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1 Introduction

A linear functional on a real vector space is a bilinear form as a function of two

variables of the original space and its dual space; it is an inner product of two vectors

in the case of a finite‐dimensional space. Also, it is one of the most useful tools for

evaluation with respect to some index of the adequacy of efficiency in multiobjective

programming or vector optimization.

Generally speaking, a totally ordered space like the real field is very useful for

prefenrece, evaluation, computation, or comparison on the values of real‐valued func‐

tions. On the other hand, multiobjective programming and vector optimization are

based on multicriteria like some partial ordering, and minimal and maximal notions

like Pareto optimal solution or efficient solution are defined with respect to a certain

ordering cone (i.e., a dominance cone); see [7].

From the viewpoint of scalarization, we know several approaches related to order‐

monotonicity in an ordered vector space. For example, the notion of weighted sum is a

good tool for the scalarization of vectors in multicriteria problems, and it is regarded

as the projection ( \mathrm{i}.\mathrm{e}. , inner product with the weight vector d) in \mathbb{R}^{n} . The average of

elements is also a special case of weighted sum with the weight d=(1/n, \ldots, 1/n)^{\mathrm{T}}
They all are linear scalarization methods, and they can be regarded as a special case

of a certain sublinear scalarization (introduced by Tammer [1, 2

h_{C}(v;d) :=\displaystyle \inf\{t\in \mathbb{R}|v\in td-C\}
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where C is a convex cone in a real topological vector space and d \in int  C . If the

ordering cone is a half space C= \{v | \langle d, v\} \geq  0 } where \{d, d\} = 1 , then h_{C}(v;d) =

\{d, v\} . This approach can be applied for the case of set optimization, and we get

a basic idea of sublinear‐like scalarization and its generalization as unifications of

several scalarizations for sets; see [3, 6].

Fuzzy set is a concept initiated by Zadeh [9] to formulate unusual sets containing

uncertainty or vagueness. In this paper, we apply the scalarization scheme mentioned

above to fuzzy set theory on the basis of [4]. We introduce two important notions,

which we call fuzzy‐set relations and difference evaluation functions for fuzzy sets,

and show some relationship between them. Also, we provide a calculation method for

the functions in a certain polyhedral case.

2 Preliminaries

Let V be a real normed vector space and \mathcal{P}(V) denote the set of all subsets of V.

For given A, B \in \mathcal{P}(V) , the algebraic sum A+B is defined by A+B := \{a+b |
a \in  A,  b\in  B\} . Let C be a convex cone in V . The relation \leq c is induced by C as

follows: For v_{1}, v_{2} \in V, v_{1} \leq cv_{2} :\Leftrightarrow  v_{2}-v_{1} \in C.

We give a definition of certain binary relations between sets, called set relations.

This is a modified version of the original one proposed in [5].

Definition 1. The eight types of set relations are defined by

A\leq_{c}^{(1)}B :\Leftrightarrow \forall a\in A, \forall b\in B, a\leq cb ;

A\leq_{c}^{(2L)}B :\Leftrightarrow \exists a\in A, \forall b\in B, a\leq c^{b} ;

A\leq_{c}^{(2U)}B :\Leftrightarrow \exists b\in B, \forall a\in A, a\leq cb ;

A\leq_{c}^{(2)}B :\Leftrightarrow  A\leq_{c}^{(2L)}B and A\leq_{c}^{(2U)}B ;

A\leq_{c}^{(3L)}B :\Leftrightarrow \forall b\in B, \exists a\in A, a\leq c^{b} ;

A\leq_{c}^{(3U)}B :\Leftrightarrow \forall a\in A , ヨb\in B, a\leq c^{b} ;

A\leq_{c}^{(3)}B :\Leftrightarrow  A\leq_{c}^{(3L)}B and A\leq_{c}^{(3U)}B ;

A\leq_{c}^{(4)}B :\Leftrightarrow \exists a\in A , ヨb\in B, a\leq c^{b}

for A, B\in \mathcal{P}(V)\backslash \{\emptyset\}.

