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Double of boundary singularity of stable map
from 3‐manifold with boundary to 2‐manifold

Kazuto Takao

1 Introduction

We consider singularities of the smooth map obtained as the “double” of a stable map
from a 3‐manifold with boundary to a 2‐manifold without boundary. Still, we restrict
our attention to local theory, and hence take a map between Euclidean spaces. Let
 (x, y, z) be a coordinate system of  \mathbb{R}^{3} , let  \mathbb{R}_{>0}^{3} denote the half space  \{z\geq 0\} in  \mathbb{R}^{3} , and
let  f:\mathbb{R}_{\geq 0}^{3}arrow \mathbb{R}^{2} be a smooth map. By the “‐double” of  f , we mean the map  F:\mathbb{R}^{3}arrow \mathbb{R}^{2}

defined as  F(x, y, z)=f(x, y, z^{2}) , which is clearly smooth. Note that, in the exterior of
 \partial \mathbb{R}_{\geq 0}^{3} , the transformation:  (x, y, z)\mapsto(x, y, z^{2}) is diffeomorphic at each point, and hence,
the doubled map  F inherits the types of singularities from the original map  f . It might be
naively hoped that, if a point  p in  \partial \mathbb{R}_{\geq 0}^{3} is a stable boundary singular point of  f , then  p is
a stable singular point of  F . In this paper, we prove it for some types of stable boundary
singular points, and disprove it for the other type.

Proposition 1. With the above notation, we have the following.

 \bullet If  p is a boundary regular point of  f , then  p is a regular point of  F.

 \bullet If  p is a boundary definite fold point of  f , then  p is a definite fold point of  F.

 e If  p is a boundary indefinite fold point of  f , then  p is an indefinite fold point of  F.

 e If  p is a boundary cusp point of  f , then  p is a cusp point of  F.

 \bullet If  p is a  \Sigma_{1,0}^{2,0} point of  f , then  p is an unstable singular point of  F.
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2 Preliminaries

In this section, we review standard definitions and facts with the following notation.
Let  M be a 3‐dimensional  C^{\infty} manifold possibly with boundary,  N be a 2‐dimensional
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 C^{\infty} manifold without boundary, and  f:Marrow N be a  C^{\infty} map. Let  p be a point in  M,
and  U be a sufficiently small neighborhood of  p in  M.

Singularity and boundary singularity are defined as follows. The point  p is said to be
a regular point of  f if the differential  (df)_{p}:T_{p}Marrow T_{f(p)}N is surjective, and a singular
point of  f otherwise. The point  p is said to be a boundary regular point of  f if  p\in\partial M
and the differential  (d(f|_{\partial M}))_{p}:T_{p}\partial Marrow T_{f(p)}N is surjective, and a boundary singular
point of  f otherwise. The set of singular points (resp. boundary singular points) of  f is
called the singular set (resp. the boundary singular set) of  f , and denoted by  S(f) (resp.
 S(f|_{\partial M})) .

Fold singularity is defined as follows. The point  p is said to be a fold point of  f if
there are a local coordinate system  (u, v, w) of  M and one of  N with respect to which
 p=(0,0,0),  f(p)=(0,0) and  f(u, v, w)=(u, v^{2}+\varepsilon w^{2}) for  \varepsilon\in\{1, -1\} . In particular,
the fold point  p is said to be definite if  \varepsilon=1 , and indefinite if  \varepsilon=-1 . If  p is an interior
point of  M , the singular set  S(f)\cap U is a regular arc which passes through  p and consists
only of fold points.

Cusp singularity is defined as follows. The point  p is said to be a cusp point of  f if
there are a local coordinate system  (u, v, w) of  M and one of  N with respect to which
 p=(0,0,0),  f(p)=(0,0) and  f(u, v, w)=(u, v^{3}+uv+w^{2}) . If  p is an interior point of
 M , the singular set  S(f)\cap U is a regular arc which passes through  p and consists only of
fold points except for the cusp point  p.

Boundary fold singularity is defined as follows. The point  p is said to be a boundary
fold point of  f if there are a local coordinate system  (u, v, w) of  M and one of  N with
respect to which  p=(0,0,0),  f(p)=(0,0),  M=\{w\geq 0\} and  f(u, v, w)=(u, v^{2}+\varepsilon w)
for  \varepsilon\in\{1, -1\} . In particular, the boundary fold point  p is said to be definite if  \varepsilon=1,
and indefinite if  \varepsilon=-1 . Note that  p is a boundary singular point but a regular point of
 f . The singular set  S(f)\cap U is empty, and the boundary singular set  S(f|_{\partial M})\cap U is a
regular arc which passes through  p and consists only of boundary fold points.

