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On small theories with a special type

Koichiro Tkeda *
Faculty of Business Administration, Hosei University

A type p € S(T) is called special, if there are @,b |= p such that tp(a/b)
is isolated and non-algebraic, and tp(b/a) is non-algebraic. In this paper, we
will explain the result that any Ehrenfeucht theory has a special type. This
result is due to Pillay in [1]. On the other hand, there are w-stable examples
with a special type[2, 3]. Here we will give another example with a special
type. This is based on Sudoplatov’s example.

Notation 0.1 M, N, ... will denote L-structures and A, B, ... subsets of struc-
tures. Elements of structures are denoted by a,b, ... and finite tuples of el-
ements are denoted by @, b, .... If members of the tuple @ come from A we
sometimes write a € A. A C, B means that A is a finite subset of B. AB
means AUB. L(A) denotes the set of all formulas over A and L means L(0).
S(A) denotes the set of all types over A and S(7T') means S((}). The set of
all algebraic elements over A in M is denoted by acly(A).

1 Proposition
In what follows, T' is a complete theory in a coutable language L.

Definition 1.1 Let p € S(T') be nonisolated. Then p is said to be special,
if there are a, b |= p such that

e tp(b/a) is isolated and non-algebraic;

e tp(a/b) is non-isolated.
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Example 1.2 The following example is well-known and has a special type:
Let
T =Th(Q,<,0,1,2,...)

and let M be a big model. Let p = {n < z},c, and take realizations
a,b = p with a < b. Then tp(a/b) is nonisolated, and tp(b/a) is isolated and
nonalgebraic. Hence p is special.

The example stated above is an Ehrenfeucht theory (see Definition 1.13).
In this section, we want to show that any Ehrenfeucht theory has a special
type (Proposition 1.14). To prove the result, we need some preparation.

Definition 1.3 1. The Cantor-Bendixson rank CB(y) of a formula p(Z) €
L is defined as follows:

e If ©(Z) is consistent, then CB(p) > 0;

e Let § be limit. Then CB(y) > 3, if CB(yp) > « for any a < f3;

e CB(p) > a+ 1 if there are formulas ¢,(Z) € L (i € w) such that
(a) = —~3Z(wi(Z) A ¢, (Z)) for each i, j € w with i # j;
(b) CB(p A ¢,) > a for each i € w.

e If CB(p) > a for all «, then we say CB(p) = oc;

e If CB(p) > a and CB(yp) 2 a+ 1, then we say CB(yp) = a.

2. The rank CB(p) of a type p € S(T') is defined to be min{CB(p) : ¢ €
P}
3. The degree deg(p) of ¢ is defined to be the greatest m

that there are distinct pq,...,pm € S(T) with CB(p;)
1=1,...,m.

€ w such

CB(y) for
4. Let CB(a) denote CB(tp(a)).

Note 1.4 If a € acl(b), then CB(b) = CB(ab).

Definition 1.5 A theory 7 is said to be small, if S(7") is countable.

Note 1.6 If 7" is small, then each formula ¢(z) € L has the CB-rank.

The following lemma was suggested by Anand Pillay, and it can be found
in [1].
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Lemma 1.7 Suppose that 7" is small. Let p € S(T') and a,b = p. If tp(b/a)
is algebraic, then tp(a/b) is isolated.

Proof. Assume that 7' is small. By Note 1.6, we can take a formula
©(Z,7) € tp(ab) with

CB(ab) = CB(4(, 7)) and deg(¢(z,7)) = 1.
Since tp(b/a) is algebraic, we can assume that
= (@', b') implies ¥ € acl(@’).

We want to show that B B
©(z,b) - tp(a/b).
Take any @ | (Z,b). Clearly we have

CB(a'b) < CB(ab).
Since b € acl(a@’), by Note 1.4, we have
CB(b) < CB(@).

Then we have

CB(h) < CB(@)
< CB(a'b)
< CB(ab)
< CB(a) (since b€ acl(a))
= CB(b) (since tp(a) = tp(b)).

Hence

Therefore we have



Definition 1.8 Let p € S(T') be non-isolated. Then p is said to be powerful,
if any model realizing p realizes every type over .

Note 1.9 It is known that any Ehrenfeucht theory has a poweful type.

Definition 1.10 tp(b/a) is said to be semi-isolated, if there is a formula
o(x,a) € tp(b/a) with p(z,a) F tp(b).

Note 1.11 It is clear that
e every isolated type is semi-isolated;

e if tp(a/b) and tp(b/c) are semi-isolated, then tp(a/c) is semi-isolated.
(Transitivity)

The following lemma is known, however, for completeness, we give a proof.

Lemma 1.12 Any non-isolated type p € S(7') has realizations b, b such that
tp(¥'/b) is not semi-isolated.

