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1 Introduction

Fine-tuning is a sequential adjustment process that brings a system to the highest level of performance.
Automatic fine-tuning capability is crucial for smart products, which can learn from user’s behavior
to improve product performance and increase customer satisfaction. Supposc the output is a concave
function of the input and can be represented by a quadratic response function. The output Y; is observed
with a normal noise, i.e.,

Y, = —az? + Bz, + €, (1)

where z; € R is the input variable chosen by the decision maker at time ¢, and Y; € R is the random
output observed at the same time. Note that o > 0 is required to ensure the concavity of the responsc
function. The noise ¢; is iid. following the normal distribution N(0,7), in which 7 > 0 is the precision.
For tractability, we assume that o and 7 are both known. Only 8 is unknown.

The unknown paramecter, 3, can be learned online in a Bayesian fashion. That is, we assume a prior
belief 7o () at the beginning of the decision horizon (¢ = 0), and update the posterior belief using Bayes’
rule as more observations of z; and Y; become available.

Let A denote the set of all admissible policies. The decision maker employing the policy § € A
chooses the next action according to z¢+1 = 6(I3), where Iy = {mo,Z1,¥1,- -, Z¢,y¢ } is all the information
obtained up to the time of decision. The decision maker’s objective is to find a control policy that
maximizes the expected total output over a finite horizon given the prior, namely,
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When £ is known, this problem is trivial because the optimal value of z; is 8/(2c), and the maximum
expected output is T3%/(4c). However, when 3 is unknown, the decision maker may explore its true
value by varying the inputs z; and observe the response. But too much exploration may forgo the
opportunity to generate more outputs. Such tension between exploration and cxploitation is the focus
of this paper. Our model is a stylized one, with only one unknown parameter, and our focus is the
characterization of the optimal exploration-and-exploitation policy.

Our model is related to the sequential sampling problem formulated by Bertsekas (1976), cf. Chapter
4.6 of [1]. However, Bertsekas (1976) does not study the structure of the optimal control policy. Our
problem may appear similar to the multi-armed bandit (MAB) problem [2] in the sense that we are
searching for the best input (or arm) which generates the highest output. However, it is different from
the classic MAB problem because sampling each input also yields information about other input, as the
parameter of each arm is related to the parameters of other arms in a quadratic form.

For mathematical tractability, we make use of the natural conjugate prior for normal distribution,
which is also a normal density,

— 2
6o ) = | oxp { - W0

where the hyperparameters pg, 7o represent the mean and precision of the normal prior, respectively.
Suppose the decision maker has observed a sequence of input and output data {z1,y1,--.,%n,Yn} up
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to period n. The likelihood function is given by

n n
T\% T 2
(Y1, YnlZ1y- sz, B) = (%) : exp{ - 5; (yt + ox? —ﬁxt) },
The posterior is given by

P(BlY1s -+ Uny T1se oo Ty T0) X P(Y1, - - YnlZ1, . .., T, B)P(Bl10, o)
1 - - .
‘XCXP{ - 552(7'0 + > raf) + Blropa + Y Tae(ye + azf)]}- &)
t=1 t=1

It is worth mentioning that the posterior is a function of 8 proportional to the terms listed in (3) through
a normalization constant. The posterior is also a normal distribution with the following hyperparameters

n

2

Tn = To + E TT;,
t=1

_ Topo + 2opey TE(ys + 0x})
n — .
Tn

2 Bayesian Dynamic Programming Formulation

Let Vy (70, pin) denote the maximum expected output-to-go at the period n =1,...,T, given the poste-
rior hyperparamcters (7n, pr,). At period n, the decision maker chooses input for the next period Zp,+1.
The optimality equations are given by

Va(Tn, in) = rsz,( {E[YnHJan»#n] + Vn+l(zn+177n7/-‘n)}7
Vr(rr,pr) =0, (4)

where E[Y,,+1|Tn41, pin] = —ax2 41+ UnTny is the expected output in period n+1 given the information
available at period n and the chosen input, z,4+1. It only depends on the posterior mean, p,, not the
precision, . Vii1(@ni1, o, tin) is the expected output-to-go after period n + 1 given the input z,.
More specifically,

Vn+l (zn+1 s T, ,un)

* Tattn + TEn11 (Y1 + 032 1)
=/ Vat1 (Tn + Tx?;+17 i Tn T T;Q il )f(yn+1’1‘n+ly Tns Nn)dyn+17 (5)
—00 n n+1

in which f(Yn+1|%Zn+1, Tn, pn) is the predictive density of the output at period n + 1. It can be derived
as the following:

