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In classical mathematics, the following mapping F is a mapping of \mathbb{R} into \{0 , 1 \},
and is discontinuous at 0 :

F(x):=\left\{\begin{array}{l}
0 \mathrm{i}\mathrm{f} x\leq 0\\
1 \mathrm{i}\mathrm{f} x>0.
\end{array}\right.
In Bishop’s constructive mathematics (BISH) [2], we cannot prove that such a
discontinuous mapping exists, since, in this framework, the existence implies a
independent principle LPO (the least limited principle of Omniscience). Also,
in Weihrauch’s computable mathematics, F is not computable, and therefore
is not continuous (see [1] and [9]) However, [1] gives some investigations of
classical discontinuous mappings in the view point as relation, and does notions
of continuous relations. But we have not known whcther the existence of a

discontinuous mappiiig is justified by recognising it as a continuous re ation in
BISH. This paper gives an investigation of continuous relation in BISH.

Constructive mathematics is formalized in intuitionistic logic, and always
requires a constructive proof, i.e. a proof which can be regarded as an algorithm.
Bishop has given in [2] an informal framework of constructive mathematics,
which is a proper subsystem of classical mathematics. Actually, it does not
include an axiom that is refused in classical mathematics, and therefore its
constructive proof is acceptable in classical mathematics. On the other hand,
some classical theorems are independent on BISH. For example, the following
property, called LPO (the least limited principle of Omniscience):

\forall\{a_{n}\}\in\{0, 1\}^{\mathrm{N}}[\forall n(a_{n}=0)\vee\exists n(a_{n}=1)],

holds classically, but cannot be proved in BISH, since we cannot give an algo‐
rithm which decides whether a_{n}=0 for all natural number n , or find a natural
number n with a_{n} = 1 . But the negation of LPO does not hold; that is, LPO
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is independent on BISH. Moreover it is proved in BISH that LPO is equivalent
to the following:

\forall x\in \mathbb{R}[x>0\vee x\leq 0],

where \mathbb{R} is the set of all Cauchy reals. We therefore cannot decide whether
a given real number is either positive or non‐positive. However the following
apartness property holds in BISH (see [2, Corollary in p.24], [4, proposition
(5.3)], etc

\forall a, b, c\in \mathbb{R}[a<b\rightarrow a<b\vee b<c].

This is proved by comparison with two rational Cauchy sequence. This property
has an important role, and also is used in the proof of Theorem 9.

Section 2 gives a constructive investigation of continuous properties given
in [1]. In Section 3, we consider some continuity properties of a mapping for
further study of continuous relations

2 Continuity properties of a relation

Let \mathbb{R} denote a Euclid space of all Cauchy reals, X, Y and V subsets of \mathbb{R}, R

a relation on X\times \mathrm{Y} i.e. a subset of X\times Y , and  $\varepsilon$>0 . Remark that “‘  A\neq\emptyset ”
means that we can take an element of  A . Let x and y be in \mathbb{R} . We now give
some notations as follows:

[x]R:=\{y\in Y:(x, y)\in R\}, R[y]:=\{x\in X:(x,y)\in R\},

[V]R:=\{y\in \mathrm{Y}:R[y]\cap V\neq\emptyset\}, R[V]:=\{x\in X:[x]R\cap V\neq\emptyset\},

dom(R) :=\{x\in X : \exists y\in Y((x, y)\in R

range(R) :=\{y\in \mathrm{Y} : \exists x\in X((x, y)\in R

N(x, $\varepsilon$):=\{y\in \mathbb{R}:|x-y|< $\varepsilon$\}.

We now consider notions of continuity of relation, defined in [lj.

Definition 1.

1. Let (x,y) a point in X \times \mathrm{Y}. R is continuous at (x,y) if for each k in
\mathbb{N} , there exists n in \mathrm{N} such that N_{Y}(y, 2^{-k}) \cap[x']R \neq \emptyset for all  x' in
N_{X}(x, 2^{-n})\cap \mathrm{d}\mathrm{o}\mathrm{m}(R) .

2. R is continuous if R is continuous at all point (x, y) in R.

3. R has a continuous restriction if there exists a continuous relation S\subset R

such that that \mathrm{d}\mathrm{o}\mathrm{m}(S)=\mathrm{d}\mathrm{o}\mathrm{m}(R) .

4. R is weakly continuous if for all x in \mathrm{d}\mathrm{o}\mathrm{m}(R) , there exists y in R[x] such
that R is continuous at (x, y) .

