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Abstract

Let \theta\in \mathbb{R}\backslash \mathbb{Q} . We defined a notion of quantum 2‐torus  T_{\theta} in [1] and
studied its model theoretic properties. In the subsequent paper [2],
we introduced the notion of geometric equivalence and also of Morita
equivalence between such quantum 2‐tori.

We showed that this notion is closely connected with the fUnda‐
mental notion of Morita equivalence of non‐commutative geometry.
Namely, we proved that the quantum 2‐tori  T_{\theta_{1}} and  T_{\theta_{2}} are Morita

equivalent if and only if   \theta_{2}=\frac{a\theta_{1}+b}{c\theta_{1}+d} for some  \begin{array}{ll}
a   b
c   d
\end{array}\in GL_{2}(\mathbb{Z}) .
This is our version of Rieffel’s Theorem [4] which characterizes Morita
equivalence of quantum tori in the same terms.

In this note we reconsider the relation between the original version
of Rieffel’s theorem and our model theoretic version.

1 Quantum 2‐torus  T_{q}
In this section we give a quick review of the construction of a quantum
2‐torus  T_{\theta} described in [1].

Let  \theta\in \mathbb{R}\backslash \mathbb{Q} and put  q=\exp(2\pi i\theta) . Let  \mathbb{C}^{*}=\mathbb{C}\backslash \{0\} . Consider
 a\mathbb{C}^{*} ‐algebra  \mathcal{A}_{q} generated by operators  U,  U^{-1},  V,  V^{-1} satisfying

 VU=qUV, UU^{-1}=U^{-1}U=VV^{-1}=V^{-1}V=I.

Let  \Gamma_{\theta}=q^{\mathbb{Z}}=\{q^{n} : n\in \mathbb{Z}\} be a cyclic multiplicative subgroup of  \mathbb{C}^{*}.

From now on in this note we work in an uncountable  \mathbb{C}‐module  \mathcal{M}

such that  \dim \mathcal{M}\geq|\mathbb{C}|.
 *
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1.1 Quantum line bundles

For each pair  (u, v)\in \mathbb{C}^{*}\cross \mathbb{C}^{*} , we will construct two  \mathcal{A}_{q}‐modules

 \mathcal{M}M_{|u,v\rangle}
and  M_{\langle v,u|} so that both  M_{|u,v\rangle} and  M_{\langle v,u|} are sub‐modules of

The module  M_{|u,v\rangle} is generated by linearly independent elements
labeled  \{u(\gamma u, v)\in \mathcal{M} : \gamma\in\Gamma_{\theta}\} satisfying

 U :  u(\gamma u, v)\mapsto\gamma uu(\gamma u, v) ,
(1) V :  u(\gamma u, v)\mapsto vu(q^{-1}\gamma u, v) .

Next let  \phi :  \mathbb{C}^{*}/\Gamma_{\theta}arrow \mathbb{C}^{*} such that  \phi(x\Gamma_{\theta})\in x\Gamma_{\theta} for each   x\Gamma_{\theta}\in

 \mathbb{C}^{*}/\Gamma_{\theta} . Put  \Phi=ran(\phi) . We call  \phi a choice function and  \Phi the system
of representatives.

Set for  \{u,  v\rangle\in\Phi^{2}

 \Gamma\cdot u(u, v)  :=  \{\gamma u(u, v) : \gamma\in\Gamma_{\theta}\},
 U_{\langle u,v\rangle}  :=   \bigcup_{\gamma\in\Gamma_{\theta}}\Gamma_{\theta}\cdot u(\gamma u, v)=
\{\gamma_{1}\cdot u(\gamma_{2}u, v) :\gamma_{1}, \gamma_{2}\in\Gamma_{\theta}\}.

