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1 Introduction

Fine‐tuning is a sequential adjustment process that brings a system to the highest level of performance.
Automatic fine‐tuning capability is crucial for smart products, which can learn from user’s behavior
to improve product performance and increase customer satisfaction. Supposc thc output is a concave
function of the input and can be represented by a quadratic response function. The output Y_{t} is observed
with a normal noise, i.e.,

Y_{t}=- $\alpha$ x_{t}^{2}+ $\beta$ x_{t}+$\epsilon$_{t} , (1)

where x_{t} \in \mathbb{R} is the input variable chosen by the decision maker at time t , and Y_{t} \in \mathbb{R} is the random
output observed at the same time. Note that  $\alpha$>0 is required to ensure the concavity of the response
function. The noise $\epsilon$_{t} is iid. following the normal distribution N(0,  $\tau$) , in which  $\tau$>0 is the precision.
For tractability, we assume that  $\alpha$ and  $\tau$ are both known. Only  $\beta$ is unknown.

The unknown parameter,  $\beta$ , can be learned online in a Bayesian fashion. That is, we assume a prior
belief  $\pi$_{0}( $\beta$) at the beginning of the decision horizon (t=0) , and update the posterior belief using Bayes’
rule as more observations of x_{t} and Y_{t} become available.

Let \triangle denote the set of all admissible policies. The decision maker employing the policy  $\delta$ \in \triangle

chooses the next action according to  x_{t+1} = $\delta$(I_{t}) , where I_{t}=\{$\pi$_{0}, x_{1}, y_{1}, . . . , x_{t}, y_{t}\} is all the information
obtained up to the time of decision. The decision maker’s objective is to find a control policy that
maximizes the expected total output over a finite horizon given the prior, namely,

\displaystyle \max \mathrm{E}_{ $\delta$} $\delta$\in\triangle[\sum_{t=1}^{T}Y_{t}|$\pi$_{0}( $\beta$)] . (2)
When  $\beta$ is known, this problem is trivial because the optimal value of  x_{t} is  $\beta$/(2 $\alpha$) , and the maximum
expected output is T$\beta$^{2}/(4 $\alpha$) . However, when  $\beta$ is unknown, the decision maker may explore its true
value by varying the inputs  x_{t} and observe the response. But too much exploration may forgo the
opportunity to generate more outputs. Such tension between exploration and cxploitation is the focus
of this paper. Our model is a stylized one, with only one unknown parameter, and our focus is thc
characterization of the optimal exploration‐and‐exploitation policy.

Our model is related to thc sequcntial sampling problem formulated by Bertsekas (1976), cf. Chapter
4.6 of [1]. However, Bertsekas (1976) docs not study the structure of the optimal control policy. Our
problem may appear similar to the multi‐armed bandit (MAB) problem [2] in the sense that we are
searching for the best input (or arm) which generates the highest output. However, it is different from
the classic MAB problem because sampling each input also yiclds information about other input, as the
parameter of each arm is related to the parameters of othcr arms in a quadratic form.

For mathematical tractability, we make use of the natural conjugate prior for normal distribution,
which is also a normal density,

p( $\beta$|$\mu$_{0}, $\tau$_{0})=\displaystyle \sqrt{\frac{$\tau$_{0}}{2 $\pi$}}\exp\{-\frac{$\tau$_{0}( $\beta-\mu$_{0})^{2}}{2}\},
where the hyperparameters $\mu$_{0}, $\tau$_{0} represent the mean and precision of the normal prior, respcctively.
Suppose the decision maker has observed a sequence of input and output data \{x_{1}, y_{1}, . . . ; x_{n}, y_{n}\} up
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to period n . The likelihood function is given by

p (y_{1}, . . . , y_{n}|x_{1}, . . . , x_{n},  $\beta$)= (\displaystyle \frac{ $\tau$}{2 $\pi$})^{\frac{n}{2}}\exp\{-\frac{ $\tau$}{2}\sum_{t=1}^{n}(y_{t}+ $\alpha$ x_{t}^{2}- $\beta$ x_{t})^{2}\},
The posterior is given by

p ( $\beta$|y_{1}, . . . y_{n}, x_{1;} . . . x_{n}, $\pi$_{0})\propto p(y_{1}, . . . y_{n}|x_{1}, . . . x_{ni} $\beta$)p( $\beta$|$\mu$_{0}, $\tau$_{0})

