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ABSTRACT. Hrushovski’s pseudoplane associated to rational number 5/8 has a model
complete theory.
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1. INTRODUCTION

Generic structures constructed by the Hrushovski’s amalgamation construction are
known to have theories which are nearly model complete. If an amalgamation class has the
full amalgamation property then its generic structure has a theory which is not model com-
plete [2]. On the other hand, Hrushovski’s strongly minimal structure constructed by the
amalgamation construction, refuting a conjecture of Zilber has a model complete theory
[5].

We have shown that the generic structure of K with a coefficient between 0 and 1 for
the predimension function has a model complete theory under some assumption on f [8].

Hrushovski’s original boundary function does not satisfy our assumption above. Never-
theless, we show the model completeness of the theory of the generic graph associated to
5/8.

We essentially use notation and terminology from Baldwin-Shi [3] and Wagner [12].
We also use some terminology from graph theory [4].

For a set X, [X]" denotes the set of all subsets of X of size n, and |X| the cardinality of
X.

We recall some of the basic notions in graph theory we use in this paper. These appear
in [4]. Let G be a graph. V(G) denotes the set of vertices of G and E(G) the set of edges of
G. E(G) is a subset of [V (G))?. |G| denotes |V (G)|. The degree of a vertex v is the number
of edges at v. A vertex of degree O is isolated. A vertex of degree 1 is a leaf. G is a path
xoxy ... x if V(G) = {xo,x1,...,x} and E(G) = {xox1,X1x2,...,X— 1%} where the x; are
all distinct. xp and x; are ends of G. The number of edges of a path is its length. A path of
length 0 is a single vertex. G is a cycle xoxi ... xg_1x0 if k > 3, V(G) = {x0,x1,..., %31}
and E(G) = {xox1,x1x2, ..., Xk—2Xk—1,Xk—1X0 } Where the x; are all distinct. The number of
edges of a cycle is its length. A girth of a graph G is the length of the shortest cycle in G.
A non-empty graph G is connected if any two of its vertices are linked by a path in G. A
connected component of a graph G is a maximal connected subgraph of G. A forest is a
graph not containing any cycles. A tree is a connected forest.
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To see a graph G as a structure in the model theoretic sense, it is a structure in language
{E} where E is a binary relation symbol. V(G) will be the universe, and E(G) will be the
interpretation of E. The language {E} will be called the graph language.

Suppose A is a graph. If X C V(A), A|X denotes the substructure B of A such that
V(B) = X. If there is no ambiguity, X denotes A|X. We usually follow this convention.
B C A means that B is a substructure of A. A substructure of a graph is an induced subgraph
in graph theory. A|X is the same as A[X] in Diestel’s book [4].

We say that X is connected in A if X is a connected graph in the graph theoretical sense
[4]. A maximal connected substructure of A is a connected component of A.

Let A, B, C be graphs such that A C C and B C C. AB denotes C|(V(A)UV(B)), ANB
denotes C|(V(A)NV(B)), and A — B denotes C|(V(A) —V(B)). f ANB =0, E(A,B)
denotes the set of edges xy such that x € A and y € B. We put e(A,B) = |E(A,B)|. E(A,B)
and e(A,B) depend on the graph in which we are working. When we are working in a
graph G, we sometimes write Eg(A,B) and eg(A, B) respectively.

Let D be a graph and A, B, and C substructures of D. We write D = B®4 C if D = BC,
BNC =A, and E(D) = E(B)UE(C). E(D) = E(B) UE(C) means that there are no edges
between B —A and C —A. D is called a free amalgam of B and C over A. If A is empty, we
write D = B® C, and D is also called a free amalgam of B and C.

Definition 1.1. Let « be a real number such that 0 < o < 1.
(1) For a finite graph A, we define a predimension function 6 by 6(A4) = |A| — o|E(A)].
(2) Let A and B be substructures of a common graph. Put 6(A/B) = 6§(AB) — 6(B).