(2)
And set

  U_{\phi} := \bigcup_{\{u,v\rangle\in\Phi^{2}}U_{\langle u,v\rangle}
 =  \{\gamma_{1}\cdot u(\gamma_{2}u, v) :  \{u, v\rangle\in\Phi^{2}, \gamma_{1}.\gamma_{2}\in\Gamma_{\theta}\} , (3)

 \Gamma^{*}U_{\phi_{1}} := \{x\cdot u(\gamma u, v) : \langle u, v\rangle\in\Phi^
{2}, x\in \mathbb{F}^{*}, \gamma\in\Gamma_{\theta}\}.
We call  \Gamma\cdot u(u, v) a  \Gamma‐set over the pair  (u, v),  U_{\phi} a  \Gamma‐bundle over

 \mathbb{C}^{*}\cross \mathbb{C}^{*}/\Gamma , and  \mathbb{C}^{*}U_{\phi} a line‐bundle over  \mathbb{C}^{*} Notice that  U_{\phi} can
also be seen as a bundle inside   \bigcup_{\{u,v\rangle}M_{|u,v\rangle} . Notice also that the line

bundle  \mathbb{C}^{*}U_{\phi} is closed under the action of the operators  U and  V

satisfying the relations (1).
We define the module  M_{\langle v,u|} generated by linearly independent

elements labeled  \{v(\gamma v, u)\in \mathcal{M} : \gamma\in\Gamma\} satisfying

 U :  v(\gamma v, u)\mapsto uv(q\gamma v, u) ,
(4) V :  v(\gamma v, u)\mapsto\gamma vv(\gamma v, u) ,

and also

 U^{-1} :  u(\gamma u_{7}v)\mapsto\gamma^{-1}u^{-1}u(\gamma u, v) ,

 V^{-1} :  u(\gamma u, v)\mapsto v^{-1}u(q\gamma u_{\dot{}}v) .
(5)

Similarly a  \Gamma‐set  \Gamma\cdot v(v, u) over the pair  (v, u), a  \Gamma‐bundle  V_{\phi} over
 \mathbb{C}^{*}/\Gamma\cross \mathbb{C}^{*} , and  \mathbb{C}^{*}V_{\phi} a line‐bundle over  \mathbb{C}^{*} are defined.

To define the line bundles  \mathbb{C}^{*}U_{\phi} and  \mathbb{C}^{*}V_{\phi} , we do not need any
particular properties of the element  q=\exp(2\pi i\theta) or the choice func‐
tion  \phi . Therefore we have:
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Proposition 1 (Proposition 2 [1]) Let  \Gamma,  \mathbb{F}' be  field_{\mathcal{S}} and  q\in \mathbb{F},
 q'\in \mathbb{F}' such that there  iS an field isomorphism  i from  \mathbb{F} to  \mathbb{F}' sending
 q to  q' . Then  i can be extended to an isomorphism from the  \Gamma ‐bundle
 U_{\phi} to the  \Gamma' ‐bundle  U_{\phi'} and also from the line‐bunlle  \Gamma^{*}U_{\phi} to the
line‐bundle  (\Gamma^{*})'U_{\phi'} . The same is true for the line‐bundles  \Gamma^{*}V_{\phi} and
 (\mathbb{F}')^{*}V￠’.

In particular the isomorphism type of  \Gamma ‐bundles and line‐bundles
does not depend on the. choice function.

Proof: Let  i be an isomorphism from  \mathbb{F} to  \mathbb{F}' sending  q to  q' . Set
 i(x\cdot u(\gamma u, v))=i(x)\cdot u(i(\gamma u), i(v)) . Then this defines an isomorphism
from  \mathbb{F}^{*}U_{\phi} to  (\mathbb{F}')^{*}U_{\phi}/.  \blacksquare

1.2 Pairing function

Recall next the notion of pairing function  \langle\cdot|\cdot } which plays the rôle of
an inner product of two  \Gamma‐bundles  U_{\phi} and  V_{\phi} :

 \langle\cdot|\cdot\}:(V_{\phi}\cross U_{\phi})\cup(U_{\phi}\cross V_{\phi})
arrow\Gamma . (6)

having the following properties:

1.  \langle u(u, v)|v(v, u)\rangle=1,
2. for each  r,  s\in \mathbb{Z},  \{U^{r}V^{s}u(u, v)|U^{r}V^{s}v(v, u)\rangle=1,
3. for  \gamma_{1},  \gamma_{2},  \gamma_{3},  \gamma_{4}\in\Gamma,

 \langle\gamma_{1}u(\gamma_{2}u, v)|\gamma_{3}v(\gamma_{4}v, u)\rangle=
\langle\gamma_{3}v(\gamma_{4}v, u)|\gamma_{1}u(\gamma_{2}u, v)\rangle,

4.  \langle\gamma_{1}u(\gamma_{2}u, v)|\gamma_{3}v(\gamma_{4}v, u)\}=\gamma_{1}^{-
1}\gamma_{3}\langle u(\gamma_{2}u, v)|v(\gamma_{4}v, u)\} , and

5. for  v'\not\in\Gamma\cdot v or  u'\not\in\Gamma\cdot u,  \{q^{S}v(v', u)|q^{r}u(u', v)\rangle is not defined.

