Definable sets in weakly o-minimal structures with the strong cell decomposition property

近畿大学・工学部 田中 広志 Hiroshi Tanaka Faculty of Engineering, Kindai University

Abstract

In this paper, we study the definable sets in weakly o-minimal structures with the strong cell decomposition property.

Throughout this paper, "definable" means "definable possibly with parameters" and we assume that a structure $\mathcal{M} = (M, <, ...)$ is a dense linear ordering < without endpoints.

A subset A of M is said to be convex if $a, b \in A$ and $c \in M$ with a < c < bthen $c \in A$. Moreover if $A = \emptyset$ or inf A, $\sup A \in M \cup \{-\infty, +\infty\}$, then A is called an *interval* in M. We say that \mathcal{M} is *o-minimal* (weakly *o-minimal*) if every definable subset of M is a finite union of intervals (convex sets), respectively. A theory T is said to be weakly *o-minimal* if every model of T is weakly *o-minimal*. The reader is assumed to be familiar with fundamental results of *o-minimality* and weak *o-minimality*; see, for example, [1], [2], [3], or [5].

For any subsets C, D of M, we write C < D if c < d whenever $c \in C$ and $d \in D$. A pair $\langle C, D \rangle$ of non-empty subsets of M is called a *cut* in Mif $C < D, C \cup D = M$ and D has no lowest element. A cut $\langle C, D \rangle$ is said to be *definable* in \mathcal{M} if the sets C, D are definable in \mathcal{M} . The set of all cuts

²⁰¹⁰ Mathematics Subject Classification. 03C64.

Key Words and Phrases. Weakly o-minimal, cell decomposition and strongly continuous.

definable in \mathcal{M} will be denoted by $\overline{\mathcal{M}}$. Note that we have $M = \overline{\mathcal{M}}$ if \mathcal{M} is o-minimal. We define a linear ordering on $\overline{\mathcal{M}}$ by $\langle C_1, D_1 \rangle < \langle C_2, D_2 \rangle$ if and only if $C_1 \subsetneq C_2$. Then we may treat $(\mathcal{M}, <)$ as a substructure of $(\overline{\mathcal{M}}, <)$ by identifying an element $a \in \mathcal{M}$ with the definable cut $\langle (-\infty, a], (a, +\infty) \rangle$.

We equip $M(\overline{M})$ with the *interval topology* (the open intervals form a base), and each product $M^n(\overline{M}^n)$ with the corresponding product topology, respectively.

Recall the notion of definable functions from [5]. Let n be a positive integer and $A \subseteq M^n$ definable. A function $f: A \to \overline{M}$ is said to be *definable* if the set $\{\langle x, y \rangle \in M^{n+1} : x \in A, y < f(x)\}$ is definable. A function $f: A \to \overline{M} \cup \{-\infty, +\infty\}$ is said to be *definable* if f is a definable function from A to \overline{M} , $f(x) = -\infty$ for all $x \in A$, or $f(x) = +\infty$ for all $x \in A$.

Recall the notion of (refined) strong cells from [6].

Definition 1. Suppose that $\mathcal{M} = (M, <, ...)$ is a weakly o-minimal structure. For each positive integer n, we inductively define (*refined*) strong cells in \mathcal{M}^n and their completions in $\overline{\mathcal{M}}^n$.

- (1) A one-element subset of M is called a *strong* 0-*cell* in M. If $C \subseteq M$ is a strong 0-cell, then its completion $\overline{C} := C$.
- (2) A non-empty definable convex open subset of M is called a *strong* 1-*cell* in M. If $C \subseteq M$ is a strong 1-cell, then its completion $\overline{C} := \{x \in \overline{M} : (\exists a, b \in C) (a < x < b)\}.$

Assume that k is a non-negative integer, and strong k-cells in M^n and their completions in \overline{M}^n are already defined.