Definition 1.2. Let A and B be graphs with A C B, and suppose A is finite.
A < B if whenever A C X C B with X finite then 6(A) < 6(X).
A < B if whenever A C X C B with X finite then §(4) < 6(X).
We say that A is closed in Bif A < B.

If o is irrational then < and < are the same relations, but they are different if « is a
rational number. Our relation < is often denoted by < in the literature and some people
use <* for our <. Since we want to use the relation < as well, we use the symbol < for
the closed substructure relation.

Let K4 be the class of all finite graphs A such that @ < A.

The following facts appear in [3, 12, 13]. Some proofs are given in [11].

Fact 1.3. Let A, B, C be finite substructures in a common graph.

(1) IfANC is empty then §(A/C) = 6(A) — ae(A,C).
(2) IfANC is empty and B C C then §(A/B) > 6(A/C).
(3) A<Bifandonlyif 5(X/A) > 0 forany X CB.
(4) A< Bifandonlyif 6(X/A) > 0 for any X C B with X — A non-empty.
5) A<A.
(6) IfA<Bthen ANC <BNC.
(7) IfA<Band B<Cthen A <C.
8) IfA<Cand B<CthenANB<C.
9) A<A.

(10) IfA<Bthen ANC <BNC.

(1) IfA<Band B<C then A <C.

(12) IfA<Cand B<CthenANB <C.

Fact1.4. Let D =B®,C.
(1) 6(D/A)=06(B/A)+6(C/A).
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(2) IfA<Cthen B<D.
B) fA<Band A<Cthen A <D.
4) IfA<CthenB<D.
5) IfA<Band A <C then A <D.

Fact 1.5. (1) Let A, B, C and D be graphs with D =B®C and A C D. Then 6(D/A) =
0(B/ANB)+6(C/ANC).
(2) Let D be a graph and A a substructure of D. Let {D1,D»,...,Dy} be the set of all
connected components of D where the D; are all distinct. Then

5(D/A) = f 8(D;/AND;).
i=1

Let B, C be graphs and g : B — C a graph embedding. g is a closed embedding of B into
Cif g(B) < C. Let A be a graph with A C Band A C C. g is a closed embedding over A if
g is a closed embedding and g(x) = x for any x € A.

In the rest of the paper, K denotes a class of finite graphs closed under isomorphisms.

Definition 1.6. Let K be a subclass of K. (K, <) has the amalgamation property if for
any finite graphs A, B,C € K, whenever g; : A — B and g, : A — C are closed embeddings
then there is a graph D € K and closed embeddings 4; : B — D and g5 : C — D such that
hiogr=hyog.
K has the hereditary property if for any finite graphs A, B, whenever A C B € K then
AekK
Kis an amalgamation class if 0 € K and K has the hereditary property and the amalga-
mation property.
A countable graph M is a generic structure of (K, <) if the following conditions are
satisfied:
(1) If A C M and A is finite then there exists a finite graph B C M such thatA C B < M.
(2) fACMthenA € K.
(3) Forany A, B€ K, if A <M and A < B then there is a closed embedding of B into
M over A.
Let A be a finite structure of M. By Fact 1.3 (12), there is a smallest B satisfying
A C B < M, written cl(A). The set cl(A) is called a closure of A in M.

Fact 1.7 ([3, 12, 13]). Let (K,<) be an amalgamation class. Then there is a generic
structure of (K, <). Let M be a generic structure of (K, <). Then any isomorphism between
finite closed substructures of M can be extended to an automorphism of M.

Definition 1.8. Let K be a subclass of K. A graph A € K is absolutely closed in K if
whenever A C B € K then A < B.

Note that the notion of being absolutely closed in K is invariant under isomorphisms.

Fact 1.9 ([11]). Let K be a subclass of Ko and M a generic structure of (K, <). Assume
that M is countably saturated. Suppose for any A € K there is C € K such that A < C and
C is absolutely closed in K. Then the theory of M is model complete.