Proof. Take any b = p, and let

®(z) = {~(z,b) € L(b) : p(z,b) F p(2)}.
First, we want to show that
p(T) U ®(T) is consistent.
If not, then there are -, ..., 7, € ® with
pFEp1 V...V,
By compactness, there is a ¢ € p with
v V.. Ve,

Since @1 V ... V ¢, F p, we have ¥ - p. A contradiction. So we can take a
realization

¥ = p(z) U ().

Then tp(¥'/b) is not semi-isolated.
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Definition 1.13 A theory T is said to be Ehrenfeucht, if it has finitely many
countable models, and is not w-categorical. Note that every Ehrenfeucht
theory is small.

The following proposition can be obtained by Lemma 1.7, and it was also
suggested by Anand Pillay.

Proposition 1.14 Any Ehrenfeucht theory has a special type.

Proof. Assume that T is Ehrenfeucht. By note 1.9, there is a powerful
type p(z). By Lemma 1.12, we can take b, b’ = p such that

tp(b'/b) is not semi-isolated.
Since p is powerful, we can take a = p such that
tp(bt'/a) is isolated.

By the transitivity of semi-isolation,

tp(a/b) is nonisolated.

By Lemma 1.7, tp(b/a) is not algebraic. Hence p is special.

2 Example

Proposition 1.14 says that any Ehrenfeucht theory has a special type. In
fact, Example 1.2 is Ehrenfeucht and then has a special type. However, this
example is unstable. So the following question arise naturally:

Question 2.1 Is there a (small) stable theory with a special type?

For this question, Anand Pillay suggested that he had had an w-stable
example with special type [2]. Also, Sergey Sudoplatov told me that he had
also obtained an example satisfying the same condition [3]. In this section,
we will give an w-stable theory with a special type. This example is based
on Sudoplatov’s one, but it is constructed by the Hrushovski amalgamation
construction.

Here, by a digraph (or directed graph) we mean a graph (A, R*) satisfying

o AEVaVy(R(z,y) —» - R(y,x));
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o AEVavy(R(z,y) — = #v),

where R4 = {ab € A: A= R(a,b)}, Let Q(x,y) denote R(z,y) V R(y, z).
Let L = {R(x, %), Up(*), U1 (%), ...}, and K a class of all finite L-structures
A with the following property:

1. (A, R?) is a digraph;

2. (A, R?) has no cycles, i.e., there is no sequence aga;...a, in A with
A E Qag,a1) A Q(ar,az) A ... A Q(ay,ar) for each n € w;

3. UfcUfC -
4. For any i € w, if A = R(a,b) A U;(b) then there is some j < ¢ with
For A € K, a predimension of A is defined by

5(4) = 4] — ol RA),

where a € (0, 1]. In our setting, let & = 1. Let §(B/A) denote 6(BUA)—d(A).
For A C B € K, A is said to be strong (or closed) in B (write A < B), if

d(X/A) > 0 for any X C B.
For A, B,C with A= BNC, B1,C means
RBYC = RB U RC.
When B1 4C, a graph BU C is denoted by B &4 C.

Note 2.2 If A< Be Kand b € B — A is connected with A, then there
is a unique a € A such that bb;...b,a is a path between a and b, i.e., B |=
Q(b,b1) ANQ(b1,bg) A ... A Q(by, a) for some distinct by, by, ..., b, € B — A.

Proof. Suppose that there would be another path bbib;...b) a' for some
a’ € A and b}, b, ....b, € B— A. Then we have

§(bby...byb, ... b, Jaa") = —1 < 0,
and hence A £ B. A contradiction.

Lemma 2.3 f A< Be K, ACc(CeKand B1L,C,then D =Bd,C € K.
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Proof. Take any A, B,C € K with
A< B,AC Cand B1,C.

Let D = B®,4 C. Clearly D satisfies conditions 1,3 and 4 of the definition
of K. Suppose that D would have a cycle S. Since B and C' have no cycles,
there are b € SN (B — A) and distinct a,a’ € SN A such that

b is connected with both of a and a'.

By Note 2.2, we have A £ B. A contradiction. Hence D € K.

Let K be a class of (possibly infinite) L-structures M satisfying F' € K
for any F' C, M. Let A C B € K, we define A < B, if

ANF < BNF forany F C, B.
The closure clg(A) of A in B is defined by
clp(A)={C Cc B: Ac C < B).

Note 2.4 For any finite A € M € K, cljy/(A) is finite, because « is 1 (or
rational).

Definition 2.5 A countable L-structure M is said to be (K, <)-generic, if
1. M €K;
2. if A< BeK and A < M then there is a B’ 2,4 B with B’ < M,
3. if A C, M then cly(A) is finite.

By Lemma 2.3, (K, <) has the (free) amalgamation property, i.e., if A <
BeKand A< C € K then B®4 C € K. Then it can be seen that there
is the (K, <)-generic structure M.

In what follows, M is the generic structure for (K, <), T"= Th(M), and
M is a big model of T'.

Forn e wand A C Bwedefine A<, Bby A< XUAforany X C B—A
with | X| < n. Also, for A, A’, we define A =, A’ by A and A’ are isomorphic
in the language {R, Uy, ..., U, }.

