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Abstract

In this note, we present and prove some lemmas that are use‐
ful when studying the number of independent orders. We can show
$\kappa$_{srd}^{m}(T) =\infty \Rightarrow $\kappa$_{srd}^{1}(T) =\infty , using these lemmas. Its proof will be
given in a forthcoming paper. (The details are not given in this note.)

We fix a complete theory  T , and we work in a very saturated model of
T . Letters x, y , . . . are used to denote finite tuples of variables. X is a set of
x‐tuples and Y is a set of y‐tuples. In many cases, they have the form

X=(x_{ $\eta$})_{ $\eta$\in$\omega$^{n}} and Y=(y_{ $\nu$})_{ $\nu$\in n\times $\omega$},

where n \in  $\omega$ . For sets  Z, W of finite tuples of variables and a set  $\Gamma$(Z, W)
of formulas, the set of all formulas \exists z_{0}\ldots\exists z_{m-1}($\gamma$_{0}(z, w)\wedge\ldots$\gamma$_{m-1}(z, w

where m\in $\omega$, $\gamma$_{i}(z_{i}, w_{i}) \in $\Gamma$, z_{i}\subset Z, w_{i}\subset W , is denoted by \exists Z $\Gamma$(Z, W) .

Definition 1. Let n\in $\omega$.

1. Let X = (x_{ $\eta$} :  $\eta$ \in $\omega$^{n}) be a set of variables. Let \triangle(X) be a set

of formulas whose free variables are in X . We say that \triangle has the
subarray property if there is a set  A= (a_{i_{0},\ldots,i_{n-1}} : \langle i0, . . . , i_{n-1}\rangle \in$\omega$^{n})
such that for any strictly increasing functions f_{i} :  $\omega$ \rightarrow  $\omega$ (i < n) ,
A_{f_{0},\ldots,f_{n-1}} = (a_{f_{0}(i_{0}),\ldots,f_{n-1}(i_{n-1})} : \langle i0, . . . , i_{n-1}\rangle\in$\omega$^{n}) realizes \triangle.

2. Let Y=(y_{ $\nu$})_{ $\nu$\in n\times $\omega$} . Let \mathcal{E}(Y) be a set of formulas whose free variables

are in Y . We say that \mathcal{E} has the (n‐dimensional) subsequence property
if there is a set B= (b_{i,j})_{\langle i,j\rangle\in n\times $\omega$} such that for any strictly increasing
functions f_{i} :  $\omega$ \rightarrow  $\omega$ (i < n) , B_{f\mathrm{o},\ldots,f_{n-1}} = (b_{i,f_{i}(j)})_{\{i,j\rangle\in n\times $\omega$} realizes
\mathcal{E}(Y) .
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Lemma 2. Suppose that \triangle(X) , where X=(x_{ $\eta$} :  $\eta$\in$\omega$^{n}) , has the sub‐array
property. Then a realization A = (a_{ $\eta$} :  $\eta$ \in $\omega$^{n}) of \triangle can be  cho\mathcal{S}en as an
indi \mathcal{S} cernible array in the following sense:

(^{*}) For finite subsets F, F' of $\omega$^{n} , if F and F' are isomorphic as \{\leq 0
, . . . , \leq_{n-1}\} ‐structures then a_{F} and a_{F'} have the same L ‐type.

Proof. For simplicity, we assume n=2 . We write X as X= (X_{0}, Xl, . . . ),
where X_{i}=(x_{i,j})_{j\in $\omega$} . For each i , let X_{i}=(x_{ij})_{j\in $\omega$} be the i‐th row vector of
X. Then

\triangle=\triangle((X_{i})_{i\in $\omega$})=\triangle (  X_{0} , Xl, . . . )

has the subsequence property. So, for A = (A_{i})_{i\in $\omega$} realizing \triangle , we can as‐
sume the  A_{i} ’s form an indiscernible sequence. Similarly, we can also assume
(A_{j}')_{j\in $\omega$} , where A_{j}'=(a_{i,j})_{i\in $\omega$} , is an indiscernible sequence. So A is an indis‐
cernible array. \square 

For A=(a_{ $\eta$})_{ $\eta$\in$\omega$^{n}} and a subset F of $\omega$^{2}, a_{F} will denote the set (a_{ $\eta$})_{ $\eta$\in F}.