\propto cxp \displaystyle \{-\frac{1}{2}$\beta$^{2}($\tau$_{0}+\sum_{t=1}^{n} $\tau$ x_{t}^{2})+ $\beta$[$\tau$_{0}$\mu$_{0}+\sum_{t=1}^{n} $\tau$ x_{t}(y_{t}+ $\alpha$ x_{t}^{2})]\} . (3)

It is worth mentioning that the posterior is a function of  $\beta$ proportional to the terms listed in (3) through
a normalization constant. The posterior is also a normal distribution with the following hyperparameters

 $\tau$_{n}=$\tau$_{0}+\displaystyle \sum_{t=1}^{n} $\tau$ x_{t}^{2},
$\mu$_{n}=\displaystyle \frac{$\tau$_{0}$\mu$_{0}+\sum_{t=1}^{n} $\tau$ x_{t}(y_{t}+ $\alpha$ x_{t}^{2})}{$\tau$_{n}}.

2 Bayesian Dynamic Programming Formulation

Let V_{n}($\tau$_{n}, $\mu$_{n}) denote the maximum expected output‐to‐go at thc pcriod n=1 , . . . , T , given the poste‐
rior hyperparamctcrs ($\tau$_{n}, $\mu$_{n}) . At period n , the decision maker chooses input for thc next period x_{n+1}.

The optimality equations are given by

V_{n}($\tau$_{n}, $\mu$_{n})=\displaystyle \max_{x_{\mathrm{n}+1}}\{\mathrm{E}[Y_{n+1}|x_{n+1}, $\mu$_{n}]+\overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n})\},
V_{T}($\tau$_{T}, $\mu$_{T})=0 , (4)

where \mathrm{E}[Y_{n+1}|x_{n+1}, $\mu$_{n}] =-ax_{n+1}^{2}+$\mu$_{n}x_{n+1} is the expccted output in period n+1 given the information
available at period n and the chosen input, x_{n+1} . It only dcpends on the posterior mean, $\mu$_{n} , not the
precision, $\tau$_{n}. \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n}) is the expected output‐to‐go after period n+1 given the input x_{n+1}.

More specifically,

\overline{V}_{n+1}(x_{n+1}., $\tau$_{n}, $\mu$_{n})

=\displaystyle \int_{-\infty}^{\infty}V_{n+1}($\tau$_{n}+ $\tau$ x_{n+1}^{2}, \frac{$\tau$_{n}$\mu$_{n}+ $\tau$ x_{n+1}(y_{n+1}+ $\alpha$ x_{n+1}^{2})}{$\tau$_{n}+ $\tau$ x_{n+1}^{2}})f(y_{n+1}|x_{n+1}, $\tau$_{n}, $\mu$_{n})dy_{n+1} , (5)

in which f(y_{n+1}|x_{n+1;}$\tau$_{n}, $\mu$_{n}) is the prcdictive dcnsity of the output at period n+1 . It can be derived
as the following:

f(y_{n+1}|x_{n+1}, $\tau$_{n}, $\mu$_{n})=\displaystyle \int_{-\infty}^{\infty}p(y_{n+1}| $\beta$, x_{n+1})p( $\beta$|$\tau$_{n}, $\mu$_{n})d $\beta$=\frac{\exp\{-\frac{(y_{n+1}+ $\alpha$ x_{n+1}^{2}-$\mu$_{n}x_{ $\tau \iota$+1})^{2}}{2(1/ $\tau$+x_{n+1}^{2}/$\tau$_{r $\iota$})}\}}{\sqrt{2 $\pi$(1/ $\tau$+x_{n+1}^{2}/$\tau$_{n})}}.
This is a normal density with mean - $\alpha$ x_{n+1}^{2}+$\mu$_{n}x_{n+1} and variance 1/ $\tau$+x_{n+1}^{2}/$\tau$_{n} . It turns out that an
alternative representation of the optimality equation is much easier to analyze. Instead of using y_{n+1}

as the variable of integration in (5), we can make the following change of variable