- (3) Let $C \subseteq M^n$ be a strong k-cell in M^n and $f : C \to M$ is a definable continuous function which has a continuous extension $\overline{f} : \overline{C} \to \overline{M}$. Then the graph $\Gamma(f)$ is called a *strong k-cell* in M^{n+1} and its completion $\overline{\Gamma(f)} := \Gamma(\overline{f})$.
- (4) Let $C \subseteq M^n$ be a strong k-cell in M^n and $g, h : C \to \overline{M} \cup \{-\infty, +\infty\}$ are definable continuous functions which have continuous extensions $\overline{g}, \overline{h} : \overline{C} \to \overline{M} \cup \{-\infty, +\infty\}$ such that

- (a) each of the functions g, h assumes all its values in one of the sets $M, \overline{M} \setminus M, \{\infty\}, \{-\infty\},\$
- (b) $\overline{g}(x) < \overline{h}(x)$ for all $x \in \overline{C}$.

Then the set

$$(g,h)_C := \{ \langle a,b \rangle \in C \times M : g(a) < b < h(a) \}$$

is called a strong (k + 1)-cell in M^{n+1} . The completion of $(g, h)_C$ is defined as

$$\overline{(\overline{g},h)_C} := \{ \langle a,b \rangle \in \overline{C} \times \overline{M} : \overline{g}(a) < b < \overline{h}(a) \}.$$

(5) Let C be a subset of M^n . The set C is called a *strong cell* in M^n if there exists some non-negative integer k such that C is a strong k-cell in M^n .

Let C be a strong cell of M^n . A definable function $f: C \to \overline{M}$ is said to be *strongly continuous* if f has a continuous extension $\overline{f}: \overline{C} \to \overline{M}$. A function which is identically equal to $-\infty$ or $+\infty$, and whose domain is a strong cell is also said to be *strongly continuous*.

Definition 2. Let $\mathcal{M} = (M, <, ...)$ be a weakly o-minimal structure. For each positive integer n, we inductively define a *strong cell decomposition* (or a *decomposition into strong cells*) in M^n of a non-empty definable set $A \subseteq M^n$.

- (1) If $A \subseteq M$ is a non-empty definable set and $\mathcal{D} = \{C_1, \ldots, C_k\}$ is a partition of A into strong cells in M, then \mathcal{D} is called a *decomposition* of A into strong cells in M.
- (2) Suppose that $A \subseteq M^{n+1}$ is a non-empty definable set and $\mathcal{D} = \{C_1, \ldots, C_k\}$ is a partition of A into strong cells in M^{n+1} . Then \mathcal{D} is called a *de-composition of* A *into strong cells* in M^{n+1} if $\{\pi(C_1), \ldots, \pi(C_k)\}$ is a decomposition of $\pi(A)$ into strong cells in M^n , where $\pi: M^{n+1} \to M^n$ is the projection on the first n coordinates.

Definition 3. Let $\mathcal{M} = (M, <, ...)$ be a weakly o-minimal structure and n a positive integer. Suppose that $A, B \subseteq M^n$ are definable sets, $A \neq \emptyset$ and \mathcal{D} is a decomposition of A into strong cells in M^n . We say that \mathcal{D} partitions B if for each strong cell $C \in \mathcal{D}$, we have either $C \subseteq B$ or $C \cap B = \emptyset$.

Definition 4. A weakly o-minimal structure $\mathcal{M} = (M, <, ...)$ is said to have the strong cell decomposition property if for any positive integers k, nand any definable sets $A_1, \ldots, A_k \subseteq M^n$, there exists a decomposition of M^n into strong cells partitioning each of the sets A_1, \ldots, A_k .

Let \mathcal{C}, \mathcal{D} be strong cell decompositions of M^m . We denote $\mathcal{C} \prec \mathcal{D}$ if every strong cell of \mathcal{D} is a subset of some strong cell of \mathcal{C} . Then, the relation \prec is a partial order on the family of all strong cell decompositions of M^m .

Lemma 5 ([6, Fact 2.1]). If $X_1, \ldots, X_k \subseteq M^m$ are definable sets, then there exists the smallest strong cell decomposition C of M^m partitioning each of X_1, \ldots, X_k .