Proposition 2 (Proposition 3 [1]) The pairing function (6) de‐
fined above satisfies the following: for any  m,  k,  r,  s\in \mathbb{N} we have

 \langle q^{s}v (qmv,  u )  |q^{r}u(q^{k}u, v) }  =q^{r-s} (7)

and

 \{q^{r}u(q^{k}u, v)|q^{s}v (qmv,  u)\}=q^{km+s-r}=\{q^{s}v (qmv,  u)  |q^{r}u (qku,  v )  \rangle^{-1}
(8)
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1.3 Quantum 2‐torus

We call the three sorted structure  \langle U_{\phi},  V_{\phi},  \{\cdot|\cdot\rangle\} a quantum 2‐torus
and denoted by  T_{\theta}.

From Proposition 1 we know that the structure of the line‐bundles
does not depend on the choice function. The next proposition tells us
that the structure of the quantum 2‐torus  T_{q}^{2}(\mathbb{C}) depends only on  \mathbb{C},
 q and not on the choice function.

Proposition 3 (cf. Proposition 4.4, [6]) Given  q\in \mathbb{F}^{*} not a root
of unity, any two  \mathcal{S}tructures of the form  T_{q}^{2}(\Gamma) are isomorphic over  \Gamma.

In other words, the isomorphism type of  T_{q}^{2}(\mathbb{F}) does not depend on the
system of representatives  \Phi.

Remark 4 In our construction of quantum line bundles and quantum
2‐tori, the  \mathbb{C}^{*} ‐algebra  \mathcal{A}_{q} does not play a major role, but a minor one.

2 Geometrically equivalent quantum 2‐
tori

Let  \theta\in \mathbb{R}\backslash \mathbb{Q} . Note that this  \theta has no relation with the one used in

the previous section.
From now on we work in the structure  \mathbb{C}^{\theta}=(\mathbb{C}, +, \cdot, 1, x^{\theta}) (raising

to real power  \theta in the complex numbers).
We define

 x^{\theta}=\exp(\theta\cdot(\ln x+2\pi i\mathbb{Z}))=\{\exp(\theta\cdot(\ln x+2
\pi ik)) : k\in \mathbb{Z}\}.

as a multi‐valued function and by  y=x^{\theta} we mean the relation  \exists z(x=
 \exp(z)\wedge y=\exp(z\theta)) .

Notation 5  C_{\theta}(x, y) denotes the binary relation  y=x^{\theta} as defined
above.

Let  \theta_{1},  \theta_{2}\in \mathbb{R}\backslash \mathbb{Q} . Set  q_{1}=\exp(2\pi i\theta_{1}) and  q_{2}=\exp(2\pi i\theta_{2}) . Put

 \Gamma_{\theta_{1}}= {   q_{1}\rangle and  \Gamma_{\theta_{2}}=\langle q_{2} }.

Definition 6 Let  a,  b\in \mathbb{C}^{*}

(1) We say that  C_{\theta} sends the  CO\mathcal{S}eta\cdot\Gamma_{q_{1}} of  \Gamma_{\theta_{1}} to the coset  b\cdot\Gamma_{\theta_{2}}
of  \Gamma_{\theta_{2}} if

 \forall x'\in a\cdot\Gamma_{\theta_{1}}\forall y'\in \mathbb{C}^{*}(y'\in 
b\cdot\Gamma_{\theta_{2}}\Leftrightarrow C_{\theta}(x', y')) .
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(2) We  \mathcal{S}ay that  C_{\theta} sends the cosets of  \Gamma_{\theta_{1}} to the cosets of  \Gamma_{\theta_{2}} if  C_{\theta}
gives rise to  a one‐to‐one correspondence from the cosets of  \Gamma_{\theta_{1}}
to the cosets of  \Gamma_{\theta_{2}},

Let  \Phi_{1} be the system of representatives for a choice function  \phi_{1} :
 \mathbb{C}^{*}/\Gamma_{\theta_{1}}arrow \mathbb{C}^{*} Let  T_{\theta_{2}} be quantum 2‐tori constructed as explained in
the previous section.

