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Abstract

We propose a cut‐free sequent calculus for multiplicative exponential linear logic with S4 necessity
and possibility modalities. The calculus has the sxca  4\mathrm{l}\mathrm{e}\mathrm{d} “higher‐arity” judgment to formalize the
exponentials and S4 modalities neatly. An the properties follow from the model of proofs for a
higher‐arity sequent calculus of classical modal logic S4, which is also proposed and studied here.

1 Introduction

Each modal logic and linear logic is undoubtedly one of the most important non‐classical
logics, and from the late 90\mathrm{s} , their computational counterparts have been used as a basis
of the theory of programming languages via the Curry‐Howard correspondence.

Several studies [9][2][16][7] have discovered that modal logic S4 corresponds to a typed
 $\lambda$‐calculus that can use “computation” itself as a programmable object. It is also well‐
known that linear logic allows us to analyze the fine‐grained structure of computation.

For instance, Mackie [11] proposed a linear logical foundation for programming language
implementation, called the Geometry of Interaction Machine (GoIM) . His theory, as the
name indicates, uses Girard’s Geometry of Interaction semantics [6] to model the “dynam‐
ics” of program execution with only a few primitive operators, so that the theory gives a
simple and compact execution environment.

In these contexts, we aim to integrate the two logics into one, named modal linear
logic, to characterize a computational model for modal logic S4 in terms of the GoIM.
We believe that the model sheds new light on the development of calculi for modal logic.
However, the work in the present paper is still preliminary to obtain the computational
model of modal linear logic; and thus we propose a proof theory of the logic as the first
step toward the goal.
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In the rest of the present paper, we first define a sequent calculus for classical modal

logic S4, called \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} , and prove the cut‐elimination theorem via the so‐called G3‐sty1e
sequent calculus which is known as a “structural‐rule‐free” system. Secondly, we propose

a sequent calculus for modal hnear logic, called HMELLS4, and discuss that all the
properties can be shown by simply modifying the model of proofs for those of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}.

Finally, we mention logics which relate to modal logic and linear logic and their sequent

calculus, and then we conclude our work and suggest some further directions.

2 Higher‐arity sequent calculus for modal logic S4

We propose a sequent calculus for classical modal logic S4, named \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} . While many

modal sequent calculi have been developed so far (cf., a survey by Poggiolesi [17]), our
calculus has the following characteristics: (1) it has the so‐called “higher‐arity” judgment
to formalize S4 inodalities, independently of the propositional part; (2) it is defined as a
Gentzen‐Schütte style one‐sided calculus (cf., Troelstra and Schwichtenberg’s text [18]),
to use the calculus as a basis for modal linear logic in a later section.

In what follows, we define the syntax and thc inference rules of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} and prove the

cut‐elimination theorem by using a “structural‐rule‐free” sequent calculus.

Definition 1 (Formula). The set of propositional vamables, written V_{p} , is assumed to be
given. The set of formulae is defined by the following grammar:

A, B p | \neg p | A\wedge B | A\vee B | 口A | ◇A

where p is a meta‐variable which ranges over V_{\mathrm{p}} . We say that p and \neg p are literals. The

negation of a formula A , written \neg A , is defined by de Morgan duality as follows:

\neg(p)def=\neg p
\neg(A\wedge B)^{d}=^{ef}(\neg A)\vee(\neg B)

\neg(\square  A)def= ◇ (\neg A)

\neg(\neg p) de=^{f}p

\neg(A\vee B)de=^{f}(\neg A)\wedge(\neg B)
\neg( $\phi$ A) de=^{f} 口 (\neg A)

The size of a formula A , written |A| , is defined to be the number of logical connectives
occurring in A . For instance, |\neg p\vee 口 p| is 3 and |\neg(\neg p)| is O.