_ (Ynt1t022 41 —pnni1)”

/oo €xp { 2(1 /7422 /n) }

p(yn+l |ﬁ7 xn+1)p(ﬁ|Tnv lln)dﬂ =
o V2T + 2% /)

This is a normal density with mean —az?2_; + ftn@n+1 and variance 1/7+ 2 /7,. It turns out that an
alternative representation of the optimality equation is much easicr to analyze. Instead of using yn41
as the variable of integration in (5), we can make the following change of variable

f(yn+l|$n+la Tny ﬂn) =

2
& Tobn + TZnt1(Yn41 + a7 1)
T+ TT2

Hnt1 =

’

and use the new variable p,1 as the variable of integration. In this way, (5) can be rewritten as

o exp{ — (un2+1—#n)2}
Vo1 (®nt1, Ty =/ Vst (T + 1221, — -4 , 6
n+1( n+1,7n ;u'n) o n+1( n n+1 :un+1) 27I"l)"+1 Hn+1 ( )
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where
1 1

T e
is the conditional variance of 41 given the information available at period n. Here 7,1 is the variance of
the belief before making a new observation, and (7, +7z2 ;)" is its variance after the new observation,
obtained at the input z,+1. Their difference, v,+1, can be interpreted as the reduction of uncertainty
by the new information. It is important to observe that the mean of f,41 is still y,,. But the variance
of pn41 is increasing in 22 | and decreasing in the posterior precision, 7,.

Clearly, if 7 = 0 or 2,41 = 0, there will be no reduction in the variance of belief. In this casc, the
posterior mean is always identical to the prior mean and no learning will occur. If 7 — oo, the true
parameter will be revealed at period n + 1, the posterior mean will be equal to the true parameter.
Note that we do not know the true parameter, so the updated posterior mecan appears to be random at
period n.

3 Optimal Fine-tuning Policy

In this section, we characterize the structure of the optimal policy. Some proofs are omitted for con-
ciseness but are available from the author upon request. First, we show that V;,(7,, s) is convex and
symmetric.

Proposition 1 (Element-wise convexity) For any fized 1, the value function Vi, (7, ) is convez
M Yy

Proposition 2 (Symmetry) For any given 7, we have Vo (Tn, tn) = Va(Tn. —pin) for all p,. Further,
Vo (Tn, tin) 18 increasing in p, when wu, > 0, decreasing when p, < 0, and Vo (7, pin) = Va(mn,0).

The next result concerns the monotonicity of the value function in the precision of the belief. We
use decreasing (increasing) and non-increasing (non-decreasing) interchangeably.

Proposition 3 (Monotonicity) V,(7,,us) is decreasing in 7, for all n.

The following lemma suggests that the value of information is positive and is decreasing in time.
Lemma 1 (Value of Information)

1. Vo1 (Trs1s Tno tin) = Vi1 (Toy ) for all n, @y 1, 7, and pin,.

2. Vor1(2, o tin) = Va1 (T, i) = Vaga (2, T in) = Va2 (T, i) -

Proposition 4 For all 1, i, and n, the value function Vn+1(zn+1, Tn, Mn) 18 incTeasing in Tni1 when
Tny1 > 0, and decreasing in T,y 1 when xnq < 0. Purther, Vi1 (Tni1, Tn, iin) = Vii 1 (= Zrg 1y Tns ) -

Proof: Consider any two inputs z, and z, such that 22 > z2 > 0. To prove the piece-wise monotonicity,
it suffices to prove that Vi, y1(Ta,Tn, tin) = Viy1(Tp, Tn, i) for all 7, pn, and n. A key step toward
this goal is to express the expectation in V;,11(24, Tn, tn) by conditioning on a dummy variable p!, .,
as shown in the following

&
20541

Vn+1($a>Tnaﬂn) £ / Vn+1(Tn +7’z‘2,ﬂn+1) dﬂn+17
—oo ¢ V2mon
2 2
o ozt xp{ - Uigeer)

1" Vny1)

\/27r Vpy1 — n+1) \/27”’24-1

oo exp l‘nj;l I-"n) }

o0 lo o)
= / / Vot (Tn +ng +T(I§ ) /—‘n+1) d.un+1dl":1+1?
J —00 J -0
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Figure 1: Illustration of the Proof of Theorem 1.

where v&,; = 1/, — 1/(7 +722), ¥4 1 = 1/7, — 1/(7 + 722). Next, note that Lemma 1 implies

(Bnt1— Hn+1)

/oo 3 ; CXp{ 2(v5 41— Y0 41) }

Vot (Tn + 7y +7(x) - 2p), ﬂn-}—l) dpinsr = Vya (1 + 723, Hns1)-

- \/QW(Un+1 n+1)

Therefore, we have

oo exp { (H; n)?