Definition 1.10. Let K be a subclass of K. (K, <) has the free amalgamation property if
whenever D = B®, C with B,C € K,A < Band A < C then D € K.

By Fact 1.4 (4), we have the following.

Fact 1.11. Let K be a subclass of K. If (K, <) has the free amalgamation property then
it has the amalgamation property.
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Definition 1.12. Let R™ be the set of non-negative real numbers. Suppose f: Rt — R*
is a strictly increasing concave (convex upward) unbounded function. Assume that f(0) =
0, and f(1) < 1. We assume that f is piecewise smooth. f (x) denotes the right-hand
derivative at x. We have f(x+h) < f(x)+ f (x)h for h > 0. Define K as follows:

K, ={A€Kq|BCA= 3(B) > f(|B])}.

Note that if K is an amalgamation class then the generic structure of (K, <) has a count-
ably categorical theory [13].

Definition 1.13. Let R, S be sets and i : R — S a map. For Z C [R]™, put

u(z) = {{:u(xl)w 00 au(xm)} | {xh doc 7xm} € Z}'
Let B, C, and D be graphs and X a set of vertices. We write D = B xy C if C|X has no
edges and the following hold:

(1) V(D) =V (B)UV(C).
2) X =V (B)NV(C).
(3) E(D) = E(B)UE(C).

Since we are assuming that C has no edges on X, B is a usual substructure of D but
C may not be a substructure of D in general. If B has no edges on X, then D is the free
amalgam of B and C over X.
Fact 1.14. Let D be a graph with D = B xx C.
(1) 6(D/B) = 6(C/X).
(2) 6(D)=6(B)+d8(C/X).
Fact 1.15. Let D be a graph with D = B xx C.

(1) IfC|X <C then B < D.
(2) IfC|X < C then B < D.

2. ZERO-EXTENSIONS

Definition 2.1. Let A and B be graphs. B is a zero-extension of A if A < Band 6(B/A) =0.
B is a minimal zero-extension of A if B is a proper zero-extension of A and minimal with
this property. In this case, A C U C B implies A < U.

B is a biminimal zero-extension of A if B is a minimal zero-extension of A and whenever
A'CAand 6(B—A/A") =0then A’ = A.

We will use the following facts many times.

Fact 2.2. Let A be a substructure of a graph B. The following are equivalent:

(1) B is a biminimal zero-extension of A.
(2) 6(B/A) =0 and whenever D C B then AND < D.

Fact 2.3. Let D = B®4 C where B and C are zero-extensions of A. Then D is a zero-
extension of A.

Proof. We have A < D by Fact 1.4 (3). We have 6(D/A) = 0 by Fact 1.4 (1). O
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3. A HRUSHOVSKI’S BOUNDARY FUNCTION

Definition 3.1 ([6]). Let o be a positive real number. We define x,, e,, k,, d, for integers
n > 1 by induction as follows: Put x; =2 and e; = 1. Assume that x,, and e, are defined.
Let r, be a smallest rational number r such that r = k/d > o with d < e, where k and d
are positive integers. Let k, and d,, be coprime positive integers with k,/d, = r,. Finally,
let x,+1 = X+ ky, and e,41 = €, +d,.

Let ap = (0,0), and a, = (x,,x, — e,&) for n > 1. Let f be a function from R* to Rt
whose graph on interval [x,, x,+1] with n > 0 is a line segment connecting a, and a, . We
call f a Hrushovski’s boundary function associated to o.

Example 3.2. Let @ =5/8. Then we have a following chart:

n|1]121314{5[61|7
X, |21314]16(8|10]|17
e, | 112131691223
kp 111121212712
d, | 11113133 ]11|19

Fact 3.3 ([6]). Let f be a Hrushovski’s boundary function associated to o. Then f is
strictly increasing and concave, and (K, <) has the free amalgamation property. There-
fore, there is a generic structure of (Kr,<). Any one point structure is absolutely closed
inKy.