$\mu$_{n+1} =\displaystyle \triangle\frac{$\tau$_{n}$\mu$_{n}+ $\tau$ x_{n+1}(y_{n+1}+ $\alpha$ x_{n+1}^{2})}{$\tau$_{n}+ $\tau$ x_{n+1}^{2}},
and use the new variable $\mu$_{n+1} as the variable of integration. In this way, (5) can be rewritten as

\displaystyle \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n})=\int_{-\infty}^{\infty}V_{n+1}($\tau$_{n}+ $\tau$ x_{n+1}^{2}, $\mu$_{n+1})\frac{\exp\{-\frac{($\mu$_{n+1}-$\mu$_{n})^{2}}{2v_{ $\tau \iota$+1}}\}}{\sqrt{2 $\pi$ v_{n+1}}}d$\mu$_{n+1} , (6)

103



where

v_{n+1}=\displaystyle \frac{1}{$\tau$_{n}}-\frac{1}{$\tau$_{n}+ $\tau$ x_{n+1}^{2}},
is the conditional variance of $\mu$_{n+1} givcn the information available at period n . Here $\tau$_{n}^{-1} is the variance of
the belief before making a new observation, and ($\tau$_{n}+ $\tau$ x_{n+1}^{2})^{-1} is its variance after the new observation,
obtained at the input x_{n+1} . Their difference, v_{n+1} , can be interpreted as the reduction of uncertainty
by the new information. It is important to observe that the mean of $\mu$_{n+1} is still $\mu$_{n} . But the variance
of $\mu$_{n+1} is increasing in x_{n+1}^{2} and decreasing in the posterior precision, $\tau$_{n}.

Clearly, if  $\tau$=0 or x_{n+1} =0 , there will be no reduction in the variance of belief. In this casc, the
posterior mean is always identical to the prior mean and no learning will occur. If  $\tau$ \rightarrow \infty , the true
parameter will be revealed at period  n+1 , the posterior mean will be equal to the true parameter.
Notc that we do not know the true parameter, so the updated posterior mcan appears to be random at
period n.

3 Optimal Fine‐tuning Policy

In this section, we characterize the structure of the optimal policy. Some proofs are omitted for con‐
ciscncss but are available from the author upon request. First, we show that V_{n}($\tau$_{n}, $\mu$_{n}) is convex and
symmetric.

Proposition 1 (Element‐wise convexity) For any fixed $\tau$_{n} , the value function V_{n}($\tau$_{nj}$\mu$_{n}) is convex
in $\mu$_{n}.

Proposition 2 (Symmetry) For any given $\tau$_{n} , we have V_{n}($\tau$_{n}, $\mu$_{n})=V_{n}($\tau$_{n;}-$\mu$_{n}) for all $\mu$_{n}. Further_{\rangle}
V_{n}($\tau$_{n}, $\mu$_{n}) is increasing in $\mu$_{n} when $\mu$_{n}>0 , decreasing when $\mu$_{n}<0 , and V_{n}($\tau$_{n;}$\mu$_{n})\geq V_{n}($\tau$_{n}, 0) .

The next result concerns the monotonicity of the value function in the precision of the bclief. We
use decreasing (increasing) and non‐increasing (non‐decreasing) interchangeably.

Proposition 3 (Monotonicity) V_{n}($\tau$_{n}, $\mu$_{n}) is decreasing in $\tau$_{n} for all n.

The following lemma suggests that the value of information is positive and is decreasing in time.

Lemma 1 (Value of Information)

1. \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n}) \geq V_{n+1}($\tau$_{n}, $\mu$_{n}) for all n, x_{n+1_{\dot{ $\pi$}}}$\tau$_{7l} and $\mu$_{n}.

