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On the speed of hereditary properties of graphs

Kota Takeuchi

University of Tsukuba

Abstract

Wę give a short proof of C. Terry’s result[3] on the jump to the fastest speed
of hereditary properties.

1 Introduction and Preliminaries

Let L be a finite relational language. A hereditary  L‐property is a heredi‐
tary class  H of finite  L‐structures which is closed under isomorphism. The
universe of an  L‐structure  A is denoted by  ||A|| . Let  [n] be the  n‐point set
 \{0,1, , n-1\} . For each   n\in\omega , let  H_{n}=\{A\in H : ||A||=[n]\} . The speed
of  H is the function  n\mapsto|H_{n}| . C. Terry proved that there is a gap on the
speed and it is characterized by a kind of VC‐dimension of  H , as follows.

Theorem 1 (Terry[3]). Suppose  L is a finite relational language of maximum
arity  r\geq 2 , and  H is a hereditary  L‐property. Then either

1.   VC_{r-1}^{*}(H)<\infty and there is an  \epsilon>0 such that for sufficiently large  n,

 |H_{n}|\leq 2^{n^{r-\epsilon}} , or

2.   VC_{r-1}^{*}(H)=\infty and there is a constant  C>0 such that  |H_{n}|=
 2^{Cn^{r}+o(n^{r})}.

This kind of result was well known for graph properties, i.e. for classes
of graphs(for example, see introduction of [3], or Theorem 2 in [1]). Terry’s
work gives a generalization of them to the cases of hyper (not simple, not
undirected) graphs. One of the main technique in her proof is  VC^{*}‐dimension
introduced in her paper and a kind of Sauer‐Shelah’s lemma for product sets
proved by Chernikov, Palacin and the author[2]. Note that Terry’s result is
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about the cases of  r\geq 1 , however,  r=1 case is immediate (by the original
Sauer‐Shelah’s lemma), hence we discuss only on the cases of  r\geq 2 here.

In this article, we will give a simple proof of the theorem. In fact, it is
almost directly proven from the generalized Sauer‐Shelah’s lemma with some
model theoretic trick.

In the rest of this section, we recall some basic definitions and facts on
 VC_{r}‐dimension and hereditary properties. One can also check [2] for the
details of VC ‐dimension and the generalized Sauer‐Shelah’s lemma.

Definition 2. Let   r\in\omega and  C\subset \mathcal{P}(\omega^{r}) .

1. For  A\subset\omega^{r},  C|A=\{A\cap B:B\in C\}.
2.  A\subset\omega^{r} is said to be shattered if  C|A=\mathcal{P}(A) .

3. A subset  A\subset\omega^{r} is called a box of size  d if   A=A_{0}\cross  \cross A_{r-1} and

 |A_{i}|=d for all  i<r.

4. The VC ‐dimension  VC_{r}(C) of  C is the maximum natural number  d such

that there is a box  A\subset\omega^{r} of size  d such that  A is shattered by  C.

5. The shatter function  \pi_{C} is the function  \omegaarrow\omega such that  \pi_{C}(n)=
  \max{  |C|A| :  A\subset\omega^{r} is a box of size  n}.

The following fact is a generalization of Sauer‐Shelah’s lemma.

Fact 3 (Chernikov, Palacin, and T.). Let  C\subset \mathcal{P}(\omega^{r}) . Then either

1.   VC_{r}(C)=\infty and  \pi_{C}(n)=2^{n^{r}} for every  n , or

2.  VC_{r}(C)=d< oo and there is  \epsilon>0 such that  \pi_{C}(n)<2^{n^{r-\epsilon}} for

sufficiently large  n . Here,  \epsilon depends only on  d and  r.

Note that  \epsilon in the above fact was explicitly given in [2].
Next we define VC ‐dimension for hereditary  L‐properties. Suppose that

 L is a finite relational language of maximum arity  r\geq 2.

Definition 4. Let  H be a class of finite  L‐structures.

1.  H is said to be hereditary if  A\in H and  B\subset A then  B\in H. (Here
 B\subset A means that  B is a substructure, in other words induced subgraph,
of  A.)

2.  H is said to be hereditary  L‐property if  H is a hereditary class which
is closed under isomorphism.
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3.  H^{c} is the class of finite  L‐structures which is not in  H.

4. Th  (H)=\{\forall x_{1}, x_{n}(x_{1}\ldots x_{n}\not\cong B) : B\in H^{c}, 
n\in\omega\}.

Notice that Th(H) is a set of first order  L‐sentences and for any finite
 L‐structure  A,  A satisfies Th(H) if and only if  A\in H . To see this, suppose
 A\in H . If  A contains a substructure  B\in H^{c} , then  B must be in  H since  H

is hereditary, which implies a contradiction. Hence every substructure of  A

cannot be in  H^{c} . The converse is immediate.

Remark 5. Let  A be a finite  L‐structure. If there is infinite  M\models Th(H)
with  A\subset M then  A\in H . However, the converse is not always true. For
example, let  H be the class of every finite graph  G such that if  |G|>2 then
 G has no edge. In this case  K_{2}\in H but there is no infinite  M\models Th(H)
containing  K_{2}.

Remark 6. Let  T be an  L‐theory and  \varphi  (x_{0}, , x_{r}) be an  L‐formula. It is
known that the following are equivalent:

1. There is an infinite model  M\models T such that  C_{\varphi}=\{\varphi(a, M^{r}) : a\in M\}
has VC ‐dimension  \infty.

