decay and oscillations of reflected waves outside of \mathcal{O} – see [Zw17] for a recent survey and references. In the odd-dimensional Euclidean case their study goes back to classical works of Lax-Phillips [LaPh68] and Morawetz [Mo66a], and the relation between the distribution of resonances and the geometry of obstacles has been much studied, especially for high energies ($|\operatorname{Re} \lambda| \to \infty$) – see [Zw17, §2.4].

When the obstacle is star-shaped, a universal lower bound on resonance widths, $|\operatorname{Im} \lambda|$, can be given in terms of the radius of the support of the obstacle. Following earlier contributions of Morawetz [Mo66a],[Mo66b],[Mo72] and using Lax-Phillips theory [LaPh68], Ralston [Ra78] obtained the bound

$$\mathcal{O} \subset B_{\mathbb{R}^n}(x_0, \rho) \implies \inf_{\lambda \in \operatorname{Res}(\mathcal{O}, 0)} |\operatorname{Im} \lambda| \ge \rho^{-1}$$
 (4)

for odd $n \ge 3$. Remarkably this bound is optimal in dimensions three and five – see Fig. 2 and [HiZw17b] for a discussion of this result.

In this paper we investigate analogues of (4) for $\mathcal{O} \subset B_{\mathbb{H}^n_{\mathcal{C}}}(x_0, \rho)$. The first result shows that the resonance widths have a universal lower bound independent of the diameter of the obstacle. Intuitively this is due to the fact that infinity is much "larger" in the hyperbolic case.

Theorem 1. Suppose that $\mathcal{O} \subset \mathbb{H}^n_{\kappa}$ is a star-shaped obstacle. Then

$$\inf_{\lambda \in \operatorname{Res}(\mathcal{O},\kappa)} |\operatorname{Im} \lambda| \ge \kappa/2.$$
(5)

When $n \geq 3$ the proof is based on the vector field method of Morawetz; to obtain an argument valid also when n = 2 (where the estimate is sharp when $\mathcal{O} = \emptyset$) we use an approach based on ideas from general relativity and estimates on resonant states. The hyperbolic space version of Morawetz's estimate for $n \geq 3$ and a slight refinement of the argument from [Mo66a] gives an improvement for small obstacles in odd dimensions; this is due to the sharp Huyghens principle.

Theorem 2. Suppose that $\mathcal{O} \subset \mathbb{H}^n_{\kappa}$ is a star-shaped obstacle and that $n \geq 3$ is odd. Then

$$\mathcal{O} \subset B_{\mathbb{H}^n_{\kappa}}(x_0, \rho) \implies \inf_{\lambda \in \operatorname{Res}(\mathcal{O}, \kappa)} |\operatorname{Im} \lambda| \ge \mu \rho^{-1}$$
 (6)

for a universal constant μ .

Remark. Jens Marklof suggested a formulation of Theorems 1 and 2 which does not depend on κ : there exist constants c_n such that for star-shaped obstacles $\mathcal{O} \subset \mathbb{H}^n_{\kappa}$, n odd,

$$\mathcal{O} \subset B_{\mathbb{H}^n_{\kappa}}(x_0,\rho) \implies \inf_{\lambda \in \operatorname{Res}(\mathcal{O},\kappa)} |\operatorname{Im} \lambda| \ge c_n \frac{\operatorname{vol}(\partial B_{\mathbb{H}^n_{\kappa}}(0,\rho))}{\operatorname{vol}(B_{\mathbb{H}^n_{\kappa}}(0,\rho)))}.$$

FIGURE 2. Left: resonances for the ball of radius one in \mathbb{R}^3 . For each spherical momentum ℓ they are given by solutions of $H_{\ell+1/2}^{(2)}(\lambda) = 0$ where $H_{\nu}^{(2)}$ is the Hankel function of the second kind and order ν . Each zero appears as a resonance of multiplicity $2\ell + 1$; highlighted are resonances corresponding to $\ell = 12$. Right: resonances of the ball with radius R = 0.25 in \mathbb{H}^3 (red) and in \mathbb{R}^3 (blue); this illustrates Theorem 3.

We expect that $\mu = 1$ in (6). (An adaptation of Ralston's argument [Ra78] should work but would require some buildup of scattering theory; for a proof of his crucial estimate without using Lax-Phillips theory, see [DyZw, Exercise 3.5].) That the estimate (6) is independent of κ is related to rescaling: identifying an obstacle with a subset of \mathbb{R}^n and denoting by $x \mapsto \varepsilon x$ the Euclidean dilation, we see that if $\sigma \in \text{Res}(\varepsilon \mathcal{O}, 1)$ then $\varepsilon \sigma \in \text{Res}(\mathcal{O}, \varepsilon)$, and $\varepsilon \sigma$ should be close to a resonance in $\text{Res}(\mathcal{O}, 0)$. So even though the bound (5) gets worse for small κ , the bound in odd dimensions is close to (4) and improves for small diameters. This is illustrated by Fig. 2 and confirmed by the following theorem:

Theorem 3. Suppose that $\mathcal{O} \subset \mathbb{H}^n_{\kappa} \simeq \mathbb{R}^n$ is an arbitrary bounded obstacle with smooth boundary and that $n \geq 3$ is odd. Then

$$\operatorname{Res}(\mathcal{O},\kappa) \to \operatorname{Res}(\mathcal{O},0), \quad \kappa \to 0,$$

locally uniformly and with multiplicities.

References

- [DyZw] S. Dyatlov and M. Zworski, *Mathematical theory of scattering resonances*, book in preparation; http://math.mit.edu/~dyatlov/res/
- [HiVa15] P. Hintz and A. Vasy. Asymptotics for the wave equation on differential forms on Kerr-de Sitter space. arXiv:1502.03179.
- [HiZw17a] P. Hintz and M. Zworski, Resonances for obstacles in hyperbolic space, arXiv:1703.01384.
- [HiZw17b] P. Hintz and M. Zworski, Wave decay for star-shaped obstacles in ℝ³: papers of Morawetz and Ralston revisited, arXiv:1703.01389, to appear in Proc. Roy. Irish Acad. Sect. A.
- [LaPh68] P. D. Lax and R. S. Phillips, *Scattering theory*, Academic Press 1968.
- [Mo66a] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math. **19**(1966), 439–444.
- [Mo66b] C. Morawetz, Energy Identities for the Wave Equation, New York Univ., Courant Inst. Math. Sci., Res. Rep. No. IMM346,1966, https://archive.org/details/energyidentities00mora
- [Mo72] C. Morawetz, On the modes of decay for the wave equation in the exterior of a reflecting body, Proc. Roy. Irish Acad. Sect. A 72(1972), 113–120.
- [Ra78] J. Ralston, Addendum to: "The first variation of the scattering matrix" (J. Differential Equations 21(1976), no. 2, 378–394) by J. W. Helton and J. Ralston. J. Differential Equations 28(1978), 155–162.
- [Va13] A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, with an appendix by Semyon Dyatlov, Invent. Math. 194(2013), 381-513.
- [Zw17] M. Zworski, Mathematical study of scattering resonances, Bull. Math. Sci. 7(2017), 1–85.

E-mail address: phintz@berkeley.edu

E-mail address: zworski@math.berkeley.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720, USA