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Abstract

The aim of this article is to give a brief sketch of an example of an edge
coloring on K_{n}‐free random graph (Rado graph) which has no monochromatic
K_{n}‐free random subgraph.

1 Introduction

Let L be a finite relational language and let K be a class of (isomorphism
types of) finite L‐structure. We say K has (structural) Ramsey property if
for any A, B\in K there is C\in K such that C\rightarrow(B)_{k}^{A} for every  k\in $\omega$ . The
Ramsey property of  K is just the classical (finite) Ramsey theorem where L

is the empty:

Fact 1 (Ramsey theorem). 1. Let k, n, m \in  $\omega$ . There is  l \in  $\omega$ such that
 l\rightarrow(m)_{k}^{n}.

2. Let k,  n\in $\omega$ . Then  $\omega$\rightarrow( $\omega$)_{k}^{n}.

A famous nontrivial example of structural Ramsey property is the class
of totally ordered (K_{n}‐free) finite graphs, which is proved by Neštřil and
Röd1[3]. If we consider about edge‐coloring, then the order is not needed.
Hence, as a corollary, we have

Fact 2. Let B be any ( K_{n}‐free) finite graph. Then there is \mathrm{a} ( K_{n}‐free) finite
graph C such that for every edge‐coloring f : E(C)\rightarrow k there is an subgraph
B'\subset C which is isomorphic to B such that f|E(B') is constant.

数理解析研究所講究録
第2079巻 2018年 73-76

73



(In this article, subgraph always means induced subgraph.) Now we can
ask that if there is any infinite Ramsey property with respect to graphs like
classical Ramsey theorem. A natural infinite graph containing every K_{n}‐free
finite graph is a K_{n}‐free random graph (Rado graph), countable homogeneous
graph containing all K_{n}‐free finite graphs. The Ramsey property of Random
graph is investigated by, for example, Erdös, Hajnal, Póza, Komjáth, Pouzet
and Sauer[1][2][4].

Erdös, Hajnal and Póza[1] realized that the following:

Fact 3. There is an edge‐coloring f : E(G)\rightarrow 2 such that for every random
subgraph G'\subset G , the number |f(E(G'))| =2.

This seems that we may not expect random graph has Ramsey property.
However, in Pouzet and Sauer’s paper [4], the following is proved using a
dense linear order on random graph:

Theorem 4. Let G be a random graph. Let f : E(G) \rightarrow  k be an edge‐
coloring with k \in  $\omega$ . Then there is a random subgraph  G' \subset  G such that
|f(E(G'))| \leq 2.

Therefore, we can say random graph has a kind of infinite Ramsey prop‐
erty.

In this article, we show Fact 3 for K_{n}‐free random graph. The idea of
the coloring is essentially same to the one discussed in Pouzet and Sauer’s
paper. However, we will see the coloring can be applied for K_{n}‐free graphs.

2 A coloring on K_{n}‐free random graph.

Let L be a finite relational language.

Definition 5. A countable L‐structure M is said to be ultrahomogeneous if
every isomorphism between finite substructures of M can be extended to an
automorphism in Aut(M) .

Let H=(V(H), E(H)) be an infinite graph such that

\bullet  V(H)=\{h_{i}:i\in $\omega$\},
\bullet \{h_{0}, h_{i}\}\in E(H) if and only if i is odd,
\bullet \{h_{i}, h_{i+1}\}\in E(H) for every i\in $\omega$.
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Note that we do not require that \{h_{i}, h_{j}\} \in E or not, for 0<i<i+1 <j.
Let G be any K_{n}‐free random graph. Note that G contains H.

Lemma 6. Let G=\{g_{i} : i\in $\omega$\} be any enumerations of G . Then there is an
embedding  $\sigma$ :  H\rightarrow G preserving the enumeration, i.e. i <j implies k<l

where  $\sigma$(h_{i})=g_{k} and  $\sigma$(h_{j})=g_{l}.

Proof. Since Th(G) is  $\omega$‐categorical and admits quantifier elimination, for
any finite  aA \subset  G , there are infinitely many realization of \mathrm{t}\mathrm{p}(a/A) in G.

Hence we can embed H into G step by step, preserving the enumerations. \square 

In this section, we prove the following:

Theorem 7. There is an edge coloring f : E(G) \rightarrow  2 such that for every
copy G'\subset G of G, |f(E(G'))|=2.

In what follows, we assume V(H) \subset  V(G) =  $\omega$ (hence  h_{i} \in  $\omega$ ) and
 h_{i}<h_{j}\leftrightarrow i<j . We define f : E(G)\rightarrow 2 as follows.

Definition 8. 1. For given i < j \in  G , let t(i, j) be the minimum t \in  $\omega$

such that  E(t, i) $\mu$ E(t,j) .

2. Let \{i <j\} \in E(G) . Define f(\{i,j\}) =0 if and only if t(i,j) <i and
\{t(i,j), i\}\in E(G) .

Now fix a copy G' \subset G of G and let  $\sigma$ :  H\rightarrow G' be an embedding such
that  $\sigma$(h_{i})< $\sigma$(h_{j})\leftrightarrow i<j . For the simplicity, let n_{i}= $\sigma$(h_{i}) for each i\in $\omega$.

Proof of Theorem 7. Without loss of generality, assume that f|E(G')=\{0\}.
Since n_{0}<n_{i}<n_{i+1} and E(n_{0}, n_{i}) $\mu$ E(n_{0}, n_{i+1}) , we know that t(n_{i}, n_{i+1}) \leq

 n_{0} for every  i\in $\omega$ . For each  i\in $\omega$ , let code(i) be the \{0 , 1 \}‐sequence s_{0}^{i}s_{1}^{i}\ldots s_{n_{0}}^{i}
such that s_{k}^{i}=1 if and only if \{k, n_{i}\}\in E(G) . (Hence there is at least one 0

in code(i) and s_{k}^{i}=s_{k}^{i+1} for every k<t(n_{i}, n_{i+1} We will consider code(i)
as a binary number and discuss the natural order (lexicographic order) on
them.

Claim A. code(i) >code(i+1) for every i\in $\omega$.

Fix i and put t = t(n_{i}, n_{i+1}) . It is implied that \{t, n_{i}\} \in  E(G) and
\{t, n_{i+1}\} \not\in E(G) from f(n_{i}, n_{i+1}) = 0 , so that s_{t}^{i} = 1 and s_{t}^{i+1} = 0 . Since
s_{k}^{i}=s_{k}^{i+1} for every k<t(n_{i}, n_{i+1}) , code(i) must be greater that code(i+1) .
(End of proof of the claim.)

The claim implies a contradiction because {code(i):  i\in $\omega$ } is finite. \square 
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