Definition 2 (Judgment). A context  $\Gamma$ is defined to be a multi‐set of fornmlae, also
written as  A_{0} , . .. , A_{n-1} as usual. Then, a judgment \vdash \triangle; $\Gamma$ is a pair that consists of two

contexts \triangle and  $\Gamma$ . We often say that  $\Delta$ is the modal part and  $\Gamma$ is the normal part of a
judgment \vdash \triangle; $\Gamma$.
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Remark 1. The intuition of formulae is as usual. They represent propositional variable, its

negation, conjunction, disjunction, necessity, and possibility, respectively. The intuition
of ajudgment \vdash \triangle; $\Gamma$ is described by the following formula:

(\vee ◇ \triangle ) \vee(\vee $\Gamma$)
where the notation \langle?  $\Sigma$ denotes the context  0A_{0}, \cdots ,  0A_{n-1} for a context  $\Sigma$\equiv A_{0}, \cdot\cdot ,  A_{n-1} ;
and \vee $\Sigma$ denotes the formula  A_{0}\vee-- \vee A_{n-1} for the same context  $\Sigma$.

Definition 3 (Inference rule). The inference rules of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} arc dcfined as follows:
rule

\overline{\vdash\emptyset;\neg A,A}
AX \displaystyle \frac{\vdash\triangle; $\Gamma$,A}{\vdash $\Delta$,A; $\Gamma$}\mathrm{T}

rule

\displaystyle \frac{\vdash\triangle; $\Gamma$,A\vdash\triangle; $\Gamma$,B}{\wedge B}\wedge \displaystyle \frac{\vdash\triangle_{7} $\Gamma$,A_{i}}{\vdash\triangle; $\Gamma$,A_{1}\vee A_{2}} \displaystyle \frac{\vdash\triangle:A}{\vdash\triangle;\square  A}\square \displaystyle \frac{\vdash\triangle,A; $\Gamma$}{\vdash\triangle: $\Gamma$,0A} ◇

\displaystyle \frac{\vdash\triangle; $\Gamma$}{\vdash\triangle_{:}\cdot $\Gamma$,A}\mathrm{W} \displaystyle \frac{\vdash\triangle; $\Gamma$}{\vdash\triangle,A_{1} $\Gamma$}0\mathrm{W} \displaystyle \frac{\vdash\triangle; $\Gamma$,A,A}{\vdash\triangle; $\Gamma$,A}\mathrm{C} \displaystyle \frac{\vdash\triangle,A,A; $\Gamma$}{\vdash\triangle,A; $\Gamma$} ◇ \mathrm{C}

\displaystyle \frac{\vdash $\Delta$; $\Gamma$,A\vdash\triangle';$\Gamma$',\neg A}{\vdash $\Delta$,\triangle\backslash , $\Gamma,\ \Gamma$} Cut

\displaystyle \frac{\vdash\triangle:A\vdash\triangle',\neg A:$\Gamma$'}{\vdash\triangle,\triangle_{:}\cdot $\Gamma$'}\square  \mathrm{C}\mathrm{u}\mathrm{t} \displaystyle \frac{\vdash\triangle,A, $\Gamma$\vdash\triangle';\neg A}{\vdash\triangle,\triangle; $\Gamma$} ◇Cut

Note that we assume that i\in\{1 , 2 \} in the rule .

Definition 4. An active formula (of an application of an inference rule) is a formula
denoted by a meta‐variable in the corresponding inference schema. For instance, the
active formulae \mathrm{o}\mathrm{f}\wedge are  A, B , and A\wedge B ; and the active formulae of \square  \mathrm{C}\mathrm{u}\mathrm{t} are A and
\neg A . A cut formula is a formula eliminated by an application of the cut rules (\mathrm{i}.\mathrm{e}. , the

active formulae A and \neg A in the inference schema of Cut, \square  \mathrm{C}\mathrm{u}\mathrm{t} , and OCut).

Definition 5. The height of a derivation is defined to be the tree height when we see

that derivation as a rooted tree, that is, the height is defined as the length of the longest
path to a leaf node from the root node in the derivation.

Definition 6. If a rule R expresses that \vdash \triangle:. $\Gamma$ implies \vdash \triangle^{J};$\Gamma$' , then R is said to be an

admissible rule and we depict it as follows as a usual double‐lined rule:

\displaystyle \frac{\underline{\vdash $\Delta$: $\Gamma$}}{\vdash\triangle;$\Gamma$'}R
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Moreover, we say that R is height‐preserving if it entails that \vdash_{n} \triangle; $\Gamma$ implies \vdash_{n} \triangle';$\Gamma$',

where the notation \vdash_{n} \triangle; $\Gamma$ means that \vdash  $\Delta$; $\Gamma$ is derivable with a height of at most  n.