2. \overline{V}_{n+1}(x, $\tau$_{n}, $\mu$_{n})-V_{n+1}($\tau$_{n}, $\mu$_{n})\geq\overline{V}_{n+2}(x, $\tau$_{n}, $\mu$_{n})-V_{n+2}($\tau$_{n}, $\mu$_{n})

Proposition 4 For all $\tau$_{n}, $\mu$_{n} and n , the value function \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{r $\iota$}) is increasing in x_{n+1} when
x_{n+1} >0 , and decreasing in x_{n+1} when x_{n+1} <0 . Further, \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n}) =\overline{V}_{n+1}(-x_{n+1}, $\tau$_{n}, $\mu$_{n}) .

Proof: Consider any two inputs x_{a} and x_{b} such that x_{a}^{2} >x_{b}^{2} >0 . To prove the piece‐wise monotonicity,
it suffices to prove that \overline{V}_{n+1}(x_{a;}$\tau$_{n}, $\mu$_{n}) \geq \overline{V}_{n+1}(x_{b}, $\tau$_{n}, $\mu$_{n}) for all $\tau$_{n}, $\mu$_{n} , and n . A key step toward
this goal is to express the expectation in \overline{V}_{n+1}(x_{a;}$\tau$_{n}, $\mu$_{n}) by conditioning on a dummy variable $\mu$_{n+1}',
as shown in the following

\displaystyle \overline{V}_{n+1}(x_{a}, $\tau$_{n}, $\mu$_{n})=\triangle\int_{-\infty}^{\infty}V_{n+1}($\tau$_{n}+ $\tau$ x_{a}^{2}, $\mu$_{n+1})\frac{\exp\{-\frac{($\mu$_{n+1}-$\mu$_{n})^{2}}{2v_{n+1}^{a}}\}}{\sqrt{2 $\pi$ v_{n+1}^{a}}}d$\mu$_{n+1},
=.1_{-\infty}^{\infty}.1_{-\infty}^{\infty}V_{n+1}($\tau$_{n}+ $\tau$ x_{b}^{2}+ $\tau$(x_{a}^{2}-x_{b}^{2}), $\mu$_{n+1})\displaystyle \frac{\exp\{-\frac{($\mu$_{n+1}-$\mu$_{7l+1}')^{2}}{2(v_{n+1}^{a}-v_{n+1}^{b})}\}}{\sqrt{2 $\pi$(v_{n+1}^{a}-v_{n+1}^{b})}}\frac{\exp\{-\frac{($\mu$_{n+1}'-$\mu$_{n})^{2}}{2v_{n+1}^{b}}\}}{\sqrt{2 $\pi$ v_{n+1}^{b}}}d$\mu$_{n+1}d$\mu$_{n+1}',
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Case I: x_{n+1} \geq 0 Case II: x_{n+1} <0

Figure 1: Illustration of the Proof of Theorem 1.

where v_{n+1}^{a} =1/$\tau$_{n}-1/($\tau$_{n}+ $\tau$ x_{a}^{2}) , v_{n+1}^{b} =1/$\tau$_{n}-1/($\tau$_{n}+ $\tau$ x_{b}^{2}) . Next, note that \mathrm{L}\mathrm{c}_{\text{ノ}}mma 1 implies

\displaystyle \int_{-\infty}^{\infty}V_{n+1}($\tau$_{n}+ $\tau$ x_{b}^{2}+ $\tau$(x_{a}^{2}-x_{b}^{2}), $\mu$_{n+1})\frac{\mathrm{c}\mathrm{x}\mathrm{p}\{-\frac{($\mu$_{n+1}-$\mu$_{\acute{n}+1})^{2}}{2(v_{ $\tau \iota$+1}^{a}-v_{n+1}^{b})}\}}{\sqrt{2 $\pi$(v_{n+1}^{a}-v_{n+1}^{b})}}d$\mu$_{n+1} \geq V_{n+1}($\tau$_{n}+ $\tau$ x_{b}^{2}, $\mu$_{n+1}') .