Proposition 3.4. Let f be a Hrushovski’s boundary function associated to a. If o is a
rational number then f is unbounded.

Proof. Let xp, ey, kn, d, and a, be as in Definition 3.1. Let y, be the y-coordinate of a,,.
Then y,+1 — yn = kn — dn > O since k,, /d, > o.. Suppose @ =m/d. Thenk, —d,a > 1/d.
Therefore, f(x,) =y, > n/d. Hence lim,,_e f(x,) = co. O

4. MODEL COMPLETENESS

Let f be a Hrushovski’s boundary function associated to 5/8. Let M be a generic
structure of (K, <). We show that the theory of M is model complete. In the rest of the
paper, we assume that o« = 5/8.

In order to discuss if a given graph is in Ky or not, the following definition will be
convenient.

Definition 4.1. Let B be a graph and ¢ > 0 an integer. B is normal to f if §(B) > f(|B]).
B is c-normal to f if 6(B) > f(|B|+c¢). B is c-critical to f if B is c-normal to f and ¢ is
maximal with this property.

The following three lemmas are immediate from the definitions.

Lemma 4.2 ([11]). Let A be a finite graph.

(1) Suppose A is normal to f and non-empty. Then §(A) > 0.

(2) A € Ky if and only if every substructure of A is normal to f.

(3) Let ¢ and ¢’ be integers such that 0 < c < c’. If A is ¢’-normal to f then A is
c-normal to f, and in particular, A is normal to f.

(4) Let A be normal to f. Let n be an integer such that 6(A) > f(n) but §(A) <
f(n+1). Such an n uniquely exists. Let c = n—|A|. Then A is c-critical to f. c is
a unique integer u such that A is u-critical to f.

(5) Let B be another graph such that 5(A) = §(B), |A| < |B| and A and B are normal
to f. Then B is c-critical to f if and only if A is (|B| — |A| + ¢)-critical to f.
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Lemma 4.3. Assume o =5/8. Let B € Ky. Suppose |B| > 10 and B is c-critical to f with
0 < ¢ < 5. Then B is absolutely closed in Ky.

Proof. We have f(|B|+5) > 8(B). Since oe = 5/8, there are no positive integers x, y such
that x — yor = 0 with x < 5. Hence, there are no extension C of B with §(C/B) = 0 with
Ic—B|<5.

Suppose there is an extension C of B with §(C/B) <0, C € Ky and |[C — B| < 5. Then
we have §(C/B) < 1/8. Then f(|B|) < f(|C|) < 6(B) —1/8. But since 10 < |B|, we have
f1.(IB]) < f4.(10) = 1/56 by Example 3.2. Therefore,

F(BI+5) < f(IB)) +5£,(|B|) < 8(B) —1/8+5/56 < 8(B).
A contradiction. O

Lemma 4.4. Let A, U be graphs such that A CU, 6(A) < 8(U), and A is |U — A|-normal
to f. Then U is normal to f.

Proof 8(U) > 8(A) > F(IA|+|U —Al) = £(U)). 0

Lemma 4.5. (1) Let C = A®p B where p is a single vertex and A,B € Ky. Then
(G(E Kf.
(2) Any finite forest belongs to Ky.
(3) Any cycle of length 6 or more belongs to Ky.

Proof. (1) Since one point structure is absolutely closed in K, we have p <A and p < B.
Therefore, C € Ky by the free amalgamation property.

(2) follows by induction on the number of vertices using (1).

(3) Any paths belongs to Ky by (2). In a path of length 3 or more, the end vertices
is closed in the path with o = 5/8. Amalgamating 2 paths of length 3 or more over its
end vertices produces a cycle of length 6 or more. Hence, it belongs to Ky by the free
amalgamation property. Any cycle of length 6 or more can be produced in this way. a

Lemma 4.6. Let B=A X, i P where P =x---y is a path. Suppose A € Ky.