A fuzzy set Ã is a pair (V, $\mu$_{A^{-}}) where $\mu$_{A^{-}} is a function from V to [0 , 1 ] and called
the membership function of Ã. For each  $\alpha$\in [0 , 1 ] , the  $\alpha$‐level set of Ã is defined by
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[\tilde{A}]_{ $\alpha$} := \{v \in V |  $\mu$\~{A}(v) \geq  $\alpha$\} ( $\alpha$ \in (0,1]) and [\~{A}]_{0} :=\mathrm{c}1\{v \in V | $\mu$_{A^{-}}(v) > 0\} . For

d\in V , the translation Ã + d is defined by $\mu$_{A^{-}+d}(v) :=$\mu$_{A^{-}}(v-d) for v\in V.

Let  $\Omega$ be a nonempty subset of [0 , 1 ] . A fuzzy set Ã is said to be

(i)  $\Omega$‐normal if [\~{A}]_{ $\alpha$} is nonempty for all  $\alpha$\in $\Omega$ ;

(ii)  $\Omega$‐compact if [\~{A}]_{ $\alpha$} is compact for all  $\alpha$\in $\Omega$.

We denote by \mathcal{F}_{\mathrm{n}\mathrm{o}\mathrm{r}}^{ $\Omega$}(V) the set of all  $\Omega$‐normal fuzzy sets in  V.

3 Comparison Criteria and Difference Evaluation

We newly introduce the following two key concepts.

Definition 2. For each  $\xi$= 1, 2L, 2U , 2, 3L, 3U , 3, 4, the fUzzy‐set relation \leq_{c}^{ $\Omega$( $\xi$)}
is defined by

\~{A}\leq_{c}^{ $\Omega$( $\xi$)}\tilde{B} :\Leftrightarrow \forall $\alpha$\in $\Omega$, [\~{A}]_{ $\alpha$}\leq_{c}^{( $\xi$)}[\tilde{B}]_{ $\alpha$}

for Ã, \tilde{B}\in \mathcal{F}_{\mathrm{n}\mathrm{o}\mathrm{r}}^{ $\Omega$}(V) .

Definition 3. Let  d\in int  C . For each  $\xi$=1, 2L, 2U , 2, 3L, 3U , 3, 4, the difference

evaluation function $\varphi$_{C,d}^{ $\Omega$( $\xi$)}:\mathcal{F}_{\mathrm{n}\mathrm{o}\mathrm{r}}^{ $\Omega$}(V) \times \mathcal{F}_{\mathrm{n}\mathrm{o}\mathrm{r}}^{ $\Omega$}(V)\rightarrow\overline{\mathbb{R}} is defined by

$\varphi$_{C,d}^{ $\Omega$( $\xi$)} (Ã, \tilde{B} ) :=\displaystyle \sup\{t\in \mathbb{R} | \~{A}+td\leq_{c}^{ $\Omega$( $\xi$)}\tilde{B}\}
for Ã, \tilde{B}\in \mathcal{F}_{\mathrm{n}\mathrm{o}\mathrm{r}}^{ $\Omega$}(V) .

Note that the design of the above functions is based on that of the scalarizing

functions for sets proposed in [6], which originates from the idea of Gerstewitz’s

(Tammer’s) scalarizing function for vectors (e.g., see [1, 2

4 Biconditional Statements

For a, b\in \mathbb{R} , it naturally holds a\leq b \Leftrightarrow  b-a\geq  0 and a< b \Leftrightarrow  b-a>0.

Here we extend such equivalences to the case of fuzzy sets.

Let X be a topological space and B_{ $\varepsilon$} := \{v \in V | \Vert v\Vert <  $\varepsilon$\} for each  $\varepsilon$ > 0. \mathrm{A}

set‐valued map F:X\rightarrow \mathcal{P}(V) is said to be

(i) Hausdorff upper continuous (H‐u.c.) at x_{0} \in X if for any  $\varepsilon$>0 there exists a

neighborhood U of x_{0} such that F(x) \subset F(x_{0})+B_{ $\varepsilon$} for all x\in U ;
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(ii) Hansdorff lower continuous (H‐l.c.) at x_{0} \in  X if for any  $\varepsilon$ > 0 there exists a

neighborhood U of x_{0} such that F(x_{0}) \subset F(x)+B_{ $\epsilon$} for all x\in U ;

(iii) Hausdorff upper (or lower) continuous if it is so at every x\in X.

Let Ã be a fuzzy set in V.

Definition 4. The fuzzy set Ã is said to be

(i) stable to  $\Omega$‐level decrease if the map  $\Omega$\ni $\alpha$\mapsto[\tilde{A}]_{ $\alpha$} \in \mathcal{P}(V) is H‐u.c.;

(ii) stable to  $\Omega$‐level increase if the map  $\Omega$\ni $\alpha$\mapsto [\~{A}]_{ $\alpha$} \in \mathcal{P}(V) is H‐l.c.