Boundary cusp singularity is defined as follows. The point  p is said to be a boundary
cusp point of  f if there are a local coordinate system  (u, v, w) of  M and one of  N with re‐
spect to which  p=(0,0,0),  f(p)=(0,0),  M=\{w\geq 0\} and  f(u, v, w)=(u, v^{3}+uv+w) .
Note that  p is a boundary singular point but a regular point of  f . The singular set  S(f)\cap U
is empty, and the boundary singular set  S(f|_{\partial M})\cap U is the regular arc  \{3v^{2}+u=w=0\}.
This arc passes through  p , and consists only of boundary fold points except for the bound‐
ary cusp point  p.

 \Sigma 2ı,’00 singularity is defined as follows. The point  p is said to be a  \Sigma_{1,0}^{2,0} point of  f if
there are a local coordinate system  (u, v, w) of  M and one of  N with respect to which
 p=(0,0,0),  f(p)=(0,0),  M=\{w\geq 0\} and  f(u, v, w)=(u, v^{2}+uw+\varepsilon w^{2}) for  \varepsilon\in

 \{1, -1\} . Note that  p is a boundary singular point and a fold point of  f . The singular set
 S(f)\cap U is a regular arc which has an endpoint at  p and consists only of fold points. The
boundary singular set  S(f|_{\partial M})\cap U is a regular arc which passes through  p and consists
only of boundary fold points except for the  \Sigma_{1,0}^{2,0} point  p.

The above singularities and boundary singularities are stable. Suppose that  f is a
stable map (see [1] for example). It is well known that any singular point of  f is either a
fold point or a cusp point. It follows from the results of Martins‐Nabarro [2] and Shibata
[5] that any boundary singular point of  f is either a boundary fold point, a boundary
cusp point, or a  \Sigma_{1,0}^{2,0} point. We refer the reader to [3] for more information.
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Fold and cusp singularities can be recognized with the following criteria. Suppose that
 p is an interior point of  M , and  f has a local form:  f(x)=(f_{1}(x), f_{2}(x)) for  x\in U such
that  (df_{{\imath}})_{p}.\neq(0,0,0) and  (df_{2})_{p}=(0,0,0) . This implies that  ker(df)_{p} has dimension 2.
For  C^{\infty} vector fields  \xi_{1} and  \xi_{2} on  U , let  H_{\xi_{1},\xi_{2}}f_{2} denote the matrix

 (\begin{array}{ll}
\xi_{1}\xi_{1}f_{2}   \xi_{1}\xi_{2}f_{2}
\xi_{2}\xi_{1}f_{2}   \xi_{2}\xi_{2}f_{2}
\end{array})
Provided that the vectors  (\xi_{1})_{p} and  (\xi_{2})_{p} are linearly independent, we regard  (H_{\xi_{{\imath}},\xi_{2}}f_{2})_{p}
as representing a linear transformation of  \langle(\xi_{1})_{p},  (\xi_{2})_{p}\rangle with respect to the basis

 ((\xi_{1})_{p}, (\xi_{2})_{p}) . This allows us to treat  ker(H_{\xi_{1},\xi_{2}}f_{2})_{p} as a subspace of  \langle(\xi_{1})_{p},  (\xi_{2})_{p}\rangle.
Saji [4] gave criteria for recognizing general Morin singularities, and the following are
those in special cases.

Theorem 2 (Saji). The point  p is a fold point of  f if there exist  C^{\infty} vector fields  \eta_{1} and
 \eta_{2} on  U such that

 \bullet ker(df)_{p}=\langle(\eta_{1})_{p},  (\eta_{2})_{p}\rangle,
 \bullet ker(H_{\eta_{1},\eta_{2}}f_{2})_{p}=\{0\}.

Moreover, the fold point  p is definite (resp. indefinite) if  (H_{\eta_{1},\eta_{2}}f_{2})_{p} has eigenvalues of
definite (resp. indefinite) sign.

Theorem 3 (Saji). The point  p is a cusp point of  f if there exist  C^{\infty} vector fields  \eta_{1} and
 \eta_{2} on  U such that

 \bullet ker(df)_{p}=\langle(\eta_{1})_{p},  (\eta_{2})_{p}\rangle,
 \bullet  (\eta_{1})_{q}\in ker(df)_{q} for  q\in S(f)\cap U,

 \bullet ker(H_{\eta_{1},\eta_{2}}f_{2})_{p}=\langle(\eta_{1})_{p}\rangle,
 \bullet(d(\eta_{1}f_{2}))_{p}\neq(0,0,0) ,

 \bullet(\eta_{1}\eta_{1}\eta_{1}f_{2})_{p}\neq 0.

3 Proof

In this section, we give a proof of Proposition 1. We use the notation of Introduction.

3.1 Regular case

The first assertion of the proposition can be proved almost immediately as follows.
Suppose that  p is a boundary regular point of  f . By the definition, the differential

 (d(f|_{\partial R_{\geq 0}^{3}}))_{p} is surjective. Since  \partial \mathbb{R}_{\geq 0}^{3}=\{z=0\} and  F(x, y, z)=f(x, y, z^{2}) , the maps

 f and  F coincide in  \partial \mathbb{R}_{\geq 0}^{3} , and hence  (d(F|_{\partial \mathbb{R}_{\geq 0}^{3}}))_{p} is surjective. It implies that  (dF)_{p}
is also surjective. Thus,  p is a regular point of  F.
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3.2 Fold case

In this subsection, we give proofs of the second and third assertions of the proposition.
Suppose that  p is a boundary fold point of  f.