Definition 6 ([4, Definition 3.1]). Let X be a definable subset of M^m and \mathcal{C} the smallest strong cell decomposition of M^m partitioning X. Then we set the completion of X in \overline{M}^m as $\overline{X} := \bigcup \{\overline{C} : C \in \mathcal{C} \land C \subseteq X\}$.

Let $\mathcal{M} = (M, <, +, ...)$ be a weakly o-minimal expansion of an ordered abelian group (M, <, +). Then, the weakly o-minimal structure \mathcal{M} is said to be *non-valuational* if for any definable cut $\langle C, D \rangle$ we have $\inf\{d - c : c \in C, d \in D\} = 0$.

Then, the following facts hold.

Fact 7 ([5, Fact 2.5]). Let $\mathcal{M} = (M, <, ...)$ be a weakly o-minimal structure with the strong cell decomposition property. Suppose that $X \subseteq M^n$ is definable and $f: X \to \overline{M}$ is definable. Then, there is a decomposition \mathcal{D} of Xinto strong cells in M^n such that for every $D \in \mathcal{D}$,

- 1. $f|_D$ assumes all its values in one of the sets $M, \overline{M} \setminus M$,
- 2. $f|_D$ is strongly continuous.

Fact 8 ([5, Corollary 2.16]). Let $\mathcal{M} = (M, <, +, ...)$ be a weakly o-minimal expansion of an ordered abelian group (M, <, +). Then the following conditions are equivalent.

- 1. \mathcal{M} is non-valuational.
- 2. *M* has the strong cell decomposition property.

Let \mathcal{M} be a weakly o-minimal structure with the strong cell decomposition property. For any strong cell $C \subseteq M^m$, we denote by \overline{R}_C the *m*-ary relation determined by \overline{C} , i.e. if $a \in \overline{M}^m$, then $\overline{R}_C(a)$ holds iff $a \in \overline{C}$. We define the structure $\overline{\mathcal{M}} := (\overline{M}, <, (\overline{R}_C : C \text{ is a strong cell}))$. The following fact is known.

Fact 9 ([5]). Let \mathcal{M} be a weakly o-minimal structure with the strong cell decomposition property. Then, $\overline{\mathcal{M}}$ is o-minimal, and every set $X \subseteq \overline{\mathcal{M}}^m$ definable in $\overline{\mathcal{M}}$ is a finite Boolean combination of completions of strong cells in \mathcal{M}^m .

Remark 10. Let $\mathcal{M} = (M, <, ...)$ be a weakly o-minimal structure with the strong cell decomposition property. Then, the following hold.

- 1. There exist strong cells C, D_1, D_2 such that $C = D_1 \cup D_2$ but $\overline{C} \neq \overline{D}_1 \cup \overline{D}_2$.
- 2. There exist strong cells C, D such that $C \subseteq D$ but $\overline{C} \not\subseteq \overline{D}$.

Proposition 11. Let $\mathcal{M} = (M, <, ...)$ be a weakly o-minimal structure with the strong cell decomposition property. Then, there exist some strong cells C, D and some strongly continuous function $f : D \to \overline{M}$ such that $C \subseteq D$ and $f|_C : C \to \overline{M}$ is not strongly continuous.

References

 M. Coste, An introduction to o-minimal geometry, Dottorato di Ricerca in Matematica, Dip. Mat. Univ. Pisa, Istituti Editoriali e Poligrafici Internazionali (2000).

- [2] L. van den Dries, Tame topology and o-minimal structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] D. Macpherson, D. Marker and C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5435–5483.
- [4] S. Tari, Some definable properties of sets in non-valuational weakly ominimal structures, Arch. Math. Logic (2017), no. 56, 309–317.
- [5] R. Wencel, Weakly o-minimal non-valuational structures, Ann. Pure Appl. Logic 154 (2008), no. 3, 139–162.
- [6] R. Wencel, On the strong cell decomposition property for weakly ominimal structures, MLQ Math. Log. Q. 59 (2013), no. 6, 452–470.