Suppose  (u, v)\in(\Phi_{1})^{2} We identify the modules  M_{|u,v\rangle} constitutes
the quantum 2‐torus  T_{\theta_{1}} with its canonical basis denoted by  E_{|u,v\rangle}.
Put

 E_{|u,v\rangle}=\{q^{nt}u(q^{n}u, v):l, n\in \mathbb{Z}\}.
We see the  \Gamma_{q_{1}} ‐bundle  U_{\phi_{1}} as a bundle inside   \bigcup_{(u,v)\in(\Phi_{1})^{2}}M_{|u,v\rangle} . Thus

knowing the set of bases of  U_{\phi_{1}} that is the set   \bigcup_{(u,v)\in(\Phi_{1})^{2}}E_{|u,v\rangle} , we
can determine the quantum 2‐torus  T_{\theta_{1}}.

Let  \Phi_{2} be the system of representatives for a choice function  \phi_{2} :
 \mathbb{C}^{*}/\Gamma_{\theta_{2}}arrow \mathbb{C}^{*} Let  T_{\theta_{2}} be quantum 2‐tori constructed as explained in
the previous section.

We define a similar set  E_{|u',v'\rangle} which is a canonical basis for  M_{|u',v'\rangle}
where  (u', v')\in(\Phi_{2})^{2} and the set  U_{(u,v)\in(\Phi_{2})^{2}}E_{|u',v'\rangle} determines the

quantum 2‐torus  T_{\theta_{2}}.
We now introduce the notion called geometric equivalence between

quantum 2‐tori.

Definition 7 (Geometric equivalence) We  \mathcal{S}ay that the quantum
2‐torus  T_{\theta_{1}} is geometrically equivalent to  T_{\theta_{2}} , written  T_{\theta_{1}}\simeq {}_{\theta}T_{\theta_{2}}, if

(1)  C_{\theta} sends the cosets of  \Gamma_{q_{1}} to the cosets of  \Gamma_{q_{2J}} and

(2) there  i_{\mathcal{S}}  a one‐to‐one correspondence  L_{\theta} from   \bigcup_{\langle u,v\rangle}E_{|u,v\rangle} to

  \bigcup_{(u,v\rangle}E_{1u',v^{f}\rangle} such that for each  (u, v)\in(\Phi_{1})^{2} and  (u', v')\in
 (\Phi_{2})^{2}sati_{\mathcal{S}}fyingC_{\theta}(u, u') and  C_{\theta}(v, v') we have

 L_{\theta}(q_{1}^{nl}u(q_{1}^{n}u, v))=q_{2}^{nl}u(q_{2}^{n}u' ,  vl)) .

We call  L_{\theta} a geometric transformation from   \bigcup_{\langle u,v\rangle}E_{1u,v\}} to   \bigcup_{\{u,v\}}E_{|u',v'\rangle}
and we simply write as

 L_{\theta}:E_{|u,v\rangle}\mapsto E_{1u',v'\rangle}.

For a geometric transformation  L_{\theta} , we have the following diagrams,
for each  (u, v)\in(\Phi_{1})^{2} and  (u', v')\in(\Phi_{2})^{2} :
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 u((q_{1})^{n}u, v)\underline{L_{\theta}} u((q_{2})^{n}u', v')

 \downarrow U 0 U1
 (q_{1})^{n}uu((q_{1})^{n}u, v)arrow^{L_{\theta} }〉  (q_{2})^{n}u^{;}u((q_{2})^{n}u', v')

and

 u((q_{1})^{n}u, v)\underline{L_{\theta}} u((q_{2})^{n}u', v')

 |V 0 V1
vu  ((q_{1})^{-1}(q_{1})^{n}u, v)arrow^{L_{\theta}}v'u((q_{2})^{-1}(q_{2})^{n}u', 
v')

Conversely, the existence of such diagrams is sufficient for  L_{\theta} to
be a geometric transformation.