The original map and the doubled map have local forms as follows. On one hand,
there are local coordinate systems  (u, v, w) and  (\mathcal{S}, t) of  \mathbb{R}^{3} and  \mathbb{R}^{2} , respectively, with
respect to which  p=(0,0,0),  f(p)=(0,0),  \mathbb{R}_{>0}^{3}=\{w\geq 0\} and  f(u, v, w)=(u, v^{2}+\varepsilon w) ,
where  \varepsilon=1 if the boundary fold point  p is defi‐nite and  \varepsilon=-1 if indefinite. On the other
hand,  F(x, y, z)=f(x, y, z^{2}) with respect to the coordinate system  (x, y, z) of  \mathbb{R}^{3} . We
may suppose that  p=(0,0,0) with respect to  (x, y, z) . Suppose that  F has a local form:
 F(x, y, z)=(F_{1}(x, y, z), F_{2}(x, y, z)) with respect to  (x, y, z) and  (\mathcal{S}, t) .

The relevant coordinate systems are related as follows. There is a coordinate trans‐
formation:  (x, y, z)\mapsto(u(x, y, z), v(x, y, z), w(x, y, z)) . Since  \{z\geq 0\}=\{w\geq 0\} and

 p\in\{z=0\}=\{w=0\} , the transformation satisfies the conditions that

 ( \frac{\partial u}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}-(\frac{
\partial u}{\partial y})_{p}(\frac{\partial v}{\partial x})_{p}\neq 0,
 ( \frac{\partial w}{\partial x})_{p}=(\frac{\partial w}{\partial y})_{p}=(\frac
{\partial^{2}w}{\partial x^{2}})_{p}=(\frac{\partial^{2}w}{\partial y^{2}})_{p}=
(\frac{\partial^{2}w}{\partial x\partial y})_{p}=0,

 ( \frac{\partial w}{\partial z})_{p}>0.
In particular, the top inequality implies that

 (( \frac{\partial u}{\partial x})_{p}, (\frac{\partial u}{\partial y})_{p})\neq
(0,0) .

We calculate partial derivatives with respect to the coordinates as follows. Note that  F_{1}
and  F_{2} have the local forms:  F_{1}(x, y, z)=u(x, y, z^{2}) and  F_{2}(x, y, z)=(v^{2}+\varepsilon w)(x, y, z^{2}) ,
respectively, under the coordinate transformation:  (x, y, z)\mapsto(u, v, w) . By the chain rule,
for example,

  \frac{\partial F_{2}}{\partial z}(x, y, z)
 = \frac{\partial}{\partial z}((v^{2}+\varepsilon w)(x, y, z^{2}))
 =( \frac{\partial}{\partial z}x)((\frac{\partial}{\partial x}(v^{2}+\varepsilon
w))(x, y, z^{2}))+(\frac{\partial}{\partial z}y)((\frac{\partial}{\partial y}(v^
{2}+\acute{\varepsilon}w))(x, y, z^{2}))

 +( \frac{\partial}{\partial z}z^{2})((\frac{\partial}{\partial z}(v^{2}+
\varepsilon w))(x, y, z^{2}))
 =2z(( \frac{\partial}{\partial z}(v^{2}+\varepsilon w))(x, y, z^{2}))
 =2z((2v \frac{\partial v}{\partial z}+\varepsilon\frac{\partial w}{\partial z})
(x, y, z^{2})) ,
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  \frac{\partial^{2}F_{2}}{\partial z^{2}}(x, y, z)
 = \frac{\partial}{\partial z}(2z((2v\frac{\partial v}{\partial z}+
\varepsilon\frac{\partial w}{\partial z})(x, y, z^{2})))
 =2(2v \frac{\partial v}{\partial z}+\varepsilon\frac{\partial w}{\partial z})
(x, y, z^{2})+2z\frac{\partial}{\partial z}((2v\frac{\partial v}{\partial z}+
\varepsilon\frac{\partial w}{\partial z})(x, y, z^{2}))
 =2(2v \frac{\partial v}{\partial z}+\varepsilon\frac{\partial w}{\partial z})
(x, y, z^{2})+4z^{2}((\frac{\partial}{\partial z}(2v\frac{\partial v}{\partial 
z}+\varepsilon\frac{\partial w}{\partial z}))(x, y, z^{2}))
 =2(2v \frac{\partial v}{\partial z}+\varepsilon\frac{\partial w}{\partial z})
(x, y, z^{2})+4z^{2}((2(\frac{\partial v}{\partial z})^{2}+2v\frac{\partial^{2}
v}{\partial z^{2}}+\varepsilon\frac{\partial^{2}w}{\partial z^{2}})(x, y, z^{2})
) ,

and similarly,

  \frac{\partial F_{1}}{\partial x}(x, y, z)=\frac{\partial u}{\partial x}(x, y,
z^{2}) ,