(1) If the distance of x and y is 3 or more in A and the length of P is 3 then B € K.

(2) If the distance of x and y is 3 or more in A and the length of P is 3 or more then
B e Ky.

(3) Suppose the distance of x and y is 2 or more in A and the length of P is 4 or more
then B € Ky.

(4) Suppose the distance of x and y is 1 or more in A and the length of P is 5 or more
then B € K.

Proof. (1) Suppose P has length 3. We can write P = xuvy. Let U be a substructure of
B. UNAisnormal to f because A € Ky. If U = (UNA) @z xu or U = (UNA) ®, vy then
U € Ky by Lemma 4.5.
Suppose U = (UNA) @) xuvy. We have
6(U)=6(UNA)+2-30.
Lett = |UNA|. Ift > 4 then f, (t) <1— 3 and
FAUD = fe+2) < f(e) +2f,(r) < S(UNA)+2 -3 = §(U).

Suppose ¢ < 3. This means that U NA = xy or U NA = xyw with w € A. Since x and y has
distance 3 or more, w is not connected to x or y. Therefore, U is a path or U = xuvy @ w.
Hence, U € Ky by Lemma 4.5.
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FIGURE 1. A twig for5/8

(2)-(4) We can write P = x---xX'uvy. Let A’ = A®,x---x'. Then A’ € Ky by Lemma
4.5. Also, the distance between x’ and y is 3 or more by the assumption. Now, B =
A’ @0 41 X'uvy. B belongs to Ky by (1). O

Lemma 4.7. Let B=A X, S where S = xx'c ®,yy'c ®2z7'c.-Suppose A € Ky and each
pair of vertices in {x,y,z} has distance 2 or more. Then B € K also.

Proof. Let U be a substructure of B. U NA is normal to f because A € K.

Suppose V(S) is not a subset of V(U). Then U can be obtained from U NA by amalga-
mations over 1 vertex, and connecting two points from x, y, z by a path of length 4. In this
case, U is normal to Ky by Lemma 4.6.

Suppose V (S) is a subset of V(U). Then U is an extension of U NA by 4 vertices and 6
edges. We have |U|— |[UNA| =4 and §(U) —6(UNA)=4—6a.

Case |UNA| = 3. This means that V(U NA) = {x,y,z}. Since each pair from {x,y,z}
has distance 2 or more in A, there are no edges among them. So, U = S is a tree and thus
U € Ky, and therefore U is normal to f.

Case [UNA| > 4. Then

4—6a _ 8(U)—8(UNA)
4~ |ul-una

Therefore, 6(U) > f(|U]). This means that U is normal to f.
Now, we see that B € K. O

flUnA) < fid) =1-3/2)a=

Definition 4.8. (Twig and Wreath)

Lets = (3/8,-2/8,3/8,-2/8,-2/8). Note that 1 —a =3/8 and 1 —2a = —2/8 for
o =5/8. We assume that s is indexed by 0, 1, 2, 3, 4. s is a special sequence for 5/8
defined in [11]. For any [ < 4, we have 0 < Y!_os(i) < @ = 5/8 and Y}, s(i) = 0. Let s*
be a concatenation of k s’s. That is, s* denotes a function g on {i € Z | 0 < i < 5k} such
that g(x) = s(x mod 5). For any i < j < 5k, we have | Y _.s(u)| < a =5/8.

A graph W is called a twig associated to s if W can be written as W = BF with sub-
structures B and F' having the following properties:

(1) Bis a path bob;byb3by of length 5.

(3) V(F) = {fo, /1,3, fs} and F has no edges.
(3) Each f; € F is adjacent to b; and a leaf of W.