Remark 2. The inference rules for propositional fragment, i.e., Ax, \wedge, \vee, \mathrm{W}, \mathrm{C} , and
Cut are defined in the same way as the Gentzen‐Schütte style one‐sided calculus. The
others are the rules for S4 and described as follows. The rule \mathrm{T} formalizes the so‐called

axiom \mathrm{T} (that is, \vdash □  A \supset A ) in the dual setting. The rule □ is the necessitation rule,
and it intuitively formalizes the following: □  $\Delta$ \vdash A implies 口  $\Delta$ \vdash \square  A . Note that we

need a restriction in 口 that the normal part must be one formula to reject ill‐formed

formulae1. The rule 0 translates the meta‐level possibility into the object‐level possibility
0. The rules OW and OC are for weakening and contraction, respectively. The rules

口Cut and ◇Cut are the cut rules for modal part, and we need these so that every local

cut‐elimination step preserves the provability of derivations.

Although \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} is defined in a somewhat unusual way, the system is indeed the

propositional fragment of classical S4. First, the following two claims readily hold:

Claim 1 (Soundness w.r.t. Kripke model). \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} is sound w.r.t. the standard Kmpke
model for classical S4 (e.g. , the S4 model in Kripke’s [10]).

Claim 2 (Soudness w.r.t. Hibert‐style). \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} proves all the axiomata of Hilbert‐style
version of classical S4 (e.g. , the Hilbert‐style in Troelstra and Schwichtenberg’s [18])

Then, we can obtain the following since the Hilbert‐style enjoys the completeness theorem.

Corollary 1. The system \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} as the propositional fragment of classical S4.

In the rest of this section, we use another sequent calculus, so‐called G3‐style sequent

calculus, to prove the cut‐elimination theorem. The G3‐sty1e sequent calculus, developed

by Kleene [8] and later refined by Dragalin [5], is one style of formalization for sequent
calculus. The fundamental feature is that the system has no primitive structural rules but
all the rules are defined in a somewhat tricky way to satisfy the “height‐preserving admis‐

sible” weakening and contraction rules. Thanks to the characteristic, the cut‐elimination

can be shown directly (i.e., not depending on the mix rule) since there is no difficulty to
handle contraction. Thus it gives a simpler proof than the Gentzen‐style sequent calculus.

We will define the G3‐sty1e version of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} , called \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} , and then explain

how we define the rules and how it allows us to prove the cut‐elimination theorem.

3‐style rule). The inference rules of \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} are defined as follows:

\overline{\vdash\triangle| $\Gamma$,\neg p,p}
AX \displaystyle \frac{\vdash\triangle,A: $\Gamma$,A}{\vdash\triangle,A_{)}\cdot $\Gamma$}\mathrm{T}

lFor instance, we could prove the judgment \vdash \square  p\vee\square (\neg \mathrm{p}) which is not provable in S4, if there were no restriction.
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rule

\displaystyle \frac{\vdash\triangle: $\Gamma$,A\vdash\triangle_{:}\cdot $\Gamma$,B}{\vdash\triangle; $\Gamma$,A\wedge B}\wedge \displaystyle \frac{\vdash\triangle; $\Gamma$,A,B}{\vdash\triangle; $\Gamma$,A\vee B}\vee \displaystyle \frac{\vdash\triangle;A}{\vdash\triangle: $\Gamma$,\square  A}\square \displaystyle \frac{\vdash\triangle,A; $\Gamma$}{\vdash\triangle; $\Gamma$,0A} ◇

Remark 3. As we mentioned, there are no primitive structural rules, and all the rules are
defined to derive admissible strnctural rules. The important rules are Ax, T,\cdot \vee , and 口.

Ax restricts the active formulae to be literals to derive contraction, and the contexts \triangle

and  $\Gamma$ are for weakening. In \mathrm{T} , there are two occurrences of A in the premise. Intuitively,
we only need the right A , as the original \mathrm{T} of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} , but here we add the left A to make
contraction admissible. Similarly, the active formulae A and B in \vee are for contraction,
and tlie contcxt  $\Gamma$ in the conclusion of 口is for weakening.