2.  \varphi has Independent Property(IP).
3. There is an infinite model  M\models T and  A_{t}\subset M(i<r) such that

 (A_{0}, \ldots, A_{r-1};\varphi) is isomorphic to the  r‐partite random  r‐hypergraph.

Definition 7. We define the VC ‐dimension  d of an  (r+1)‐ary formula
 \varphi(x_{0}, \ldots, x_{r}) by the VC ‐dimension of  C_{\varphi} in in Remark 6. Hence  \varphi(x_{0}, \ldots, x_{r})
has infinite VC ‐dimension if and only if one of the conditions in Remark 6
holds.

It is easy to see that if a formula  \varphi(x_{0}, \ldots, x_{r}) is given by adding dummy
variables to a formula  \psi(x_{0}, .., x_{k}) with  k<r , then  \varphi has finite  VC_{r^{-}}
dimension. It is also known that if  \varphi is given as a boolean combination
of formulas with finite VC ‐dimension, then  \varphi also has finite VC ‐dimension.

2 A proof of the main theorem

In this section, we give a proof of the following:

Theorem 8. Let  L be a finite relational language with maximum arity  r.

Let  H be a hereditary  L‐property. Then either
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1. Every relation  R\in L has finite  VC_{r-1} ‐dimension in Th(H) and there
is  \epsilon>0 such that  |H_{n}|<2^{n^{r-\epsilon}} for sufficiently large  n.

2. Some relation  R\in L has infinite  VC_{r-1} ‐dimension in Th(H) and there
is a constant  C>0 such that  |H_{n}|\geq 2^{n^{Cr}} for every  n.

Moreover,  \epsilon depends only on  r and the maximum number  d of  VC_{r-1^{-}}
dimensions of  R\in L

Before starting the proof, we need some definitions.

Definition 9. Let  H be a hereditary  L‐property.

1. Let  R\in L and  A\in H . An restricted structure  A|R is the  \{R\}‐structure

which is obtained by forgetting other relations on  A.

2.  H|R=\{A|R:A\in H\}.

3. For each  R\in L with arity  r , we put  C(R)=\{f(R)\subset\omega^{r} :  f :   Marrow\omega

is an injection,  M\models Th(H) }, where  f(R)=\{(f(a_{0}), \ldots, f(a_{r-1})) :
 R(a_{0}, \ldots, a_{r-1}) holds}.

Remark 10. Let  H be a hereditary  L‐property and  L=\{R_{0}, , R_{k-1}\} . The
following are easy to check.

1. If  L=\{R\} , then  |H_{n}|=|\mathcal{C}(R)|[n]^{r}|\leq\pi_{C(R)}(n) .

2.  |(H|R_{0})_{n}|\leq|H_{n}|\leq|(H|R_{0})_{n}|\cross  \cross|(H|R_{k-1})_{n}|.

Now we prove the main theorem.

Proof. Suppose that  R\in L has infinite  VC_{r-1} ‐dimension. By Remark 6 and
the subsequent discussion, we can assume

 \bullet  R is  r‐ary relation,

 \bullet there is  M\models Th(H) and  A_{i}\subset M(i<r) such that  (A_{0}, \ldots, A_{r}-{\imath};R) is

isomorphic to the  r‐partite random  r‐hypergraph.

We show that for any  n,  |H_{n}|\geq 2^{m^{r}} where   \frac{n}{r}\geq m\in\omega . Suppose  rm\leq n.

By the second item of Remark 10, we can assume  L=\{R\} . Let  X=

 X_{0}U\ldots UX_{r-1} be a set of (  r‐partite) verticies such that  |X_{i}|=m for all  i<r.

The number of  r‐partite  r‐uniform hypergraph on  X is  2^{M^{r}} , since edges  R is
determined as a subset of  \Pi_{x}X_{i} . Since every  r‐partite  r‐uniform hypergraph
 (X, R) can be embeddable into the  r‐partite random  r‐hypergraph,  (X, R)\models
 Th(H) . Hence  n\geq rm=|X| implies that  |H_{n}|\geq 2^{m^{r}}
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Conversely, suppose that every  R\in L has finite  VC_{r-1} ‐dimension  \leq d

(if it is needed, by adding dummy variable). We’ll show that there is  \epsilon=

 \epsilon(r, d)>0 such that  |H_{n}|\leq 2^{n^{r-\epsilon}} for sufficiently large  n . Again by Remark
10, we can assume  L=\{R(x_{0}, \ldots, x_{r-1})\} and  |H_{n}|=\pi_{C(R)}(n) . Suppose that

there is no  \epsilon>0 such that  \pi_{C(R)}(n)\geq 2^{n^{r-\epsilon}} for sufficiently large  n . Then by
Fact 3,  \mathcal{C}(R) must have infinite VC ‐dimension and hence for every  n there
is a box   A_{0}\cross  \cross A_{r-1}\subset\omega^{r} of size  n which is shattered by  C(R) . This
means, by the definition of  C(R) , (by adding edges on each part if necessary)
every  r‐partite  r‐uniform hypergraph satisfies Th(H) . By the compactness
theorem, there is  M\models Th(H) and  A_{\iota}\subset M(i<r) such that  (A_{0}, \ldots, A_{r-1};R)
is isomorphic to the  r‐partite random  r‐hypergraph. This contradicts to the
finiteness of  VC_{r-1}‐dimension of R.  \square 
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