See Figure 1.
Let D be a substructure of W. F (D) denotes F N D.
Let k > 2. A graph W is called a wreath associated to s* if W can be written as W = BF
with the following properties:
(1) Bisacycle bob - - - bsg_1bg of length Sk.
(2) V(F) = U { fsi1, fsis3, fsiva} and F has no edges.
(3) Each f; € F is adjacent to b;.
(4) Each f € F is a leaf of B.
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FIGURE 2. A wreath for 5/8

See Figure 2.

We also say that W is a wreath for 5/8 without referring to s*.

H(W) denotes the set { fs;3 | 0 <i < k}. Let D be a substructure of W. F(D) denotes
FND.

By Lemma 4.5, we have the following.

Lemma 4.9. Any twig for 5/8 belongs to K. Let W be a wreath for 5/8. If the girth of W
is 10 or more then W belongs to K.

Fact 4.10 ([11]). Let W be a twig or a wreath for 5/8. Then W is a biminimal zero-
extension of F(W). In particular, if D is a proper substructure of W then F(D) < D by
Fact 2.2.

If B=AXpw) W then B is a minimal zero-extension of A. Moreover, if F(W) =V (A)
then B is a biminimal zero-extension of A.

Definition 4.11. We call B a special extension of A over P if B = (AP) x )W where W
is a twig or a wreath for 5/8, P has no edges, AP =A®P, and V(A) N F(W) is a proper
subset of F(W).

We call C a semi-special extension of A over P if we can write C = B| ®4p By ®ap
---®ap B, where each B; is a special extension of A over P.

Lemma 4.12. Let C be a semi-special extension of A. Then A < C.

Proof. Let C be as in the definition of a semi-special extension of A. Suppose A C U C C.
We can write B; = AP X Fow) Wi for some twig or wreath W;. So, we can write

U = (UNB1) ®un@p) - ®un(ap) (U NBy).

If UN (A ®P) is a proper extension of A then §(A) < §(U N (AP)). Since AP < B; for
each i, we have U N (AP) < U N B;. Therefore, U N (AP) < U. Hence, 6(A) < 6(U).

Suppose U N (AP) = A. Then V(U)NF(W;) is a proper subset of F(W;). Hence, U N
(AP) =UNA <UNB;. Since U is a proper extension of A, there is j such that U NB; is a
proper extension of U NA. Hence, 6(U/UNA) > 6(UNB;/UNA) > 0.

We have shown that A < C. ]

Lemma 4.13. Let A be a graph in Ky with |A| > 2. Suppose 0 < k < |A|. Then there is a
semi-special extension D = C ®ap B of A over P such that D € Ky, |B— (AP)| = 5|A| and
|C — (AP)| = 5k.

Proof. We prove the lemma in the case that |A| = 3 and k = 2. It will be easy to write down
a proof for general cases.

We show that a wreath W with girth 5|A| and a wreath W, with girth 5k can be properly
attached to A will be a semi-special extension of A over some P. Recall H(W) from the
definition of a wreath. H(W;) will be V(A), and H(W>) will be a subset of V(A). V (P) will
be F(W,) — H(W)). Hence, |P| will be 2|A|. In case k = 1, W, will be a twig, and F(W>)
can be disjoint from A.
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FIGURE 3. A semi-special extension.

LetV(A) = {a3,as,ai3}. Note that V(A) is indexed by {5i+3 | i =0,1,2}. Attach new
paths a3bs, agbg, aj3b13 to A. Here, b3, bg, b13 are new vertices. Let A be the resulting
graph. Then A; belongs to Ky by Lemma 4.5.

Connect b3 and bg by a new path b3bsbsbgbbg, bg and b3 by a new path bgbob19b11b12b13,

and bj3 and b3 by a new path by3b1abob1b2b3. Let Dy be the resulting graph. Dy belongs
to Ky by Lemma 4.6.

Now, attach new paths asc3 to Dy. The resulting graph belongs to Ky by Lemma 4.5.