Lemma 3. Suppo \mathcal{S}e that \triangle(X) i_{\mathcal{S}} realized by an indiscernible array A=(a_{ $\eta$} :
 $\eta$\in$\omega$^{n}) . Let X^{*} = (x_{ $\eta$})_{ $\eta$\in I^{n_{f}}} where I is an arbitrary ordered set. We define
\triangle^{*}(X^{*}) by: For all  $\varphi$ and  F^{*} \subset finI^{n},

 $\varphi$(x_{F}*) \in\triangle^{*} \Leftrightarrow  $\varphi$(x_{F}) \in\triangle , for \mathcal{S}omeF\subset$\omega$^{n} with F\cong\leq 0,\ldots,\leq_{n-1} F^{*}

Then \triangle^{*} is consistent and is realized by an indiscernible array.

Proof. It is sufficient to show the consistency, since the indiscernibility con‐
dition can be added to \triangle^{*} Let $\varphi$_{i}(x_{F_{i}}*) \in \triangle^{*} (i < m) . Choose F_{i} \subset $\omega$^{n}

(i < m) witnessing the definition of \triangle^{*} Then $\varphi$_{i}(a_{F_{i}}) holds for all i < m.

We can also choose F_{i}' \subset $\omega$^{n} such that F_{0}^{*}\ldots F_{n-1}^{*} \cong F0'. . . F_{n-1}' . By the

indiscernibility,  $\varphi$i(aFí) holds for all  i < m . This shows that \wedge$\varphi$_{i}(x_{F_{i}}*) is
satisfiable. \square 

Lemma 4. Suppose that \mathcal{E}(Y) , where Y= (y_{\langle i,j\rangle} : \langle i, j\rangle \in n\times $\omega$) , has the
n-dimen\mathcal{S}ional subsequence property. Then \mathcal{E}(Y) i_{\mathcal{S}} realized by B = (b_{(i,j\rangle} :
\langle i, j\} \in n\times $\omega$\} with the following property:

(^{**}) By letting B_{i} = (b_{i,j})_{j\in $\omega$} (i <n) , B_{i} is an indiscernible \mathcal{S} equence over

\displaystyle \bigcup_{k\neq i}B_{k}.

Proof. Easy.
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Example 5. Let  $\varphi$(x, y) be a formula. We say that T has n independent
orders uniformly defined by  $\varphi$ if there are  A = (a_{ $\eta$} :  $\eta$ \in $\omega$^{n}) and B =

(b_{i,j})_{\langle i,j\}\in n\times $\omega$} such that, for all  $\eta$\in$\omega$^{n} and \langle i,  j\rangle \in n\times $\omega$,

 $\varphi$(a_{ $\eta$}, b_{ij}) holds iff j\geq $\eta$(i) .

Let

 $\Gamma$(X, Y):=\{ $\varphi$(x_{ $\eta$}, y_{i,j})^{\mathrm{i}\mathrm{f}j\geq $\eta$(i)} : $\eta$\in$\omega$^{n}, \langle i, j\rangle \in n\times $\omega$\}.
Then T has n independent orders iff  $\Gamma$(X, Y) is consistent (with T). The
set \triangle(X) :=\exists Y $\Gamma$(X, Y) has the subarray property and \mathcal{E}(Y) :=\exists X $\Gamma$(X, Y)
has the n‐dimensional subsequence property. (Notice that \triangle and \mathcal{E} are sets
of first‐order formulas.)