Although the G3‐sty1c slight,ly differs from the original Gentzpn‐style, we can in what
follows establish the general axiom rule, the height‐preserving weakening and contraction,
and the equivalence of provability w.r. \mathrm{t} . the original system.

Lemma 1 (General axiom rule). \vdash \triangle; $\Gamma$, \neg A, A is derevable in \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}.

Proof. By induction on the size of the formula A. \square 

Lemma 2 (Height‐preserving inversion). The followings are height‐preserving admissibte
rules:

1. If\vdash_{n} \triangle; $\Gamma$, A\wedge B, then\vdash_{n} \triangle_{\backslash }\cdot $\Gamma$ , A  and\vdash_{n} \triangle; $\Gamma$, B.

2. If\vdash_{n} \triangle; $\Gamma$, A\vee B, then\vdash_{n} \triangle: $\Gamma$, A, B.

3. If\vdash_{n} \triangle; $\Gamma$, \square  A, then\vdash_{n} \triangle; $\Gamma$, A.

4. If\vdash_{n} \triangle; $\Gamma$ , ◇  A, then\vdash_{n} \triangle, A; $\Gamma$.

Proof. By induction on the derivation. ロ

Lemma 3 (Height‐preserving weakening and contraction). The structural rules W, \langle\rangle W,
C, and \mathrm{O}C in \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} are height‐preserving admissible in \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}.

Proof. By induction on the derivation. 口

Theorem l (Equivalence). The provability of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} and \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}+ Cut are equal,
where \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}+ Cut means an extension of \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} with Cut, 口Cut, and ◇Cut.

Proof. Both directions are shown by straightforward induction. 口

Thanks to these properties, all we have to do next is to prove the admissibility of the
cut rules in \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} to establish the cut‐elimination theorem of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} . We show

the admissibility together with the following complexity measure.
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Definition 8 (Cut‐degree). The cut‐degree of an application of the cut rules is defined
as follows:

\left\{\begin{array}{ll}
2\times |A| & \mathrm{i}\mathrm{f}\mathrm{A} \mathrm{i}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} \mathrm{c}\mathrm{u}\mathrm{t} \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a} \mathrm{o}\mathrm{f} \mathrm{C}\mathrm{u}\mathrm{t}\\
2\times |A|+1 & \mathrm{i}\mathrm{f}\mathrm{A} \mathrm{i}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} \mathrm{c}\mathrm{u}\mathrm{t} \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a} \mathrm{o}\mathrm{f} \square  \mathrm{C}\mathrm{u}\mathrm{t} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{O}\mathrm{C}\mathrm{u}\mathrm{t}
\end{array}\right.
Theorem 2 (Cut‐elimination). Cut, 口Cut, and ◇Cut are admissible in \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}.

Proof. Let  $\Pi$ and  $\Pi$' be the derivations of the premises of a cut. For instance, if we take

an application of Cut,  $\Pi$ and  $\Pi$' are the derivation \mathrm{o}\mathrm{f}\vdash \triangle_{\backslash }\cdot $\Gamma$, A and that \mathrm{o}\mathrm{f}\vdash \triangle $\Gamma$', \neg A,

respectively. Then, the two admissibilities are shown simultaneously by main induction

on the cut‐degree, with sub induction the sum of the heights of  $\Pi$ and  $\Pi$' . It is enough
to show that for every cut, one of the following three holds (I) it can be reduced to a cut
with a smaller cut‐degree; (2) it can be reduced to a cut with a smaller height; (3) it can
be eliminated immediately.

We only deal with several cases in what follows.

Case:  $\Pi$ ends with 口and  $\Pi$' ends with ◇,and the cut formulae are both active. In this

case, the translation is as follows:

\displaystyle \frac{\frac{\vdash\triangle;A}{\vdash\triangle; $\Gamma$,\square  A}\coprod\frac{\vdash\triangle^{J_{\neg}},A;$\Gamma$'}{; $\Gamma,\ \Gamma$\vdash\triangle;$\Gamma$', $\phi$(\neg A)}}{\vdash\triangle,\triangle}\mathrm{C}\mathrm{u}\mathrm{t}^{\underline{\rightarrow}}0, \vdash\triangle;A\vdash\triangle',A;$\Gamma$'::\overline{\overline{\vdash\triangle,\triangle'; $\Gamma,\ \Gamma$'}} M.I.H

where M.I. \mathrm{H} means the application of the main induction hypothesis (\mathrm{i}.\mathrm{e}. , the induc‐

tion hypothesis w.r. \mathrm{t} . the cut‐degree). Here, the definition of cut‐degree plays an
essential role to use M.I.H.