3 Rieffel’s theorem

Recall

Definition 8 Two algebras  A and  B are said to be Morita equivalent
if the categories  A ‐mod and  B ‐mod of modules are equivalent.

For quantum tori this notion was studied by M.Rieffel and in the
particular case of 2‐tori we have the following

Theorem 9 (Rieffel) Let  A_{\theta_{1}} and  A_{\theta_{2}} be (the coordinate algebras
of) quantum 2‐tori. Then  A_{\theta_{1}} and  A_{\theta_{2}} are Morita equivalent if and
only if there  exi_{\mathcal{S}}t integers  a,  b,  c,  d such that ad—bc  =\pm 1 and  \theta_{2}=

  \frac{a\theta_{1}+b}{c\theta_{1}+d}.
For quantum tori  T_{\theta_{1}} and  T_{\theta_{2}} constructed as in the previous sec‐

tion, we say that  T_{\theta_{1}} and  T_{\theta_{2}} are Morita equivalent if their coordinate
algebras  \mathcal{A}_{\theta_{1}} and  \mathcal{A}_{\theta_{2}} are Morita equivalent. We shall prove a theorem
stating that:  T_{\theta_{1}} and  T_{\theta_{2}} are Morita equivalent if and only if  T_{\theta_{1}} and
 T_{\theta_{2}} are geometrically equivalent.

Of course, in light of Rieffel’s theorem it is enough to prove that
the geometric equivalence of  T_{\theta_{{\imath}}} and  T_{\theta_{2}} amounts to the condition

  \theta_{2}=\frac{a\theta_{1}+b}{c\theta_{1}+d} for some  (\begin{array}{ll}
a   b
c   d
\end{array})\in GL_{2}(\mathbb{Z}) .
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3.1 Relations giving rise to geometric trans‐
formations

Proposition 10 For each  (\begin{array}{ll}
m_{l1}   m_{l2}
m_{21}   m_{22}
\end{array})  \in GL_{2}(\mathbb{Z}) , the binary re‐

lation

 C_{\Theta}(x, y) ,  \Theta=\frac{m_{11}\theta+m_{{\imath} 2}}{m_{21}\theta+
m_{22}}
corresponding to

 y=x \frac{7n_{11}\theta+7n_{12}}{7n_{21}\theta+m_{22}}
is  p_{oSl}t_{i}ve quantifier‐free definable in the structure  \mathbb{C}_{\theta}.

Proof: Observe the following immediate equivalences:

 \bullet y=x^{m\theta}\equiv C_{\theta}(x^{m}, y)

 \bullet y=x^{m\theta+n}\equiv C_{\theta}(x^{m}, yx^{-n})

 \bullet y=x^{\frac{1}{\theta}}\equiv C_{\theta}(y, x)
  \bullet y=x\frac{1}{7n\theta+n}\equiv x=y^{m\theta+n}\equiv C_{\theta}(y^{m}, 
xy^{-n})

It follows

 y=x \frac{m\theta+m}{7n_{21}\theta+7r_{22}} \equiv y^{m_{21}\theta+m_{22}}=
x^{m_{11}\theta+m_{12}}
 \equiv (y^{m_{21}}x^{-m_{11}})^{\theta}=x^{m_{12}}y^{-m_{22}}
 \equiv c_{\theta}21-m_{1112}

 \blacksquare

Lemma 11 Suppose that  C_{\theta} sends the  CO\mathcal{S}ets of  \Gamma_{q_{1}} to the  CO\mathcal{S}ets of
 \Gamma_{q_{2}} . Then there is a geometric transformation from  T_{\theta_{1}} to  T_{\theta_{2}} , hence
we have  T_{\theta_{1}}\simeq {}_{\theta}T_{\theta_{2}}.

Proof: Once we know the correspondence between the cosets of  \Gamma_{q{\imath}}
and the cosets of  \Gamma_{q_{2}} , it is easy to define a geometric transformation
 L_{\theta} from  T_{\theta_{1}} to  T_{\theta_{2}} , and we have  T_{\theta_{1}}\simeq {}_{\theta}T_{\theta_{2}}  \blacksquare
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3.1.1 Main theorem

We now show the main theorem.