Vn+l(xaa7an7L) > / Va1 (Tn +Txg7llb)idﬂb n+1 (Tby Tns i),
- ,/271'1)"4_1

proving the piece-wise monotonicity. Finally, Vn+1(wn+1,7'n, Pn) = Vn+1(—In+1,T s fn) follows imme-
diately from (6). QED.

Remark 1 A natural way to prove the monotonicity is by induction. However, this approach turns
out to be difficult. Whenn =T — 1, we have VT(TT, Tr—1, ppr-1) = 0, in which the monotonicity holds
tmmally Whenn = T—2, it is easy to see from the expression that Vi (x1_1, Tr_o, i7_2) is increasing
in T:cT 1- To carry out the induction, we can suppose Vi1 (Tna1, Tn, tin) 18 increasing in z2 11 and try
to prove that Vy,(Tn, Tn_1,n_1) 5 also increasing in x2. Unfortunately, this argument does not work
here. To see this, note that

o exp{——L(“";”_""?}
v, 15 Ty = v 2 5 — T Jy 7
n+1(Tnt1; Tns i) /_co n+1(7'n+7'f”n+1 Hn+1) oz HPnt1, (7

Although vy is increasing in 22 ) and Vi1 (Tn + T&2 1, fins1) S COMVET N finy1, 'we cannot use the
second-order stochastic dominance to prove that Vy, 11(Zni1,Tn, tin) 48 increasing in x2 41 here. This is
because V41 ('r,1 +122,, ,u,,+1) is decreasing in z2 +1 by Proposition 3.

Define the optimal input as
'T:l-l—l (.unv Tn) é sup argma‘x{_axfﬁ-l + MnTni1 + Vn+1 (l'n+1a Tn, /J'n)}v

in which the supremum is used because there may exist multiple inputs that maximize the value function.
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Theorem 1 (Structure of the Optimal Policy) Let Dy (pn,7n) = z% 1 (kn,Tn) — in/(2c) be the
deviation of the optimal input, z}, 1 (fin,Tn), from the myopic input, pn/(2a), we have

1. If i = 0, then Dp(ftn, ™) = 0.
2. If un < 0, then Dy (pn, ) < 0.

Proof: We first consider the case of y, > 0 and show that it is never optimal to choose Z, 11 < i,/ (20).
More specifically, we show that, for any z,4+1 < pn/(2a), there exists a corresponding input z,_, >
1in/(20) that yields a higher value. We analyze the cases of 2,41 > 0 and 2,41 < 0 separately below.

1. Case I: 2,41 > 0. To begin with, consider any 0 < Zp+1 < pn/(2a), we can always find
another input, z;, 11 = pn/(20) + [ttn/(2a) — Tny1] > pn/(20) > Ty, such that —a(xh)? +
lfnl';H.] + Vn+1(w;+177—n~,ﬂn) = _01"1772”.1 + UnZny1 + Vn+1(115ln+1,'7'm Hn) 2 __01337214.1 + UnTntr +
Vot1(Znt1, Tns n ), Where the inequality follows from Proposition 4, namely, V11 (Zni1, Tn, fin) is
increasing in z,+1 when z,4; > 0. That is, ], yields a higher value than z,.,, which hence
cannot be optimal, see Figure 1.

2. Case II: x,4; < 0. Now consider any x,.1 < 0, we can always find another input, Ty =
tn/ (20)+[tin/(20)=Zpy1] > pin/(20) 2 0 > @y y1, such that —a (27, 1) a1 +Var1 (Thi1s T fin) =
—az2 )+ pnTasr + Vot (@10 Tno fin) 2 =082 )+ pinZagr + Vog1 (—Tng1, Tny tn) = 0224 +
UnTnt1+Vpi1(Tnt1, Tn, fn), Where the inequality follows from Proposition 4, namely, V41 (Zn+1, Tn, fin)
is increasing in 41 when ©,,1 > 0. This is because, ], ; > —Zn+1 > 0 (also see Figure 1). The
last equality follows from Vi, 1 (Zni1,Tn, ttn) = Vai1(—Tni1,Tn, M4n) in Proposition 4.

Therefore, the optimal input z} ; (ttn, 7,) must be greater than or equal to iy, /(2a)) when u, > 0.
This suggests that D, (un,7) = 0 when p, > 0 The case of u, < 0 can be proved using the same
argument, thus it is omitted here. QED.
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