Case:  $\Pi$ ends with V but the cut formula in  $\Pi$ is not active. In this case. the translation

is as follows:

\displaystyle \frac{\frac{\vdash\triangle; $\Gamma$,B,C,A}{\vdash\triangle; $\Gamma$,B\vee C,A\vdash\triangle,\triangle; $\Gamma$}\vee\vdash\triangle';^{:}$\Gamma$',\neg A}{B\vee C, $\Gamma$} Cut
\Rightarrow \vdash\triangle; $\Gamma$,B,C,A\vdash$\Delta$';$\Gamma$',

\neg A\overline{\overline{\frac{\vdash\triangle,\triangle': $\Gamma$,B,C,$\Gamma$'}{\vdash\triangle,\triangle; $\Gamma$,B\vee C, $\Gamma$'}}} SI
\mathrm{H}

where S.I. \mathrm{H} means the application of the sub induction hypothesis (i.e., the induction
hypothesis w.r. \mathrm{t} . the sum of the heights).

Case:  $\Pi$ ends with \mathrm{T} and the cut formula in  $\Pi$ is active. The translation is as follows:

\displaystyle \frac{\vdash}{}\frac{\vdash\triangle,A; $\Gamma$\vdash\triangle';\triangle,A; $\Gamma$,A_{\mathrm{T}}::\neg A}{\vdash\triangle, $\Delta$'; $\Gamma$} ◇Cut \displaystyle \vec{\underline{\prime}}\frac{\vdash\triangle,A;^{\mathrm{r},A\vdash\triangle';}\neg A::}{\vdash\triangle,\triangle; $\Gamma$,A},*\overline{\prime\overline{\overline{\frac{\underline{\vdash\triangle,\triangle,\triangle'; $\Gamma$}}{\vdash\triangle,\triangle; $\Gamma$}}}}0\mathrm{C}_{\triangle}\vdash\triangle';^{\neg}A_{**}:,
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where * and ** mean the applications of S.I. \mathrm{H} and M.I. \mathrm{H} , respectively; and \mathrm{O}\mathrm{C}_{$\Delta$'}

means the multiple applications of OC to contract \triangle'. \square 

Theorem 2 tells us that \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} and \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}+ Cut are equivalent; and hence

together with Theorem 1, the following main theorem holds as a corollary.

Corollary 2 The cut rules Cut, 口Cut, and ◇Cut are admissible in \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}.

3 Higher‐arity sequent calculus for modal linear logic

We consider an extension of MELL with the S4 modalities 口and ◇in this section We

call the logic as modal linear logic, and propose its sequent calculus, named \mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{\mathrm{S}4}.

Our HMELLS4 is based on two systems: one is \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} presented above, and the other

is Pfenming’s LV [15] which can be seen as a higher‐arity sequent calculus for linear logic.
Readers may think that the structure of linear logic causes some problems to create a

sequent calculus. It is, however, not the case because that the exponentials ( !,? ) can be

seen as the S4 modalities ( \square , O) as Martini and Masini discussed [13]. For instance, let
us consider in intuitionistic setting the following two‐sided version of exponential rules:

\displaystyle \frac{! $\Gamma$\vdash A}{! $\Gamma$\vdash!A}! \displaystyle \frac{ $\Gamma$\vdash A}{ $\Gamma$\vdash?A} ?

and if we change the symbols ( !,? ) to the symbols (口,◇),we have the followings:

\displaystyle \frac{\square  $\Gamma$\vdash A}{\square  $\Gamma$\vdash\square  A} □ \displaystyle \frac{ $\Gamma$\vdash A}{\mathrm{r}\vdash 0A} ◇

These are, although formalized in two‐sided version, what we defined for (\square , \mathrm{O}) in \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}.

The structure of exponentials and S4 modalities are almost the same2 and hence we can
apply the technique of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} to modal linear logic with a simple modification.

In what follows, we define \mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{\mathrm{S}4} and its G3‐sty1e version \mathrm{G}3-\mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{\mathrm{S}4} and then
prove the cut‐elimination theorem as we did in the previous section.