It is easy to show the following proposition.
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Proposition 1. In Definition 1, (2) \Rightarrow (3) \Rightarrow (4) holds.

We here define  F as a relation.

F :=\{(x, y)\in \mathbb{R}\times\{0 , 1 \} : (x\leq 0\rightarrow y=0)\wedge(x>0\rightarrow y=1

Proposition 2.

1. F\subset \mathbb{R}\times \mathbb{R}.

2. \mathrm{d}\mathrm{o}\mathrm{m}(F)=\{x\in \mathbb{R}:x\leq 0\}\cup\{x\in \mathbb{R} : x>0\}.

3. \mathbb{R}=\mathrm{d}\mathrm{o}\mathrm{m}(F) if and only if LPO holds.

4. range(F)=\{0 , 1 \}.

5. N_{\{0,1\}}(0,2^{-k}) =\{0\} for all k.

6. [2^{-k}]R=\{1\} for all k.

Theorem 3. F is not continuous at (0,0) , and hence is not weak continuous.

Proof.  N_{\{0,1\}}(0,2^{-k})\cap[2^{-(k+1)}]R=\emptyset for all  k in \mathrm{N} by (5) and (6) of Proposi‐
tion 2. That is, F is not continuous at (0,1) . Since (0,1)\not\in R, F is not weakly
continuous. \square 

We now consider an analogy of F . Let  $\varepsilon$>0 , and set

F_{ $\varepsilon$} :=\{(x, y) : (x< $\varepsilon$\rightarrow y=0)\wedge(x>0\rightarrow y=1

It is clear that Fõ is not a mapping but a relation and that \mathrm{d}\mathrm{o}\mathrm{m}(F_{ $\varepsilon$})=\mathbb{R} by
the apartness property.

Theorem 4. For any  $\varepsilon$>0, F_{ $\varepsilon$} is continuous.

Proof. Fix any  $\varepsilon$ > 0 . Let (x,y) be an element of Fõ, and any k in N. Then
0 < x or x <  $\varepsilon$ . In the former case, we have  y= 1 . Take some n in \mathbb{N} with
2^{-n}<x . Then, for any x' in N_{\mathbb{R}}(x, 2^{-n}) ,

N_{\{0,1\}}(1,2^{-k})\cap[x']F_{ $\varepsilon$}=\{1\}.

In the latter case, we have y=0 . Take some n in \mathbb{N} with x+2^{n}<e , Then, for
x' in N_{\mathbb{R}}(x, 2^{-n}) ,

N_{\{0,1\}}(0,2^{-k})\cap[x']F_{ $\epsilon$}=\{0\}.
\square 

We next consider weaker continuity of a relation.

Definition 2.

1. Let (x, y) a point in X \times Y.  R is left continuous at (x,y) if for each k

in \mathbb{N} , there exists n in \mathrm{N} such that  N_{Y}(y, 2^{-k})\cap[x']R\neq\emptyset for all  x' in
N_{X}(x, 2^{-n})\cap \mathrm{d}\mathrm{o}\mathrm{m}(R)\cap(-\infty, x) .
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2. R is left continuous if R is left continuous at all point (x, y) in R.

3. R has a left continuous restriction if there exists a left continuous relation
S\subset R such that \mathrm{d}\mathrm{o}\mathrm{m}(S)=\mathrm{d}\mathrm{o}\mathrm{m}(R) .

4. R is weakly left continuous if for all x in \mathrm{d}\mathrm{o}\mathrm{m}(R) , there exists y in R[x]
such that R is left continuous at (x, y) .

Left continuity for a mapping is given in [5, p.57], [8, Sect \mathrm{B} , Ch. 508] and
so on.

We clearly have the following proposition.

Proposition 5. In Defimtion2, (2) \Rightarrow (3) \Rightarrow (4)  hold_{\mathcal{S}}.

In classical mathematics, F is also a left continuous mapping on \mathbb{R} . We
similarly obtain this matter in BISH as follows:

Theorem 6. F is left continuous.