  \frac{\partial F_{1}}{\partial y}(x, y, z)=\frac{\partial u}{\partial y}(x, y,
z^{2}) ,

  \frac{\partial F_{1}}{\partial z}(x, y, z)=2z(\frac{\partial u}{\partial z}(x,
y, z^{2})) ,

  \frac{\partial F_{2}}{\partial x}(x, y, z)=(2v\frac{\partial v}{\partial x}+
\varepsilon\frac{\partial w}{\partial x})(x, y, z^{2}) ,

  \frac{\partial F_{2}}{\partial y}(x, y, z)=(2v\frac{\partial v}{\partial y}+
\varepsilon\frac{\partial w}{\partial y})(x, y, z^{2}) ,

  \frac{\partial^{2}F_{2}}{\partial x^{2}}(x, y, z)=(2(\frac{\partial v}
{\partial x})^{2}+2v\frac{\partial^{2}v}{\partial x^{2}}+s\frac{\partial^{2}w}
{\partial x^{2}})(x, y, z^{2}) ,

  \frac{\partial^{2}F_{2}}{\partial y^{2}}(x, y, z)=(2(\frac{\partial v}
{\partial y})^{2}+2v\frac{\partial^{2}v}{\partial y^{2}}+
\varepsilon\frac{\partial^{2}w}{\partial y^{2}})(x, y, z^{2}) ,

  \frac{\partial^{2}F_{2}}{\partial x\partial y}(x, y, z)=(2\frac{\partial v}
{\partial x}\frac{\partial v}{\partial x}+2v\frac{\partial^{2}v}{\partial 
x\partial y}+\varepsilon\frac{\partial^{2}w}{\partial x\partial y})(z, y, z^{2}) ,

  \frac{\partial^{2}F_{2}}{\partial x\partial z}(x, y, z)=2z((2\frac{\partial v}
{\partial x}\frac{\partial v}{\partial z}+2v\frac{\partial^{2}v}{\partial 
x\partial z}+\varepsilon\frac{\partial^{2}w}{\partial x\partial z})(x, y, z^{2})
) ,

  \frac{\partial^{2}F_{2}}{\partial y\partial z}(x, y, z)=2z((2\frac{\partial v}
{\partial y}\frac{\partial v}{\partial z}+2v\frac{\partial^{2}v}{\partial 
y\partial z}+\varepsilon\frac{\partial^{2}w}{\partial y\partial z})(x, y, z^{2})
) .

Since  p=(0,0,0) with respect to both  (x, y, z) and  (u, v, w) , for example,

 ( \frac{\partial^{2}F_{2}}{\partial x^{2}})_{p}=(2(\frac{\partial v}{\partial 
x})^{2}+2v\frac{\partial^{2}v}{\partial x^{2}}+\varepsilon\frac{\partial^{2}w}
{\partial x^{2}})(0,0,0^{2})
 =2( \frac{\partial v}{\partial x})_{p}^{2}+2\cdot 0(\frac{\partial^{2}v}
{\partial x^{2}})_{p}+\varepsilon(\frac{\partial^{2}w}{\partial x^{2}})_{p}=
2(\frac{\partial v}{\partial x})_{p}^{2}
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and similarly,

 ( \frac{\partial F_{1}}{\partial x})_{p}=(\frac{\partial u}{\partial x})_{p}
 ( \frac{\partial F_{1}}{\partial y})_{p}=(\frac{\partial u}{\partial y})_{p}

 ( \frac{\partial^{2}F_{2}}{\partial y^{2}})_{p}=2(\frac{\partial v}{\partial y}
)_{p}^{2}
 ( \frac{\partial^{2}F_{2}}{\partial z^{2}})_{p}=2\varepsilon(\frac{\partial w}{
\partial z})_{p}

 ( \frac{\partial^{2}F_{2}}{\partial x\partial y})_{p}=2(\frac{\partial v}
{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}
 ( \frac{\partial F_{{\imath}}}{\partial z})_{p}=(\frac{\partial F_{2}}{\partial
x})_{p}=(\frac{\partial F_{2}}{\partial y})_{p}=(\frac{\partial F_{2}}{\partial 
z})_{p}=(\frac{\partial^{2}F_{2}}{\partial x\partial z})_{p}=(\frac{\partial^{2}
F_{2}}{\partial y\partial z})_{p}=0.

We choose a pair of vector fields and calculate derivatives with respect to them as
follows. Let  \eta_{1} and  \eta_{2} be  C^{\infty} vector fields on  U as

  \eta_{1}=(\frac{\partial u}{\partial y})_{p}\frac{\partial}{\partial x}-(\frac
{\partial u}{\partial x})_{p}\frac{\partial}{\partial y},
  \eta_{2}=\frac{\partial}{\partial z}.