Proposition 1. If Ã is  $\Omega$ ‐compact, then Ã is stable to  $\Omega$ ‐level decrease.

Theorem 1. Let Ã, \tilde{B} \in \mathcal{F}_{\mathrm{n}\mathrm{o}\mathrm{r}}^{ $\Omega$}(V) . For each  $\xi$ = 1, 2L, 2U , 2, 3L, 3U , 3, 4, the
following statements hold:

(i) \bullet Without any additional conditions in the case of  $\xi$=1 ;
\bullet If Ã is  $\Omega$ ‐compact in the case of  $\xi$=2L, 3L ;
\bullet If \tilde{B} is  $\Omega$ ‐compact in the case of  $\xi$=2U, 3U ;
\bullet If Ã, \tilde{B} are  $\Omega$ ‐compact in the case of  $\xi$=2 , 3;
\bullet If  $\Omega$ has a maximum and Ã, \tilde{B} are \{\mathrm{m}  $\Omega$\} ‐compact in the case of  $\xi$=4,

\~{A}\leq_{\mathrm{c}1C}^{ $\Omega$( $\xi$)}\tilde{B} \Leftrightarrow $\varphi$_{C,d}^{ $\Omega$( $\xi$)} (Ã, \tilde{B} ) \geq 0 ;

(ii) \bullet If  $\Omega$ has a minimum and Ã, \tilde{B} are \displaystyle \{\min $\Omega$\} ‐compact in the case of  $\xi$=1 ;
\bullet If  $\Omega$ is closed, Ã is stable to  $\Omega$ ‐level increase, and \tilde{B} is  $\Omega$ ‐compact in the

case of  $\xi$=2L, 3L ;
\bullet If  $\Omega$ is closed, Ã is  $\Omega$ ‐compact, and \tilde{B} is stable to  $\Omega$ ‐level increase in the

case of  $\xi$=2U, 3U ;
\bullet If  $\Omega$ is closed and Ã, \tilde{B} are both  $\Omega$ ‐compact and stable to  $\Omega$ ‐level increase

in the case of  $\xi$=2 , 3;
\bullet If  $\Omega$ has a maximum in the case of  $\xi$=4,

\~{A}\leq_{\mathrm{i}\mathrm{n}\mathrm{t}C}^{ $\Omega$( $\xi$)}\tilde{B} \Leftrightarrow $\varphi$_{C,d}^{ $\Omega$( $\xi$)} (Ã, \mathrm{B} ) >0.
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5 Numerical Calculation Method

We deal with a calculation method for the difference evaluation functions for fuzzy

sets by generalizing the one discussed in [8]. The following theorem reveals that

values of the functions can be calculated simply by solving a finite number of linear

programming problems and finding the minimum of a finite number of optimal values.

For n\in \mathbb{N} , let \triangle^{n} :=\{($\lambda$_{1}, \ldots, $\lambda$_{n}) \in \mathbb{R}^{n} |\displaystyle \sum_{i=1}^{n}$\lambda$_{i}=1, $\lambda$_{i} \geq 0 (i=1, \ldots, n

Theorem 2. Let Ã, \tilde{B}\in \mathcal{F}_{\mathrm{n}\mathrm{o}\mathrm{r}}^{ $\Omega$}(V) . Suppose the following conditions are satisfied:

\bullet  C = \displaystyle \bigcap_{l=1,\ldots,q}\{v \in V | \{p_{l}, v\} \geq 0\} where p_{1} , . . . , p_{q} are nonzero continuous

linear functionals on V ;
\bullet  $\Omega$=\{$\alpha$_{1}, . . . , $\alpha$_{ $\omega$}\} where $\alpha$_{1} , . . . , $\alpha$_{ $\omega$}\in [0 , 1 ] and $\alpha$_{1} <\cdots<$\alpha$_{ $\omega$} ;
\bullet For each  h = 1 , . . . ,  $\omega$, [\~{A}]_{$\alpha$_{h}} = \mathrm{c}\mathrm{o}\{a , . . . , a_{m_{h}}^{h}\} and [\tilde{B}]_{$\alpha$_{h}} = \mathrm{c}\mathrm{o}\{b_{1}^{h}, . . . jb_{n_{h}}^{h}\}

where a_{1}^{h} , . . . , a_{m_{h}}^{h}, b_{1}^{h} , . . . , b_{n_{h}}^{h} \in V.

