Every strongly definable $C^r G$ vector bundle admits a unique strongly definable $C^\infty G$ vector bundle structure

Tomohiro KAWAKAMI*

Abstract

Let G be a compact subgroup of $GL_n(\mathbb{R})$. We prove that every strongly definable $C^r G$ vector bundle over an affine definable $C^\infty G$ manifold admits a unique strongly definable $C^\infty G$ vector bundle structure up to definable $C^\infty G$ vector bundle isomorphism ($0 \leq r < \infty$).

1 Introduction

By [12], if s is a non-negative integer, then every C^s Nash map between affine Nash manifolds is approximated in the definable C^s topology by Nash maps. This definable C^s topology is a new topology defined in [12].

In this paper, G denotes a compact subgroup of $GL_n(\mathbb{R})$, every definable map is continuous and any manifold does not have boundary, unless otherwise stated. Under our assumption, G is a compact algebraic subgroup of $GL_n(\mathbb{R})$ (e.g. 2.2 [10]). We consider an equivariant definable version of the above theorem in an o-minimal expansion $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \ldots)$ of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers. General references on o-minimal structures are [1], [3], see also [13]. Further properties and constructions of them are studied in [2], [4], [11].

*Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan.

2010 Mathematics Subject Classification. 14P10, 14P20, 03C64.

Key Words and Phrases. O-minimal, definable G vector bundles, definable $C^\infty G$ vector bundles, definable $C^\infty G$ manifolds.
We consider strongly definable \(C^\infty G \) vector bundle structures of strongly definable \(C^r G \) vector bundles (\(0 \leq r < \infty \)).

Everything is considered in \(M \) and the term “definable” is used throughout in the sense of “definable with parameters in \(M \)”, each definable map is assumed to be continuous.

2 Preliminaries

An ordered structure \((R, <)\) with a dense linear order \(<\) without endpoints is \(o\)-minimal (order minimal) if every definable set of \(R \) is a finite union of open intervals and points, where open interval means \((a, b)\), \(-\infty \leq a < b \leq \infty \).

If \((R, +, \cdot, <)\) is a real closed field, then it is \(o\)-minimal and the collection of definable sets coincides that of semialgebraic sets.

The topology of \(R \) is the interval topology and the topology of \(R^n \) is the product topology.

Let \(X \subset R^n \) and \(Y \subset R^m \) be definable sets. A continuous map \(f : X \to Y \) is definable if the graph of \(f \) \((\subset X \times Y \subset R^n \times R^m)\) is a definable set. A definable map \(f : X \to Y \) is a definable homeomorphism if there exists a definable map \(f' : Y \to X \) such that \(f \circ f' = id_Y \), \(f' \circ f = id_X \).

A group \(G \) is a definable group if \(G \) is a definable set and the group operations \(G \times G \to G \) and \(G \to G \) are definable.

Let \(G \) be a definable group. A pair \((X, \phi)\) consisting a definable set \(X \) and a \(G \) action \(\phi : G \times X \to X \) is a definable \(G \) set if \(\phi \) is definable. We simply write \(X \) instead of \((X, \phi)\) and \(gx \) instead of \(\phi(g, x) \).

A definable map \(f : X \to Y \) between definable \(G \) sets is a definable \(G \) map if for any \(x \in X, g \in G \), \(f(gx) = gf(x) \). A definable \(G \) map is a definable \(G \) homeomorphism if it is a homeomorphism.

Definition 1 A topological fiber bundle \(\eta = (E, p, X, F, K) \) is called a definable fiber bundle over \(X \) with fiber \(F \) and structure group \(K \) if the following two conditions are satisfied:

1. The total space \(E \) is a definable space, the base space \(X \) is a definable set, the structure group \(K \) is a definable group, the fiber \(F \) is a definable set with an effective definable \(K \) action, and the projection \(p : E \to X \) is a definable map.

2. There exists a finite family of local trivializations \(\{U_i, \phi_i : p^{-1}(U_i) \to U_i \times F\}_i \) of \(\eta \) such that each \(U_i \) is a definable open subset of \(X \), \(\{U_i\}_i \) is a finite
open covering of X. For any $x \in U_i$, let $\phi_{i,x} : p^{-1}(x) \to F, \phi_{i,z}(z) = \pi_i \circ \phi_i(z)$, where π_i stands for the projection $U_i \times F \to F$. For any i and j with $U_i \cap U_j \neq \emptyset$, the transition function $\theta_{ij} := \phi_{j,x} \circ \phi_{i,x}^{-1} : U_i \cap U_j \to K$ is a definable map. We call these trivializations definable. Definable fiber bundles with compatible definable local trivializations are identified.

(3) A definable fiber bundle is a definable vector bundle if $F = \mathbb{R}^n$ and $K = GL(n, \mathbb{R})$.

Definition 2 (1) Let $0 \leq r \leq \infty$. A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a finite open cover $\{U_i\}_{i=1}^k$ of X, finite open sets $\{V_i\}_{i=1}^k$ of \mathbb{R}^n, and a finite collection of homeomorphisms $\{\phi_i : U_i \to V_i\}_{i=1}^k$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and $\phi_j \circ \phi_i^{-1} : \phi(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. This pair $\{(U_i)_{i=1}^k, \{\phi_i : U_i \to V_i\}_{i=1}^k\}$ of sets and homeomorphisms is called a definable C^r coordinate system.

(2) A definable C^r manifold G is a definable C^r group if G is a group and the group operations $G \times G \to G, G \to G$ are definable C^r maps.

(3) Let G be a definable group. A pair (X, ϕ) consisting a definable C^r manifold X and a G action $\phi : G \times X \to X$ is a definable $C^r G$ manifold if ϕ is a definable C^r map. We simply write X instead of (X, ϕ) and gx instead of $\phi(g, x)$.