Noting that the coefficients of  \eta_{1} are constants,

  \eta_{1}F_{2}=(\frac{\partial u}{\partial y})_{p}\frac{\partial F_{2}}
{\partial x}-(\frac{\partial u}{\partial x})_{p}\frac{\partial F_{2}}{\partial 
y},
 \etal  \eta ı   F_{2}=((\frac{\partial u}{\partial y})_{p}\frac{\partial}{\partial x}-
(\frac{\partial u}{\partial x})_{p}\frac{\partial}{\partial y})((\frac{\partial 
u}{\partial y})_{p}\frac{\partial F_{2}}{\partial x}-(\frac{\partial u}{\partial
x})_{p}\frac{\partial F_{2}}{\partial y})

 =( \frac{\partial u}{\partial y})_{p}^{2}\frac{\partial^{2}F_{2}}{\partial 
x^{2}}-2(\frac{\partial u}{\partial x})_{p}(\frac{\partial u}{\partial y})_{p}
\frac{\partial^{2}F_{2}}{\partial x\partial y}+(\frac{\partial u}{\partial x})
_{p}^{2}\frac{\partial^{2}F_{2}}{\partial y^{2}}.
By the results of the previous paragraph,

 ( \eta_{1}F_{2})_{p}=(\frac{\partial u}{\partial y})_{p}(\frac{\partial F_{2}}{
\partial x})_{p}-(\frac{\partial u}{\partial x})_{p}(\frac{\partial F_{2}}
{\partial y})_{p}=0,
 ( \eta_{{\imath}}\eta_{1}F_{2})_{p}=(\frac{\partial u}{\partial y})_{p}^{2}
(\frac{\partial^{2}F_{2}}{\partial x^{2}})_{p}-2(\frac{\partial u}{\partial x})_
{p}(\frac{\partial u}{\partial y})_{p}(\frac{\partial^{2}F_{2}}{\partial 
x\partial y})_{p}+(\frac{\partial u}{\partial x})_{p}^{2}(\frac{\partial^{2}
F_{2}}{\partial y^{2}})_{p}

 =2( \frac{\partial u}{\partial y})_{p}^{2}(\frac{\partial v}{\partial x})_{p}
^{2}-4(\frac{\partial u}{\partial x})_{p}(\frac{\partial u}{\partial y})_{p}
(\frac{\partial v}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}+
2(\frac{\partial u}{\partial x})_{p}^{2}(\frac{\partial v}{\partial y})_{p}^{2}
 =2(( \frac{\partial u}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}-
(\frac{\partial u}{\partial y})_{p}(\frac{\partial v}{\partial x})_{p})^{2}>0.
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Similarly, we can obtain that  (\eta_{1}F_{1})_{p}=(\eta_{2}F_{1})_{p}=(\eta_{2}F_{2})_{p}=(\eta_{1}\eta_{2}F_
{2})_{p}=(\eta_{2}\eta_{1}F_{2})_{p}=0
and

 ( \eta_{2}\eta_{2}F_{2})_{p}=(\frac{\partial^{2}F_{2}}{\partial z^{2}})_{p}=
2\varepsilon(\frac{\partial w}{\partial z})_{p}\neq 0.
We are now ready to complete the proofs. By the above,

 (dF_{1})_{p}=(( \frac{\partial F_{1}}{\partial x})_{p}, (\frac{\partial F_{1}}{
\partial y})_{p}, (\frac{\partial F_{1}}{\partial z})_{p})=((\frac{\partial u}
{\partial x})_{p}, (\frac{\partial u}{\partial y})_{p}, 0)\neq(0,0,0) ,

 (dF_{2})_{p}=(( \frac{\partial F_{2}}{\partial x})_{p}, (\frac{\partial F_{2}}{
\partial y})_{p}, (\frac{\partial F_{2}}{\partial z})_{p})=(0,0,0) .

Since  (\eta_{1})_{p} and  (\eta_{2})_{p} are linearly independent, and  (\eta_{1}F_{{\imath}})_{p}=(\eta_{2}F_{1})_{p}=(\eta_{1}F_{2})_{p}=
 (\eta_{2}F_{2})_{p}=0 , we obtain the condition that  ker(dF)_{p}=\langle(\eta_{1})_{p},  (\eta_{2})_{p}\rangle . The matrix

 (\begin{array}{ll}
(\eta_{1}\eta_{{\imath}}F_{2})_{p}   (\eta_{{\imath}}\eta_{2}F_{2})_{p}
(\eta_{2}\eta_{1}F_{2})_{p}   (\eta_{2}\eta_{2}F_{2})_{p}
\end{array}) ,

denoted by  (H_{\eta_{1},\eta_{2}}F_{2})_{p} , is equal to

 (^{2}(( \frac{\partial u}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}-0
(\frac{\partial u}{\partial y})_{p}(\frac{\partial v}{\partial x})_{p})^{2} 
2\varepsilon(\frac{\partial w}{\partial z})_{p}0) ,

which shows that  ker(H_{\eta_{1},\eta_{2}}F_{2})_{p}=\{0\} . By Theorem 2, the point  p is a fold point of  F.