 $\varphi$(x, b_{1,j})

2‐dimensional case

From now on, $\Gamma$_{ $\varphi$,n, $\omega$}(X, Y) denotes the set described by the above ex‐
ample. By Lemma 3 (or by a direct argument), $\Gamma$_{ $\varphi$,n,\mathbb{Q}} is naturally defined.
In particular, if T has n independent orders defined by  $\varphi$ , then  $\Gamma$_{ $\varphi$,n,\mathbb{Q}}(X, Y)
is consistent, and \triangle(X) := \exists Y$\Gamma$_{n, $\varphi$,\mathbb{Q}}(X, Y) has the subarray property. We
simply write $\Gamma$_{ $\varphi$,n} if we are not interested in the ordered set (  $\omega$ or \mathbb{Q} ).

Definition 6 (The Number of Independent Orders). Let m,  n\in $\omega$ . We write
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1.  $\kappa$_{ird}^{m}(T) \geq n if $\Gamma$_{ $\varphi$(x,y),n} is consistent for some  $\varphi$(x, y) with |x|=m.

2. $\kappa$_{ird}^{m}(T)=n if $\kappa$_{ird}^{m}(T) \geq n and $\kappa$_{ird}^{m}(T) \not\geq n+1.

3. $\kappa$_{ird}^{m}(T)=\infty if $\kappa$_{ird}^{m}(T)\geq n(\forall n) .

Definition 7 (The Number of
$\Gamma$_{ $\varphi$(x,y),n}^{s}(X, Y) be the set:

Independent Strict Orders). Let

$\Gamma$_{ $\varphi$(x,y),n}(X, Y)\displaystyle \cup\bigcup_{j<n}\{\forall x( $\varphi$(x, y_{i,j})\rightarrow $\varphi$(x, y_{i+1,j})) :i\in $\omega$\}.
We write

1. $\kappa$_{srd}^{m}(T) \geq n if $\Gamma$_{ $\varphi$(x,y),n}^{s} is consistent for some  $\varphi$(x, y) with |x|=m.

2. $\kappa$_{srd}^{m}(T)=n if $\kappa$_{srd}^{m}(T)\geq n and $\kappa$_{srd}^{m}(T)\not\geq n+1.

3. $\kappa$_{srd}^{m}(T)=\infty if $\kappa$_{srd}^{m}(T) \geq n(\forall n) .

The definition of above invariants are due to Shelah, but with a slight
modification.

Remark 8. 1. Suppose that T has the independence property. Then
$\kappa$_{ird}^{1}(T)=\infty : Since  T has the independence property, there is a formula
 $\varphi$(x, y) with |x| =1 and I=(b_{i})_{i\in $\omega$} such that {  $\varphi$(x, b_{i}) if i\in F :  i\in $\omega$ }
is consistent for any  F \subset  $\omega$ . Choose an indiscernible sequence  I^{*} =

(b_{i})_{i\in$\omega$^{2}} extending I . Then I^{*} realizes \exists X\triangle_{ $\varphi,\ \omega$}(X, Y) . By compactness,
this shows $\kappa$_{ird}^{1}(T)=\infty.

2. Let T_{rg} be the theory of random graphs. Then $\kappa$_{ird}^{1}(T_{rg}) = \infty and
$\kappa$_{srd}^{m}(T)=1.

3. If T has the order property, then $\kappa$_{ird}^{m}(T) \geq m+1 . If T has the strict
order property, then $\kappa$_{srd}^{m}(T) \geq m+1 : Both can be proven similarly. For
the case of strict order property, choose  $\psi$(x, y) with |x|=1 and I=(b_{i})
witnessing the property. For u=u_{0} , . . . , u_{m-1} , let $\varphi$_{i}(u, y) := $\psi$(u_{i}, y)
(i<m) . Then \{$\varphi$_{i}(u, b_{j})^{\mathrm{i}\mathrm{f}j\geq $\eta$(i)} : i<m, j \in $\omega$\} is consistent, for any

 $\eta$ \in $\omega$^{m} . This shows $\kappa$_{srd}^{m}(T) \geq  m+1 , since there is a formula with
additional variables such that each $\varphi$_{i} is a specialization of the formula.
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