Then,

(i) $\varphi$_{C,d}^{ $\Omega$(1)} (Ã, \tilde{B} ) =\displaystyle \min_{i=1,\ldots,7n_{1}}\min_{j=1,\ldots,n_{1}}\min_{l=1,\ldots,q}\langle\frac{p_{l}}{\langle p_{l},d\rangle},  b_{j}^{1}-a_{i}^{1}\rangle ;
(ii) $\varphi$_{C,d}^{ $\Omega$(2L)} (Ã, \tilde{B} ) =\displaystyle \min_{h=1,\ldots, $\omega$}\sup\{t\in \mathbb{R}| \{p_{l}, d\displaystyle \rangle t+\sum_{i=1}^{m_{h}}\langle p_{l}, a_{i}^{h}\rangle$\lambda$_{i}

\displaystyle \leq\min_{j=1,\ldots,n_{h}}\langle p_{l},  b_{j}^{h}\rangle (l=1, \ldots, q) for some  $\lambda$\in\triangle^{7n_{h}} };
(iii) $\varphi$_{C,d}^{ $\Omega$(2U)} (Ã, \tilde{B} ) =\displaystyle \min_{h=1,\ldots, $\omega$}\sup\{t\in \mathbb{R}| \langle p_{l}, d\displaystyle \rangle t+\sum_{j=1}^{n_{h}}\langle p_{l}, -b_{j}^{h}\rangle$\mu$_{j}

\displaystyle \leq\min_{i=1,\ldots,m_{h}}\langle p_{l}, -a_{i}^{h}\rangle (l=1, \ldots, q) for some  $\mu$\in\triangle^{n_{h}} };
(iv) $\varphi$_{C,d}^{ $\Omega$(2)} (Ã, \tilde{B} ) =\displaystyle \min\{$\varphi$_{C,d}^{ $\Omega$(2L)}( Ã, B $\varphi$_{C,d}^{ $\Omega$(2U)} (Ã, B

(v) $\varphi$_{C,d}^{ $\Omega$(3L)} (Ã, \tilde{B} ) =\displaystyle \min_{h=1,\ldots, $\omega$}\min_{j=1,\ldots,n_{h}}\sup\{t\in \mathbb{R}|
\displaystyle \{p_{l}, d\}t+\sum_{i=1}^{m_{h}}\langle p_{l},  a_{i}^{h}\rangle$\lambda$_{i}\leq \langle p_{l},  b_{j}^{h}\rangle (l=1, \ldots, q) for some  $\lambda$\in\triangle^{7n_{h}} };

(vi) $\varphi$_{C,d}^{ $\Omega$(3U)} (Ã, \tilde{B} ) =\displaystyle \min_{h=1,\ldots, $\omega$}\min_{i=1,\ldots,n_{h}}7\sup\{t\in \mathbb{R}|
\displaystyle \{p_{l}, d\}t+\sum_{j=1}^{n_{h}}\langle p_{l}, -b_{j}^{h}\rangle$\mu$_{j} \leq\langle p_{l}, -a_{i}^{h}\rangle (l=1, \ldots, q) for \mathcal{S}ome $\mu$\in\triangle^{n_{h}} };

(vii) $\varphi$_{C,d}^{ $\Omega$(3)} (Ã, \tilde{B} ) =\displaystyle \min\{$\varphi$_{C,d}^{ $\Omega$(3L)}( Ã, B $\varphi$_{C,d}^{ $\Omega$(3U)} (Ã, B

(viii) $\varphi$_{C,d}^{ $\Omega$(4)} (Ã, \tilde{B} ) =\displaystyle \sup\{t\in \mathbb{R}| \displaystyle \{p_{l}, d\}t+\sum_{i=1}^{m_{ $\omega$}}\langle p_{l}, a_{i}^{ $\omega$}\displaystyle \rangle$\lambda$_{i}+\sum_{j=1}^{n_{ $\omega$}}\langle p_{l}, -b_{j}^{ $\omega$}\rangle$\mu$_{j}
\leq 0 (l=1, \ldots, q) for some  $\lambda$\in\triangle^{rn_{ $\omega$}} and  $\mu$\in\triangle^{n_{ $\omega$}} }.
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