Therefore, we have

\displaystyle \overline{V}_{n+1}(x_{a}, $\tau$_{n}, $\mu$_{n}) \geq\int_{-\infty}^{\infty}V_{n+1}($\tau$_{n}+ $\tau$ x_{b}^{2}, $\mu$_{b})\frac{\exp\{-\frac{($\mu$_{b}-$\mu$_{r $\iota$})^{2}}{2v_{n+1}^{b}}\}}{\sqrt{2 $\pi$ v_{n+1}^{b}}}d$\mu$_{b}=\overline{V}_{n+1}(x_{b}, $\tau$_{n}, $\mu$_{n}) ,

proving the piece‐wise monotonicity. Finally, \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n}) = \overline{V}_{n+1}(-x_{n+1}, $\tau$_{n}, $\mu$_{n}) follows imme‐
diately from (6). QED.

Remark 1 A natural way to prove the monotonicity is by induction. However, this approach turns
out to be difficult. Wh_{J}\mathrm{e}nn=T-1 , we have \overline{V}_{T}(x_{T}, $\tau$_{T-1}, $\mu$_{T-1}) =0 , in which the monotonicity holds
trivially. When n=T-2 , it is easy to see from the expression that \overline{V}_{T-1}(x_{T-1}, $\tau$_{T-2}, $\mu$_{T-2}) is increasing
in  $\tau$ x_{T-1}^{2} . To carry out the induction, we can suppose \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n}) is increasing in x_{n+1}^{2} and try
to prove that \overline{V}_{n}(x_{n}, $\tau$_{n-1}, $\mu$_{n-1}) is also increasing in x_{n}^{2} . Unfortunately, this argument does not work
here. To \mathcal{S}ee this, note that

\displaystyle \overline{V}_{n+1}(x_{n+1^{{}_{in}T},$\mu$_{n})} =\int_{-\infty}^{\infty}V_{n+1}($\tau$_{n}+ $\tau$ x_{n+1}^{2}, $\mu$_{n+1})\frac{\exp\{-\frac{($\mu$_{r $\iota$+1}-$\mu$_{r $\iota$})^{2}}{2v_{n+1}}\}}{\sqrt{2 $\pi$ v_{n+1}}}d$\mu$_{n+1} , (7)

Althou.qh v_{n+1} i_{\mathcal{S}} increasing in x_{n+1}^{2} and V_{n+1}($\tau$_{n}+ $\tau$ x_{n+1;}^{2}$\mu$_{n+1}) is convex in $\mu$_{n+1} , we cannot use the
second‐order stochastic dominance to prove that \overline{V}_{n+1}(x_{n+1}, $\tau$_{n;}$\mu$_{n}) is increasing in x_{n+1}^{2} here. This is
because V_{n+1}($\tau$_{n}+ $\tau$ x_{n+1}^{2}, $\mu$_{n+1}) is decreasing in x_{n+1}^{2} by Proposition 3.

Define the optimal input as

x_{n+1}^{\star}($\mu$_{n}, $\tau$_{n})=\displaystyle \triangle\sup{\rm argmax}\{- $\alpha$ x_{n+1}^{2}+$\mu$_{n}x_{n+1}+\overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n}
in which the supremum is used because there may exist multiple inputs that maximize the value function.
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Theorem 1 (Structure of the Optimal Policy) Let D_{n}($\mu$_{n}, $\tau$_{n}) =\triangle  x_{n+1}^{\star}($\mu$_{n}, $\tau$_{n}) -$\mu$_{n}/(2 $\alpha$) be the
deviation of the optimal input, x_{n+1}^{\star}($\mu$_{n}, $\tau$_{n}) , from the myopic input, $\mu$_{n}/(2 $\alpha$) , we have