Proof. Let (x, y) be any point of F , and any k in N. Then x in \mathrm{d}\mathrm{o}\mathrm{m}(F) , and
therefore x \leq  0 or 0 < x . In the former case, we take any n in \mathrm{N} , and have
N_{\{0,1\}}(0,2^{-k})\cap[x']F=\{0\} for all x' in N_{\mathbb{R}}(x, 2^{-n})\cap \mathrm{d}\mathrm{o}\mathrm{m}(F)\cap(-\infty, x) . In the

latter case, we can choose n in \mathrm{N} with 2^{-n}<x , and then N_{\{0,1\}}(0,2^{-k})\cap[x']F=
\{1\} for all x' in N_{\mathbb{R}}(x, 2^{-n})\cap \mathrm{d}\mathrm{o}\mathrm{m}(F)\cap(-\infty,x) . \square 

3 On continuity properties of a mapping

In this section, we consider some standard continuity properties of a mapping
for more investigation of a continuous relation. Let f be a mapping of a subset
X of \mathbb{R} into \mathbb{R} and x in X . We say that f is continuous at x if for each k in \mathrm{N},
there exists N in \mathrm{N} such that, given any n\geq N,

f(N_{X}(x, 2^{-n})) \subset N_{\mathbb{R}}(f(x), 2^{-k}) ,

where f(X) denotes the image by f. f is continuous if f is continuous at all
point X . It is easy to show that f is a continuous mapping if and only if it is a
continuous relation.

A subset A of \mathbb{R} is open in \mathbb{R} if for each x in A , there exists some  $\delta$>0 such
that N_{\mathbb{R}}(x,  $\delta$)\subset A

We can easily show the following theorem.

Theorem 7. Let f be a mapping of \mathbb{R} into \mathbb{R} . Then f is continuous if and only
if, whenever O is an open subset of \mathbb{R} , then the inverse f^{-1}(O) is open in \mathbb{R}.

We next consider sequential continuity of a mapping. In BISH, a contin‐
uous mapping of a metric space into a metrics is sequentially continuous, but
the converse cannot be proved (see [7] and so on). We therefore need to in‐
vestigate sequential continuity of a mapping as another continuity property, for
considering sequentially continuous relations.
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Let A be a subset of \mathbb{R}. \overline{A} means the closure of A i.e.

\overline{A} :=\{x\in \mathbb{R} : \forall $\varepsilon$>0[N_{\mathbb{R}}(x, $\varepsilon$)\cap A\neq\emptyset]\}

A subset of \mathbb{R} is closure in \mathbb{R} if \overline{A}=A.

The following lemma is proved in the same way as Ishihara’s Trick ([3,
Lemma 3.2.1] and [6, Lemma 1

Lemma 8. Let f be a mapping from \mathbb{R} into \mathbb{R}, \{x_{n}\} a sequence in \mathbb{R} and x a
real number. Assume that f satisfies f(\overline{A}) \subset\overline{f(A)} for all subset A of \mathbb{R} . Then,
for positive real numbers a and b with a<b, |f(x_{n})-f(x)|>a for some n , or
|f(x_{n})-f(x)|<b for all n.

We finally show the equivalence between sequential continuity and another
continuity properties.

Theorem 9. Let f be a mapping from \mathbb{R} into \mathbb{R} . Then the followings are
equivalent.

1. f \dot{u} sequentially continuous i.e. f satisfies that for all x in \mathbb{R} and se‐
quence \{x_{n}\} in \mathbb{R} , if \{x_{n}\} converges to x in \mathbb{R} , then the sequence {f (xn)}
converges to f(x) in \mathbb{R}.

2. For all x in \mathbb{R} and \mathcal{S} equence { x_{n}\} in \mathbb{R} , if \{x_{n}\} converges to x in \mathbb{R} , then
there exists a subsequence \{f(x_{n_{k}})\} of\backslash {f (xn)} converging to f(x) in \mathbb{R}.

3. For all subset Cof\mathbb{R} , if C is closed in \mathbb{R} , then the subset f^{-1}(C) is closed
in \mathbb{R}.

4. For all subset A of \mathbb{R}, f(\overline{A}) \subset\overline{f(A)}.

We here note the most important part of the proof of (4) \Rightarrow (1). Let  x

be a real number, and \{x_{n}\} a sequence converging to x in \mathbb{R} . Take a strictly
increasing sequence \{N_{k}\} in \mathrm{N} such that |x_{n}-x| <2^{-k} for any n\geq N_{k} . Let  $\varepsilon$

be any positive number. By Lemma 8, construct an increasing binary sequence
\{$\lambda$_{k}\} such that

$\lambda$_{k}=0 \displaystyle \Rightarrow \forall i\leq k[\exists n\geq N_{i}|f(x_{n})-f(x)|>\frac{ $\epsilon$}{2}]
$\lambda$_{k}=1 \Rightarrow \exists i\leq k[\forall n\geq N_{i}|f(x_{n})-f(x)|< $\epsilon$].

Then the assumption (4) implies $\lambda$_{k}=1 for some k.
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