Moreover, the fold point  p of  F is definite (resp. indefinite) if  \varepsilon>0 (resp.  \varepsilon<0 ), that is
to say, the boundary fold point  p of  f is definite (resp. indefinite).

3.3 Cusp case

In this subsection, we give a proof of the fourth assertion of the proposition. Suppose
that  p is a boundary cusp point of  f . Let  S(F) denote the singular set of  F , let  U be a
sufficiently small neighborhood of  p in  \mathbb{R}^{3} , and let  q be any point in  S(F)\cap U.

The original map and the doubled map have local forms as follows. On one hand, there
are local coordinate systems  (u, v, w) and  (\mathcal{S}, t) of  \mathbb{R}^{3} and  \mathbb{R}^{2} , respectively, with respect
to which  p=(0,0,0),  f(p)=(0,0),  \mathbb{R}_{\geq 0}^{3}=\{w\geq 0\} and  f(u, v, w)=(u, v^{3}+uv+w) .

On the other hand,  F(x, y, z)=f(x, y, z^{2}) with respect to the coordinate system  (x, y, z)
of  \mathbb{R}^{3} . We may suppose that  p=(0,0,0) with respect to  (x, y, z) . Suppose that  F has a
local form:  F(x, y, z)=(F_{1}(x, y, z), F_{2}(x, y, z)) with respect to  (x, y, z) and  (s, t) .

We detect the singular set of the doubled map as follows. Recall that the original map
 f has no singular points in  U . The doubled map  F inherits the regularity of  f in  U\backslash \partial \mathbb{R}_{\geq 0}^{3}.
Recall also that  f has only boundary regular points in  \partial R_{\geq 0}^{3}\backslash \{3v^{2}+u=w=0\} , and
only boundary fold points in  \{3v^{2}+u=w=0\}\backslash \{p\} . By the results of the previous
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subsections,  S(F)\cap U is either  \{3v^{2}+u=w=0\}\backslash \{p\} or  \{3v^{2}+u=w=0\} . Since the
singular set is a closed set in general, we conclude that  S(F)\cap U=\{3v^{2}+u=w=0\}.
Hence  q is possibly  p.

The relevant coordinate systems are related as follows. There is a coordinate trans‐
formation:  (x, y, z)\mapsto(u(x, y, z), v(x, y, z), w(x, y, z)) . Since  \{z\geq 0\}=\{w\geq 0\} and

 q\in\{z=0\}=\{w=0\} , the transformation satisfies the conditions that

 ( \frac{\partial u}{\partial x})_{q}(\frac{\partial v}{\partial y})_{q}-(\frac{
\partial u}{\partial y})_{q}(\frac{\partial v}{\partial x})_{q}\neq 0,
 ( \frac{\partial w}{\partial x})_{q}=(\frac{\partial w}{\partial y})_{q}=(\frac
{\partial^{2}w}{\partial x^{2}})_{q}=(\frac{\partial^{2}w}{\partial y^{2}})_{q}=
(\frac{\partial^{2}w}{\partial x\partial y})_{q}=0,

 ( \frac{\partial w}{\partial z})_{q}>0.
In particular, the top inequality implies that

 (( \frac{\partial u}{\partial x})_{q}, (\frac{\partial u}{\partial y})_{q})\neq
(0,0) .

We calculate partial derivatives with respect to the coordinates similarly to those in
the previous subsection. We can obtain that

  \frac{\partial F_{1}}{\partial x}(x, y, z)=\frac{\partial u}{\partial x}(x, y,
z^{2}) ,

  \frac{\partial F_{{\imath}}}{\partial y}(x, y, z)=\frac{\partial u}{\partial 
y}(x, y, z^{2}) ,

  \frac{\partial F_{1}}{\partial z}(x, y, z)=2z(\frac{\partial u}{\partial z}(x,
y, z^{2})) ,

  \frac{\partial F_{2}}{\partial x}(x, y, z)=(v\frac{\partial u}{\partial x}+
(3v^{2}+u)\frac{\partial v}{\partial x}+\frac{\partial w}{\partial x})(x, y, 
z^{2}) ,

  \frac{\partial F_{2}}{\partial y}(x, y, z)=(v\frac{\partial u}{\partial y}+
(3v^{2}+u)\frac{\partial v}{\partial y}+\frac{\partial w}{\partial y})(x, y, 
z^{2}) ,

  \frac{\partial F_{2}}{\partial z}(x, y, z)=2z((v\frac{\partial u}{\partial z}+
(3v^{2}+u)\frac{\partial v}{\partial z}+\frac{\partial w}{\partial z})(x, y, 
z^{2})) ,