Theorem 12 Let  \theta_{1},  \theta_{2}\in \mathbb{R}\backslash \mathbb{Q} . Then  T_{\theta_{1}}\simeq\theta T_{\theta_{2}} if and only if

  \theta_{2}=\frac{a\theta_{1}+b}{c\theta_{1}+d} for some  (\begin{array}{ll}
a   b
c   d
\end{array})\in GL_{2}(\mathbb{Z}) .

Proof: By Lemma 11  T_{\theta_{1}}\simeq {}_{\theta}T_{\theta_{2}} if and only if  C_{\theta} sends cosets of  \Gamma_{\theta_{1}}
to  \Gamma_{\theta_{2}} . In particular,  C_{\theta} induces a group isomorphism  \Gamma_{\theta_{1}}=\langle q_{1}\rangle to
 \Gamma_{\theta_{2}}=\{q_{2}\} :

 \exp(2\pi i(\mathbb{Z}\theta_{1}+\mathbb{Z}))rightarrow^{\theta}\exp(2\pi 
i((\mathbb{Z}\theta_{1}+\mathbb{Z})\theta))=\exp(2\pi i(\mathbb{Z}\theta_{2}+
\mathbb{Z})) .

The isomorphism is completely determined by the images of  q_{1}=

 \exp(2\pi i\theta_{1}) and 1 both in  \Gamma_{[theta1} . Thus it suffices to know the images
of  \theta_{1} and 1 by this isomorphism i.e., multiplication by  \theta . Hence we
have

 \{\begin{array}{l}
\theta_{1} \mapsto^{\theta} \theta_{1}\theta = a\theta_{2}+b
where a, b, c, d\in \mathbb{Z} and |ad-bc|=1.
1 rightarrow^{\theta} \theta = c\theta_{2}+d
\end{array}
It follows that

  \theta=\frac{a\theta_{2}+b}{\theta_{1}}=c\theta_{2}+d . (9)

Solving for  \theta_{2} we get

  \theta_{2}=\frac{d\theta_{1}-b}{-c\theta_{1}+a} . (10)

Since  |ad-bc|=1 we have.

 (\begin{array}{ll}
d   -b
-c   a
\end{array})=\pm(\begin{array}{ll}
a   b
c   d
\end{array}) -1\in GL_{2}(\mathbb{Z}) .

And this completes the proof.  \blacksquare

3.2 Relation between modularity and Morita
equivalence

Let  \mathcal{A}_{\theta_{1}} and  \mathcal{A}_{\theta_{2}} be (the coordinate algebras of) quantum 2‐tori  T_{\theta_{1}}
and  T_{\theta_{2}}.

Combining Rieffel’s Theorem and Theorem 12, we see that the
following three properties are equivalent:
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(1)  \mathbb{C}^{*} ‐algebras  \mathcal{A}_{\theta_{1}} and  \mathcal{A}_{\theta_{2}} are Morita equivalent,

(2) quantum‐tori  T_{\theta_{1}} and  T_{\theta_{2}} are geometrically equivalent,

(3) there exist integers  a,  b,  c,  d such that ad—bc  =\pm 1 and

  \theta_{2}=\frac{a\theta_{1}+b}{c\theta_{1}+d}.
Keeping this relation in mind, we introduce an equivalence relation

 E_{\theta}(\theta_{1}, \theta_{2}) over  \mathbb{R}\backslash \mathbb{Q} defined as follows; we work in the structure
 \mathbb{C}^{\theta}=(\mathbb{C}, +, \cdot, 1, x^{\theta}) (raising to real power  \theta in the complex numbers),
and take  \theta_{1},  \theta_{2}\in \mathbb{R}\backslash \mathbb{Q} . Put

 E_{\theta}(\theta_{1}, \theta_{2})\Leftrightarrow T_{\theta_{1}}\simeq {}
_{\theta}T_{\theta_{2}}.

Our next objective is to investigate the structure  (\mathbb{R}\backslash \mathbb{Q})/E_{\theta}.
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