Definition 9 (Formula). The set of formulae is dcfincd by the following grammar:

A, B p|p^{\perp} |A\otimes B | A $\vartheta$ B | !A|?A |\square  A| ◇A

The dual of a formula A , written A_{:}^{\perp} is defined as usual for MELL‐part; and ( 口 A)^{\perp} and
(◇ A)^{\perp} is defined to be ◇ (A^{\perp}) and 口 (A^{\perp}) , respectively.

Definition 10 (Judgment). A judgment \vdash \triangle; $\Gamma$; $\Sigma$ is a triple that consists of three con‐
texts  $\Delta$,  $\Gamma$ , and  $\Sigma$ . We say that \triangle,  $\Gamma$ , and  $\Sigma$ are the modal part, the normal part, and the
exponential part, respectively.

 2\mathrm{T}\mathrm{h}\mathrm{e} only difference between exponentials and modalities is the applicability of stiuctural rules. We can use weakening
and \infty \mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a} $\varepsilon$tion f $\tau$eely for (口,◇) in S4, but we can use those only for formulae of form?A in MELL.
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Remark 4. The formulae arc defined as usual as MELL and S4. Note that, intuitively

speaking, formulae without exponentials are assumed to be used exactly once in a deriva‐
tion. The intuitive meaning of ajudgment \vdash \triangle;$\Gamma$_{:}\cdot $\Sigma$ is described by the following formula:

(  $\eta$ ◇ \triangle )  $\eta$($\eta$_{ $\Gamma$})^{2}?( $\eta$? $\Sigma$)

where the notation?  $\Sigma$ means the context? A_{0}, \cdot\cdot ,?  A_{n-1} for a context  $\Sigma$\equiv A_{0} , , A_{n-1} ;
and  $\eta \Sigma$ means the formula  A_{0}^{2}?\ldots $\eta$ A_{n-1} for the same \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{x}\mathrm{t}_{1} $\Sigma$.

Inference rule). The inference rules of HMELLS4 are defined as follows:

\overline{\vdash\emptyset;A^{\perp},A;\emptyset}
Ax \displaystyle \frac{\vdash\triangle. $\Gamma$,A; $\Sigma$}{\vdash\triangle: $\Gamma$; $\Sigma$,A}\mathrm{D} \displaystyle \frac{\vdash\triangle; $\Gamma$,A, $\Sigma$}{\vdash\triangle,A; $\Gamma$; $\Sigma$}\mathrm{T}

rule

\displaystyle \frac{\vdash\triangle; $\Gamma$,A; $\Sigma$\vdash$\Delta$_{:}'\cdot$\Gamma$',B_{\backslash }\cdot$\Sigma$'}{\vdash $\Delta$,\triangle_{1}' $\Gamma,\Gamma$',A\otimes B; $\Sigma,\Sigma$'}0 $\vartheta$ \displaystyle \frac{\vdash$\Delta$_{)}\cdot $\Gamma$,A,B: $\Sigma$}{\vdash\triangle: $\Gamma$,A $\eta$ B; $\Sigma$} $\eta$
\underline{\vdash\emptyset;A; $\Sigma$}! \displaystyle \frac{\vdash\triangle; $\Gamma$)^{ $\Sigma$,A}}{\vdash\triangle; $\Gamma$,?A_{1} $\Sigma$} ? \displaystyle \frac{\vdash\triangle;A;\emptyset}{\vdash\triangle_{)}\cdot\square  A;\emptyset} 口 \displaystyle \frac{\vdash $\Delta$,A;^{\mathrm{r}_{;} $\Sigma$}}{\vdash\triangle_{:}\cdot $\Gamma$,0A; $\Sigma$} ◇

\displaystyle \frac{\vdash\triangle:$\Gamma$_{\mathrm{i}} $\Sigma$}{\vdash\triangle; $\Gamma$; $\Sigma$,A}?\mathrm{W} \displaystyle \frac{\vdash\triangle_{l}\mathrm{r}_{;} $\Sigma$,A,A}{\vdash\triangle;$\Gamma$_{1}\cdot $\Sigma$,A}?\mathrm{C} \displaystyle \frac{\vdash\triangle; $\Gamma$,A; $\Sigma$\vdash\triangle';$\Gamma$',A^{\perp};$\Sigma$'}{\vdash\triangle,\triangle_{:}\cdot $\Gamma,\ \Gamma$'; $\Sigma,\ \Sigma$} Cut