  \frac{\partial^{2}F_{2}}{\partial x^{2}}(x, y, z)=(2\frac{\partial u}{\partial
x}\frac{\partial v}{\partial x}+v\frac{\partial^{2}u}{\partial x^{2}}+
6v(\frac{\partial v}{\partial x})^{2}+(3v^{2}+u)\frac{\partial^{2}v}{\partial x^
{2}}+\frac{\partial^{2}w}{\partial x^{2}})(x, y, z^{2}) ,

  \frac{\partial^{2}F_{2}}{\partial y^{2}}(x, y, z)=(2\frac{\partial u}{\partial
y}\frac{\partial v}{\partial y}+v\frac{\partial^{2}u}{\partial y^{2}}+
6v(\frac{\partial v}{\partial y})^{2}+(3v^{2}+u)\frac{\partial^{2}v}{\partial y^
{2}}+\frac{\partial^{2}w}{\partial y^{2}})(x, y, z^{2}) ,

  \frac{\partial^{2}F_{2}}{\partial z^{2}}(x, y, z)=2(v\frac{\partial u}
{\partial z}+(3v^{2}+u)\frac{\partial v}{\partial z}+\frac{\partial w}{\partial 
z})(x, y, z^{2})
 +4z^{2}(( \frac{\partial v}{\partial z}\frac{\partial u}{\partial z}+
v\frac{\partial^{2}u}{\partial z^{2}}+(6v\frac{\partial v}{\partial z}+
\frac{\partial u}{\partial z})\frac{\partial v}{\partial z}
 +(3v^{2}+u) \frac{\partial^{2}v}{\partial z^{2}}+\frac{\partial^{2}w}{\partial 
z^{2}})(x, y, z^{2})) ,
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  \frac{\partial^{2}F_{2}}{\partial x\partial y}(x, y, z)=(\frac{\partial u}
{\partial x}\frac{\partial v}{\partial y}+\frac{\partial u}{\partial y}
\frac{\partial v}{\partial x}+v\frac{\partial^{2}u}{\partial x\partial y}+
6v\frac{\partial v}{\partial x}\frac{\partial v}{\partial y}
 +(3v^{2}+u) \frac{\partial^{2}v}{\partial x\partial y}+\frac{\partial^{2}w}
{\partial x\partial y})(x, y, z^{2}) ,

  \frac{\partial^{2}F_{2}}{\partial x\partial z}(x, y, z)=2z((\frac{\partial v}{
\partial x}\frac{\partial u}{\partial z}+v\frac{\partial^{2}u}{\partial 
x\partial z}+(6v\frac{\partial v}{\partial x}+\frac{\partial u}{\partial x})
\frac{\partial v}{\partial z}
 +(3v^{2}+u) \frac{\partial^{2}v}{\partial x\partial z}+\frac{\partial^{2}w}
{\partial x\partial z})(u, v, w^{2})) ,

  \frac{\partial^{2}F_{2}}{\partial y\partial z}(x, y, z)=2z((\frac{\partial v}{
\partial y}\frac{\partial u}{\partial z}+v\frac{\partial^{2}u}{\partial 
y\partial z}+(6v\frac{\partial v}{\partial y}+\frac{\partial u}{\partial y})
\frac{\partial v}{\partial z}
 +(3v^{2}+u) \frac{\partial^{2}v}{\partial y\partial z}+\frac{\partial^{2}w}
{\partial y\partial z})(u, v, w^{2})) ,

  \frac{\partial^{3}F_{2}}{\partial x^{3}}=(3\frac{\partial u}{\partial x}\frac{
\partial^{2}v}{\partial x^{2}}+6(\frac{\partial v}{\partial x})^{3}+
3\frac{\partial v}{\partial x}\frac{\partial^{2}u}{\partial x^{2}}+
18v\frac{\partial v}{\partial x}\frac{\partial^{2}v}{\partial x^{2}}
 +v \frac{\partial^{3}u}{\partial x^{3}}+(3v^{2}+u)\frac{\partial^{3}v}{\partial
x^{3}}+\frac{\partial^{3}w}{\partial x^{3}})(x, y, z^{2}) ,

  \frac{\partial^{3}F_{2}}{\partial x^{2}\partial y}=(2\frac{\partial u}
{\partial x}\frac{\partial^{2}v}{\partial x\partial y}+\frac{\partial u}
{\partial y}\frac{\partial^{2}v}{\partial x^{2}}+6(\frac{\partial v}{\partial x}
)^{2}\frac{\partial v}{\partial y}+2\frac{\partial v}{\partial x}\frac{\partial^
{2}u}{\partial x\partial y}+12v\frac{\partial v}{\partial x}\frac{\partial^{2}v}
{\partial x\partial y}
 + \frac{\partial v}{\partial y}\frac{\partial^{2}u}{\partial x^{2}}+
6v\frac{\partial v}{\partial y}\frac{\partial^{2}v}{\partial x^{2}}+
v\frac{\partial^{3}u}{\partial x^{2}\partial y}+(3v^{2}+u)\frac{\partial^{3}v}
{\partial x^{2}\partial y}+\frac{\partial^{3}w}{\partial x^{2}\partial y})(x, y,
z^{2}) ,