1. If $\mu$_{n} \geq 0_{f} then D_{n}($\mu$_{n}, $\tau$_{n}) \geq 0.

2. If $\mu$_{n} <0 , then D_{n}($\mu$_{n}, $\tau$_{n}) <0.

Proof: We first consider the case of $\mu$_{n} \geq 0 and show that it is never optimal to choose x_{n+1} <$\mu$_{n}/(2 $\alpha$) .
More specifically, we show that, for any x_{n+1} < $\mu$_{n}/(2 $\alpha$) , there exists a corresponding input x_{n+1}' >

$\mu$_{n}/(2 $\alpha$) that yields a highcr value. Wc analyze the cases of x_{n+1} \geq 0 and x_{n+1} <0 separately below.

1. Case I: x_{ $\tau \iota$+1} \geq  0 . To bcgin with, consider any 0 \leq  x_{n+1} < $\mu$_{n}/(2 $\alpha$) , we can always find
another input, x_{n+1}' = $\mu$_{n}/(2 $\alpha$)+[$\mu$_{n}/(2 $\alpha$) -x_{n+1}] > $\mu$_{n}/(2 $\alpha$) > x_{n+1} , such that - $\alpha$(x_{n+1}')^{2}+
$\mu$_{n}x_{n+1}' +\overline{V}_{n+1}(x_{n+1}', $\tau$_{n;}$\mu$_{n}) = - $\alpha$ x_{n+1}^{2}+$\mu$_{n}x_{n+1} +\overline{V}_{n+1}(x_{n+1}', $\tau$_{n}, $\mu$_{n}) \geq - $\alpha$ x_{n+1}^{2} +$\mu$_{n}x_{n+1} +

\overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n}) , where the inequality follows from Proposition 4, namely, \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n}) is
increasing in x_{n+1} when x_{n+1} > 0 . That is, x_{n+1}' yields a higher value than x_{n+1} , which hcnce
cannot bc optimal, see Figure 1.

2. Case II: x_{n+1} < 0 . Now consider any x_{n+1} < 0 , we can always find another input, x_{n+1}' =

$\mu$_{n}/(2 $\alpha$)+[$\mu$_{n}/(2 $\alpha$)-x_{n+1}] >$\mu$_{n}/(2 $\alpha$) \geq 0>x_{n+1} , such that - $\alpha$(x_{n+1}')^{2}+$\mu$_{n}x_{n+1}'+\overline{V}_{n+1}(x_{n+1}', $\tau$_{n}, $\mu$_{n}) =

- $\alpha$ x_{n+1}^{2}+$\mu$_{n}x_{n+1}+\overline{V}_{n+1}(x_{n+1}', $\tau$_{n}, $\mu$_{n}) \geq - $\alpha$ x_{n+1}^{2}+$\mu$_{n}x_{n+1}+\overline{V}_{n+1}(-x_{n+1}, $\tau$_{n}, $\mu$_{n}) =- $\alpha$ x_{n+1}^{2}+
$\mu$_{n}x_{n+1}+\overline{V}_{n+1}(X_{n+1_{j}}T_{n,l^{$\iota$_{n})}} , where the inequality follows from Proposition 4, namely, \overline{V}_{n+1}(x_{n+1}, $\tau$_{n}, $\mu$_{n})
is increasing in x_{n+1} when x_{n+1} >0 . This is because, x_{n+1}' > -x_{n+1} \geq 0 (also see Figure 1). The
last equality follows from \overline{V}_{n+1}(x_{n+1;}$\tau$_{n}, $\mu$_{n})=\overline{V}_{n+1}(-x_{n+1}, $\tau$_{n}, $\mu$_{n}) in Proposition 4.

Therefore, the optimal input x_{n+1}^{\star}($\mu$_{n}, $\tau$_{n}) must bc greater than or equal to $\mu$_{n}/(2 $\alpha$) when $\mu$_{n} \geq 0.

This suggests that D_{n}($\mu$_{n}, $\tau$_{n}) \geq  0 when $\mu$_{n} \geq  0 The case of $\mu$_{n} < 0 can be proved using the same
argument, thus it is omitted here. QED.
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