\displaystyle \frac{\vdash\emptyset:}{\vdash\triangle, $\Gamma$'; $\Sigma,\ \Sigma$} !Cut \displaystyle \frac{\vdash\triangle;^{\mathrm{r}_{;} $\Sigma$,A\vdash\emptyset;A^{\perp};$\Sigma$'}}{\vdash\triangle_{)}\cdot $\Gamma$; $\Sigma,\ \Sigma$} ?Cut

\displaystyle \frac{\vdash\triangle;A;\emptyset\vdash\triangle',A^{\perp};$\Gamma$';$\Sigma$'}{\vdash\triangle,\triangle;$\Gamma$_{i}\cdot $\Sigma$} 口Cut \displaystyle \frac{\vdash\triangle,A_{1} $\Gamma$\cdot, $\Sigma$\vdash\triangle';A^{\perp};\emptyset}{\vdash\triangle,\triangle; $\Gamma$; $\Sigma$} ◇Cut

Remark 5. Almost all of them can be understood in the same way as MELL or \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}.

We only mention about the rules \mathrm{D} ,!, and?. \mathrm{D} is the rule for dereliction.! introduces the

exponential formula, and again we need the restriction that the modal part must be empty

to reject ill‐formed formulae.? translates the meta‐level? modality to the object‐level as
we did for 0 in \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}.

Definition 12 (G3‐sty1e rule). The inference rules of \mathrm{G}3-\mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{S4} are obtained by
discarding all the original structural rules from HMELLS4 and by replacing the original

Ax, \mathrm{D}, \mathrm{T}, \otimes , and 口of HMELLs  4 by the following rules:

\overline{\vdash\emptyset;A^{\perp},A; $\Sigma$}
Ax \displaystyle \frac{\vdash\triangle: $\Gamma$,A_{1} $\Sigma$,A}{\vdash\triangle;$\Gamma$_{1} $\Sigma$,A}\mathrm{D}

\displaystyle \frac{\vdash\triangle; $\Gamma$,A_{:} $\Sigma$\vdash$\Delta$';$\Gamma$',B; $\Sigma$}{\vdash\triangle,\triangle'; $\Gamma,\Gamma$',A\otimes B; $\Sigma$}\otimes \displaystyle \frac{\vdash\triangle:A;\emptyset}{\vdash\triangle;\square  A; $\Sigma$} 口

Remark 6. All the G3‐sty1e rules are defined in the sarne way as we did for \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4},

but it is enough to add the “G3‐sty1e features” only to the exponential part since the
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weakening and contraction are admitted only for that part in HMELLS4. Therefore, we
need the exponential part  $\Sigma$ in Ax for weakening but there is no need that the active
formulae must be literals. The rule \mathrm{D} is defined in a similar way as we did for \mathrm{T} in

\mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} but the rule \mathrm{T} itself remains the same as HMELLS4. The exponential part

\mathrm{o}\mathrm{f}\otimes is defined as
\grave{}\acute{}\acute{}

context sharing” form to achieve height‐preserving contraction, and

we need tlie exponential part  $\Sigma$ in the rule 口 for height‐preserving weakening.

Now, we can prove the cut‐elimination theorem. The proof proceeds in the same manner
as described for \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} since no difficul \mathfrak{t}\mathrm{y} is caused by the addition of the exponentials.

Lemma 4 (Height‐preserving weakening and contraction). The structural rules? W and
? C of HMELLS4 are height‐preserving admissible in G3 -\mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{\mathrm{S}4}.