Connect c3 and b4 by new path c3¢4paby.

Connect ¢4 and bg by new path cacscepebs.

Connect ¢ and ag by new path cgc7cgasg.

The resulting graph belongs to K by Lemma 4.6.

We can repeat this part if & is large.

Now, connect cg and bg by new path cgcopobg. The resulting graph belongs to Ky by
Lemma 4.6.

Connect 3 vertices cg, by, c3 by structure cococ1p1b1 ®¢, c1cac3. The resulting graph
belongs to K, by Lemma 4.7.

Finally, attach new path b;p; at b; for i = 11, 13, 14. The resulting graph D belongs to
K/ by Lemma 4.5, and it is a desired graph.

See Figure 3. White circles are the vertices of A. The upper part is W) and the lower
part is Wj. O

Lemma 4.14. Let D = C @ap B be a semi-special extension of A over P. Assume that
D € K, and B is a extension by a wreath W with F (W) =V (AP). Let

G =C®apB) ®apBr ®ap -+ ®apBn
where By =ap B for eachi=1, ..., n. If G is normal to f then G € K.

Proof. Note that C ®4p B and C ®4p Bj for j > 1 are isomorphic over C. So, C ®4p B;
belongs to K for any j > 1.

We have B = (AP) x gy W with F(W) = V(AP). Let W; for i > 1 be a wreath isomor-
phic to W such that B; = (AP) X p(w,) Wi.

Suppose U C G.

Case AP C U. Since G is normal to f, U is normal to f by Lemma 4.4.

Case A Z U. Then UNA is a proper subset of A. For each i with 0 < i < n, put
U; = UNB;. Then for i > 1, we have U; = (U NAP) X (p,) Di where F(D;) is a proper
subset of F(W;) = V(AP). Hence, F(D;) < D; by Lemma 4.10 for each i > 1. We have
UNC < (UNC) % p(p, D; by Lemma 1.15. Put U! = (UNC) 3t (p,) Di. Then UNC < U!.
Note that it is possible that U NC = U;. Since (U NC) X p(p,) Di = (UNC) Rynap) Ui, we
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have

U =Uj Qunc - Qunc Uy
Since U/ = (UNC) ®una U; is a substructure of C ®4 B; € Ky, U/ belongs to K¢ fori =1,
..., h. Therefore, U belongs to Ky by the free amalgamation property. O

Theorem 4.15. Let f be a Hrushovski’s boundary function associated to 5/8. Let M be
the generic structure of (Ky, <). Then the theory of M is model complete.

Proof. Suppose A € K. We show that there is a graph G in Ky such that A < G and G is
absolutely closed in Ky. Then we get the theorem by Fact 1.9.

Since a one point structure is absolutely closed, we can assume that |A| > 2.

Let B be a special extension of A by a wreath W for 5/8 with H(W) = A. Let P be
a substructure of B with V(P) = F(W) —V(A). We have B = AP xy4p) W. We have
O6(B) = 6(AP) and |B—AP| = 5|A|.

By Lemma 4.13, B belongs to K. Hence, B is normal to f.

Let n be such that §(B) > f(n) but §(B) < f(n).

Let n — |[AP| = 5|A|l+m with 0 <m < 5|A|, and m = 5k+r with 0 < r < 5.

By Lemma 4.13, there is D € Ky such that D = C ®4p B where C is also a special
extension of A with |C — (AP)| = 5k.

Let

G =C®apB1 ®apB2®ap---QapB

where B; =4p B foreach i =1, ..., [. Then |G| = |AP|+ 5k+5|A|l = n —r. Hence, G is
normal to f. By Lemma 4.14, G belongs to Ky. G is r-critical and 0 < r <5. Also, we
have |G| > |B| > 5|A| > 10. Hence, G is absolutely closed in Ky by Lemma 4.3.

G is a semi-special extension of A over P. Therefore, A < C by Proposition 4.12. [l
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