A survey of undecidability problems of rings of totally real algebraic integers

Kenji Fukuzaki *

Abstract Let \mathbb{Z}^{tr} be the ring of all totally real algebraic integers in \mathbb{C} . We consider (un)decidability of its subrings of infinite degree over \mathbb{Q} . Julia Robinson [Ro] proved that \mathbb{Z} is first order definable (without parameters) in \mathbb{Z}^{tr} , thus showed that it is undecidable. Moreover she showed undecidability of the rings of (algebraic) integers of any subfield of $\mathbb{Q}(\{\sqrt{p} \mid p \text{ prime}\})$ also by showing the definability of \mathbb{Z} in those rings. From her remark in [Ro], it seems that we may conjecture that all subrings of \mathbb{Z}^{tr} are undecidable. We survey recent progress on this problem. We note that rings of algebraic integers of finite degree over \mathbb{Q} are undecidable. This fact is also proved in [Ro].

1 A method of Julia Robinson

Let $R \subset \mathbb{Z}^{tr}$ be a ring of totally real integers. To a formula $\varphi(x, \bar{y})$ (where $\bar{y} = (y_1, \ldots, y_n)$) in the ring language L we can define a family $\{\varphi(x, \bar{r}) \mid r \in \mathbb{R}^n\}$ of subsets R where $\varphi(x, \bar{y}) = \{s \in R \mid R \models \varphi(s, \bar{r}\})$. In her 1962 paper On the decision problem for algebraic rings [Ro], she proved the following.

Proposition 1. Let $R \subset \mathbb{Z}^{tr}$ be a ring and suppose that there is a family as above containing finite sets of arbitrary large size. Then \mathbb{Z} is first order definable (without parameters) in R.

For details see [Ro] and [JV].

In order to define such family, she used the following Siegel's theorem.

For an algebraic number x, x is totally positive iff x is a sum of four squares in $\mathbb{Q}(x)$.

An algebraic number is said to be totally positive if each conjugate of x is positive.

Corollary 2. Let $R \subset \mathbb{Z}^{tr}$ be a ring and suppose that there is a smallest interval (0, s), s real or ∞ , which contains infinitely many sets f conjugates of integers of R. Then \mathbb{Z} is definable in R, hence R is undecidable.

She applied this corollary to the following cases.

For $R = \mathbb{Z}^{tr}$ she put $0 \ll y_1 x \ll y_2$ as $\varphi(x, y_1, y_2)$ where

$$x \ll y \Leftrightarrow \exists t, u, v, w, z[t^2(y-x) = u^2 + v^2 + w^2 + z^2 \land t \neq 0].$$

This means that y - x is totally non-negative, which is first order definable in R by the Siegel's result. It follows from a theorem of Kronecker that the interval (0, 4)contains infinitely many sets of conjugates of totally real algebraic integers and no sub-intervals does. We can take positive integers y_1, y_2 so that y_2/y_1 is as close as we

*K. Fukuzaki

The International University of Kagoshima, 8-34-1, Sakanoue, Kagoshima-shi, 891-0197, Japan

e-mail: fukuzaki@eco.iuk.ac.jp

like to but less than 4. Then this family contains finite sets of arbitrary large size. Thus \mathbb{Z} is first order definable (without parameters) in $R = \mathbb{Z}^{tr}$.

For the rings of integers R of any subfield of $\mathbb{Q}(\{\sqrt{p} | p \text{ prime}\})$ she put $0 \ll x \ll y$ as $\varphi(x, y)$. It can be shown that this family contains finite sets of arbitrary large size. Thus \mathbb{Z} is definable in R.

2 Julia Robinson number

We noticed that intervals Julia Robinson used are (0, 4) and $(0, +\infty)$. In [Ro], after Corollary 2, she remarked "This condition may in fact hold for all totally real algebraic integer rings".

Unfortunately, up to 2015, no rings $R \subset \mathbb{Z}^{tr}$ satisfying this condition with the intervals $(0, s), s \neq 4, +\infty$ are known.

Vidaux and Videla [VV] defined Julia Robinson number of R.

For $r \in R$ and $a, b \in \mathbb{R} \cup \{\pm \infty\}$, let $a \prec r \prec b$ mean that r and all its conjugates are strictly between a and b. For $t \in \mathbb{R}$ positive, write

$$R_t = \{ r \in R \mid 0 \prec r \prec t \}.$$

They define the Julia Robinson number of R to be

$$\mathrm{JR}(R) = \inf A(R),$$

where

$$A(R) = \{t \in \mathbb{R} \cup \{\pm \infty\} \mid R_t \text{ is infinite}\}.$$

We notice that A(R) is either the singleton $\{+\infty\}$ or an interval: $A(\mathbb{Z}^{tr})$ is the interval $[4, +\infty)$ and $A(R_0) = +\infty$ where R_0 is the ring of integers of $\mathbb{Q}(\{\sqrt{p} \mid p \text{ prime}\})$. R is said to have the Julia Robinson Property if $\operatorname{JR}(R) \in A(R)$, that is, if A(R) is a closed interval $[\operatorname{JR}(R), +\infty)$ or $\{+\infty\}$. Thus $\operatorname{JR}(\mathbb{Z}^{tr}) = 4$ and $\operatorname{JR}(R_0) = +\infty$.

If a ring $R \subset \mathbb{Z}^{tr}$ has the Julia Robinson Property, then we can prove that \mathbb{Z} is definable by the arguments of Julia Robinson.

Vidaiux and Videla, in their 2015 paper Definability of the natural numbers in totally real towers of nested square roots [VV], constructed an infinite family of subrings of such rings for which JR number is strictly between 4 and $+\infty$, thus they are undecidable.

Remark.

- 1. Also in 2015, they [VV2] proved that the compositum of all totally real abelian extensions of \mathbb{Q} of bounded degree d is undecidable, showing that its JR number is $+\infty$.
- In 2008, Jarden and Videla [JV] proved that certain families of subrings of Z^{tr} are undecidable showing that the theory of finite graphs is interpretable in those rings. (The theory of finite graph is undecidable.)

References

- [JV] M. Jarden and C. R. Videla, Undecidability of families of rings of totally real integers, *International Journal of Number Theory*, Vol. 4, No. 5(2008), 835-850.
- [Ro] J. Robinson. On the decision problem for algebraic rings. In Studies in mathematical analysis and related topics, pp. 297–304, Stanford Univ. Press, Stanford, Calif., 1962.
- [VV] X. Videaux and C. R. Videla, Definability of the natural numbers in totally real towers of nested square roots, *Proceedings of the American Mathematical Society*, Vol.143, No. 10(2015), 4463-4477.
- [VV2] X. Videaux and C. R. Videla, A Northcott property and undecidability, Bulletin of the London Mathematical Society, Vol. 48, Issue 1(2016), 58-62.