Proof. By induction on the derivation. \square 

Definition 13 (Cut‐degree). The cut‐degree of an application of the cut rules is defined
as follows:

\left\{\begin{array}{ll}
2\times |A| & \mathrm{i}\mathrm{f} A \mathrm{i}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} \mathrm{c}\mathrm{u}\mathrm{t} \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a} \mathrm{o}\mathrm{f} \mathrm{C}\mathrm{u}\mathrm{t}\\
2\times |A|+1 & \mathrm{i}\mathrm{f} A \mathrm{i}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} \mathrm{c}\mathrm{u}\mathrm{t} \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a} \mathrm{o}\mathrm{f}!\mathrm{C}\mathrm{u}\mathrm{t},?\mathrm{C}\mathrm{u}\mathrm{t}, \square  \mathrm{C}\mathrm{u}\mathrm{t}, \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{O}\mathrm{C}\mathrm{u}\mathrm{t}
\end{array}\right.
Theorem 3 (Cut‐elimination). The cut rules in G3 -\mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{\mathrm{S}4} are all admissible.

Proof. Similar to the proof of the cut‐elimination theorem for \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} . 口

Finally, we can obtain the following desired properties.

Corollary 3 (Equivalence). \mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{\mathrm{S}4} and \mathrm{G}3-\mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{\mathrm{S}4} are equivalent w.r. t . the
provability of derivations.

Corollary 4. The cut rules in HMELLS4 are all admissible.

Corollary 5 (Conservative extension). HMELLS4 is a conservative extension of MELL,
i. e., the followings are equivalent:

\bullet\vdash ( $\eta \Gamma$) $\eta$( $\eta$? $\Sigma$) is denvable in MELL

\bullet\vdash \emptyset:$\Gamma$_{\backslash } $\Sigma$ is derivable in HMELLS4

where  $\Gamma$ and  $\Sigma$ have no occurrence of \square  A or \langle\rangle A.

4 Related work

Several featrues of \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} , HMELLS4 and their G3‐sty1e sequent calculi \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4}

and \mathrm{G}3-\mathrm{H}\mathrm{M}\mathrm{E}\mathrm{L}\mathrm{L}_{\mathrm{S}4} exist in some previous work. For \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} and \mathrm{G}3-\mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} , our
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work can be seen as. a refinement of the one‐sided sequent calculus for S4 <\prime \mathrm{m}\mathrm{d} its \mathrm{G}3\mapsto

style formalization by Troelstra and Schwichtenberg [18]. The essential difference is that
our systems use higher‐arity judgments to handle S4 modahties. Although the notion of
higher‐arity judgments are used in various work3, our work is new in the sense that we can
neatly formulate both exponentials and S4 modalities by using higher‐arity judgments.

There are several studies on a logic named modal linear logic [1][3] [12]. First two works
aim to enrich expressiveness on resource usage. They add modalities to linear logic to for‐

mulate “presence of resources”(Archangelsky and Taitslin [1]) and “location and mobility
of formula”’ (Biri and Galmiche [3]). The last one, Martin [12], has studied a mathemat‐
ical investigation of linear logic with general modalities. Compared to them, our work
is slightly different because we aim to analyze modal logic in a linear logical framework,
whereas they intend to extend linear logic with modalities.

Linear logic with multi‐modalities (or rather, multi‐exponentials) has been considered
by Danos et al. [4] and Nigam and Miller [14]. Both works deal with the so‐called subexpo‐
nentials, which is weaker than the ordinary exponentials, to characterize a proof structure

of linear logic. While such exponentials do not relate modalities in modal logic directly,
it should be interesting to investigate a similarity between their formalization and ours.

5 Conclusion

We have proposed the cut‐free sequent calculus HMELLS4 for modal linear logic. The

characteristic of the system is to have the higher‐arity judgment to formalize both expo‐
nentials (!, ?) and S4 modalities (口,◇).To prove the cut‐elimination theorem, we created
the G3‐sty1e version of HMELLS4 and discussed that the proof follows from what we did

for the sequent calculus \mathrm{H}\mathrm{L}\mathrm{K}_{\mathrm{S}4} of classical modal logic S4.

As a further direction, we are working on the geometry of interaction semantics for
HMELLS4 as we mentioned in the introduction. It should also be interesting to investi‐

gate variants of HMELLS4, e.g., the S5 extension of HMELLS4, the modal extensions

of substructural logic, etc. We envisage that these system become a new basis to develop
computational models for modal logic.
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for pointing out some related work.
3\mathrm{A} modal natural deduction by Pfenning and Davies [16] and a linear sequent calculus by Pfenning [15] are such examples.

It is also known that several studies on modal logics use higher‐arity judgments (see a survey by Poggiolesi [17]).
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