Note 2.6 If A < Be Kand A < M, then thereisa B’ =, B with B’ < M.
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Proof. Forn € wand C C, M, let 672(X) be a formula expressing that
X =, Cand X <, M.
Take any A, B € K with A < B and A < M. First, we want to show that
M EVX(0%(X) — Y0 5(XY))

for each n € w. Take any A" with M |= 67 (A’). Let C" = clp(A’). Note that
C’ is finite and A" <,, C". Tt is easily checked that there is a B* € K with
B*A’ =, BA. Then we have

C'<B*ou C' e K.

By genericity of M, we can assume that B*C" < M, and then M = 0% 5(A’'B*).
Hence we have

M = VX (0%(X) — IV %5 (XY))
From this it follows that
{0% 5(AY) }new is consistent.

So we can take its realization B’. Then B’ is as required.

Lemma 2.7 M is saturated.

Proof. Take any A C,, M and any type p € S(A). We want to show that
p is realized by M.

Without loss of generality, we can assume A < M, and moreover A = (). Take
a realization b = p in M. By Note 2.4, By = cl(b) is finite. By genericty of
M, we can take Bj with

By < M and B{ = By.
Take any ¢ € M — B}, and let B} = cly(¢’Bj). Let B; be such that By By &
B} Bj.
Note that B < B; € K. By Note 2.6, there is a B} with

BT < M and BéB{ = B[)Bl.
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Iterationg this process, for each ¢ € w there is an isomorphisim o; : B; — B,
such that

e By < B <By<..<M;
e B)< B <B)<..<M,
e 0g C o1 CayC ...
Therefore we have
tp(Bo) = tp(Bp)-
Take b’ with tp(Byb) = tp(Bjb'). Hence p is realized by V' € M.

Note 2.8 Let A,B < M and A = B. Then, by saturation of M and the
back and forth argument, we have tp(A) = tp(B).

Definition 2.9 For a,b € M, a dimension of @ is defined by d(a) = (cl(a)),
and d(ab) — d(b) is denoted by d(a/b). For an infinite B C M, d(a/B) is
defined by d(a/B) = min{d(a/b) : b € B}.

Note 2.10 Let b € M and A,C € M with A = cl(bA)NC and A < C < M.
Then it can be seen that the following are equivalent:

1. d(5/C) = d(b/A);
2. cl(bA)UC < M and cl(bA) L,C.

Lemma 2.11 T is w-stable.

Proof. Since M is saturated, it is enough to show that
S(M) is countable.
Take any p € S(M) and € |= p in M. Then there is a finite A < M with
d(e/M) = d(e/A) and cl(eA) N M = A.
Take any € = tp(e/A) with
d(é/M) =d(é'/A) and cl(€ A)N M = A.
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Then it is clear that

cl(eA) 24 cl(€'A).
By Note 2.10, we have

cl(eA)LaM and cl(€A) L, M.

Therefore we have

cl(eA) =y cl(¢A).
Again, by Note 2.10, we have

cl(eA)M, cl(€ A)M < M.
By Note 2.8, we have
tp(2/M) = tp(&//M).

This means that any type over M is determined by a type over A for some
finite A € M. By Lemma 2.7, T is small, and then S(A) is countable for
each finite A. Therefore

IS(IM)| < {A: A Cy, M} -max{|S(A)|: AC, M} =g Ry =N,.
Hence T is w-stable.

Lemma 2.12 T has a special type.

Proof. Let
p(z) = {=Us(z), ~Ui(z), ... }-

Then p is complete, since any 1-element is closed in M. Take a,b = p with
M E R(a,b) and ab < M. First, we show that

tp(b/a) is isolated and non-algebraic.

In fact, we can see that R(a, z) isolates tp(b/a). Take any b’ with = R(a, b').
Since a = p, by condition 4 of the definition of K, we have ¥ = p, and then

Va = ba.
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On the other hand, by condition 2 of the definition of K, we have ab’ < M.
By Note 2.8, we have

tp(b'/a) = tp(b/a).

Hence tp(b/a) is isolated. On the other hand, by genericity of M, for each
n € w there are by, by, ..., b, € M with

R(a,b;) and ab; < aby...b, < M
for any 7 = 1,...,n. Hence tp(b/a) is non-algebraic. Next we show that
tp(a/b) is non-isolated.

It can be easily seen that

{R(z,b)} Up(z) b tp(a/b).
Suppose that tp(a/b) would be isolated. Then there is some n € w such that

R(x,b) A =U,(z) F tp(a/b).
On the other hand, by the definition of K, there is a’ with

a'b = R(a’,b) ANU,11(a’) AU, (') and a'b € K.
Since b < a’b, we can assume that a’b < M. Then we have
= R(a',b) A =U,(a’) and tp(a’/b) # tp(a/b).

This is a contradiction. Hence tp(a/b) is non-isolated.
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