Definition 3 ([6]) Let G be a definable C^r group and $0 \leq r \leq \infty$.

(1) A definable $C^r G$ vector bundle is a definable C^r vector bundle $\eta = (E, p, X)$ satisfying the following three conditions.

(a) The total space E and the base space X are definable $C^r G$ manifolds.

(b) The projection $p : E \to X$ is a definable $C^r G$ map.

(c) For any $x \in X$ and $g \in G$, the map $p^{-1}(x) \to p^{-1}(gx)$ is linear.

(2) Let η and ζ be definable $C^r G$ vector bundles over X. A definable C^r vector bundle morphism $\eta \to \zeta$ is called a definable $C^r G$ vector bundle morphism if it is a G map. A definable $C^r G$ vector bundle morphism $f : \eta \to \zeta$ is said to be a definable $C^r G$ vector bundle isomorphism if there exists a definable $C^r G$ vector bundle morphism $h : \zeta \to \eta$ such that $f \circ h = id$ and $h \circ f = id$. If $r = 0$, then a definable $C^0 G$ vector bundle (resp. a definable $C^0 G$ vector bundle morphism, a definable $C^0 G$ vector bundle isomorphism) is simply called a definable G vector bundle (resp. a definable G vector bundle morphism, a definable G vector bundle isomorphism).

(3) A definable C^r section of a definable $C^r G$ vector bundle is a definable $C^r G$ section if it is a G map.
Definition 4 ([8], [6]) Let $0 \leq r \leq \infty$.

(1) A group homomorphism (resp. A group isomorphism) from G to $O_n(\mathbb{R})$ is a *definable group homomorphism* (resp. *a definable group isomorphism*) if it is a definable map (resp. a definable homeomorphism).

Note that a definable group homomorphism (resp. a definable group isomorphism) between G and $O_n(\mathbb{R})$ is a definable C^∞ map (resp. a definable C^∞ diffeomorphism) because G and $O_n(\mathbb{R})$ are Lie groups.

(2) An n-dimensional representation of G means \mathbb{R}^n with the linear action induced by a definable group homomorphism from G to $O_n(\mathbb{R})$. In this paper, we assume that every representation of G is orthogonal.

(3) A definable C^r submanifold of a definable C^r manifold X is called a *definable C^r submanifold* of X if it is G invariant.

(4) A definable C^r manifold is called *affine* if it is definably C^r diffeomorphic (definably G homeomorphic if $r = 0$) to a definable C^r submanifold of some representation of G.

(5) A *definable C^r manifold with boundary* is defined similarly.

If $0 \leq r < \infty$, then every definable C^r manifold is affine ([8], [7]) and if \mathcal{M} is exponential, then each compact definable C^∞ manifold is affine [8].

Recall universal G vector bundles (e.g. [6]) and existence of a Nash G tubular neighborhood of a Nash G submanifold of a representation of G ([9]).

Let Ω be an n-dimensional representation of G induced by a definable group homomorphism $B : G \to O_n(\mathbb{R})$. Suppose that $M(\Omega)$ denotes the vector space of $n \times n$ matrices with the action $(g, A) \in G \times M(\Omega) \mapsto B(g)AB(g)^{-1} \in M(\Omega)$. For any positive integer k, we define the vector bundle $\gamma(\Omega, k) = (E(\Omega, k), u, G(\Omega, k))$ as follows:

\[
G(\Omega, k) = \{ A \in M(\Omega) | A^2 = A,^tA = A, TrA = k \},
\]

\[
E(\Omega, k) = \{ (A, v) \in G(\Omega) \times \Omega | Av = v \},
\]

\[
u : E(\Omega, k) \to G(\Omega, k), u((A; v)) = A,
\]

where tA denotes the transposed matrix of A and TrA stands for the trace of A. Then $\gamma(\Omega, k)$ is an algebraic vector bundle. Since the action on $\gamma(\Omega, k)$
is algebraic, it is an algebraic G vector bundle. We call it the universal G vector bundle associated with Ω and k. Remark that $G(\Omega, k) \subset M(\Omega)$ and $E(\Omega, k) \subset M(\Omega) \times \Omega$ are nonsingular algebraic G sets. In particular, they are Nash G submanifolds of $M(\Omega)$ and $M(\Omega) \times \Omega$, respectively.

Theorem 5 ([9]) Every Nash G submanifold X of a representation Ω of G has a Nash G tubular neighborhood (U, θ) of X in Ω.

Definition 6 ([6]) (1) Let G be a definable group. A definable G vector bundle $\eta = (E, p, X)$ over a definable G set X is called strongly definable if there exist a representation Ω of G and a definable G map $f : X \to G(\Omega, k)$ such that η is definably G vector bundle isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η.

(2) Let G be a definable C^r group and $0 \leq r \leq \infty$. A definable C^rG vector bundle $\eta = (E, p, X)$ over an affine definable C^rG manifold X is called strongly definable if there exist a representation Ω of G and a definable C^rG map $f : X \to G(\Omega, k)$ such that η is definably C^rG vector bundle isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η.

3 Our results

Theorem 7 ([5]) If $0 \leq s < \infty$ and M admits C^∞ cell decomposition and exponential, then every definable C^sG map between affine definable C^\inftyG manifolds is approximated in the definable C^s topology by definable C^\inftyG maps.

Our main result is the following.

Theorem 8 ([5]) Let X be an affine definable C^\inftyG manifold and M admits C^∞ cell decomposition and exponential. If $0 \leq r < \infty$, then every strongly definable C^rG vector bundle over X admits a unique strongly definable C^\inftyG vector bundle structure up to definable C^\inftyG vector bundle isomorphism.
References