  \frac{\partial^{3}F_{2}}{\partial x\partial y^{2}}=(\frac{\partial u}{\partial
x}\frac{\partial^{2}v}{\partial y^{2}}+2\frac{\partial u}{\partial y}
\frac{\partial^{2}v}{\partial x\partial y}+6\frac{\partial v}{\partial x}(\frac{
\partial v}{\partial y})^{2}+\frac{\partial v}{\partial x}\frac{\partial^{2}u}
{\partial y^{2}}+6v\frac{\partial v}{\partial x}\frac{\partial^{2}v}{\partial y^
{2}}
 +2 \frac{\partial v}{\partial y}\frac{\partial^{2}u}{\partial x\partial y}+
12v\frac{\partial v}{\partial y}\frac{\partial^{2}v}{\partial x\partial y}+
v\frac{\partial^{3}u}{\partial x\partial y^{2}}+(3v^{2}+u)\frac{\partial^{3}v}
{\partial x\partial y^{2}}+\frac{\partial^{3}w}{\partial x\partial y^{2}})(x, y,
z^{2}) ,

  \frac{\partial^{3}F_{2}}{\partial y^{3}}=(3\frac{\partial u}{\partial y}\frac{
\partial^{2}v}{\partial y^{2}}+6(\frac{\partial v}{\partial y})^{3}+
3\frac{\partial v}{\partial y}\frac{\partial^{2}u}{\partial y^{2}}  + ı8v   \frac{\partial v}{\partial y}\frac{\partial^{2}v}{\partial y^{2}}
 +v \frac{\partial^{3}u}{\partial y^{3}}+(3v^{2}+u)\frac{\partial^{3}v}{\partial
y^{3}}+\frac{\partial^{3}w}{\partial y^{3}})(x, y, z^{2}) .

Let  (x_{q}, y_{q}, 0) and  (u_{q}, v_{q}, 0) be the coordinate representations of  q with respect to the
coordinate systems  (x, y, z) and  (u, v, w) , respectively. Noting that  3v_{q}^{2}+u_{q}=0 , for
example,

 ( \frac{\partial F_{1}}{\partial x})_{q}=\frac{\partial u}{\partial x}(x_{q}, 
y_{q}, 0^{2})=(\frac{\partial u}{\partial x})_{q}
 ( \frac{\partial F_{2}}{\partial x})_{q}=(v\frac{\partial u}{\partial x}+
(3v^{2}+u)\frac{\partial v}{\partial x}+\frac{\partial w}{\partial x})(x_{q}, y_
{q}, 0^{2})

 =v_{q}( \frac{\partial u}{\partial x})_{q}+(3v_{q}^{2}+u_{q})(\frac{\partial v}
{\partial x})_{q}+(\frac{\partial w}{\partial y})_{q}=v_{q}(\frac{\partial u}
{\partial x})_{q}
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and similarly,

 ( \frac{\partial F_{{\imath}}}{\partial y})_{q}=(\frac{\partial u}{\partial y})
_{q}
 ( \frac{\partial F_{2}}{\partial y})_{q}=v_{q}(\frac{\partial u}{\partial y})
_{q}

Noting that  v_{p}=0,

 ( \frac{\partial F_{2}}{\partial x})_{p}=(\frac{\partial F_{2}}{\partial y})
_{p}=0.
Similarly, we can obtain that

 ( \frac{\partial^{2}F_{2}}{\partial x^{2}})_{p}=2(\frac{\partial u}{\partial x}
)_{p}(\frac{\partial v}{\partial x})_{p}
 ( \frac{\partial^{2}F_{2}}{\partial y^{2}})_{p}=2(\frac{\partial u}{\partial y}
)_{p}(\frac{\partial v}{\partial y})_{p}

 ( \frac{\partial^{2}F_{2}}{\partial z^{2}})_{p}=2(\frac{\partial w}{\partial z}
)_{p}
 ( \frac{\partial^{2}F_{2}}{\partial x\partial y})_{p}=(\frac{\partial u}
{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}+(\frac{\partial u}{\partial
y})_{p}(\frac{\partial v}{\partial x})_{p}

 ( \frac{\partial^{3}F_{2}}{\partial x^{3}})_{p}=3(\frac{\partial u}{\partial x}
)_{p}(\frac{\partial^{2}v}{\partial x^{2}})_{p}+6(\frac{\partial v}{\partial x})
_{p}^{3}+3(\frac{\partial v}{\partial x})_{p}(\frac{\partial^{2}u}{\partial 
x^{2}})_{p}
 ( \frac{\partial^{3}F_{2}}{\partial x^{2}\partial y})_{p}=2(\frac{\partial u}
{\partial x})_{p}(\frac{\partial^{2}v}{\partial x\partial y})_{p}+
(\frac{\partial u}{\partial y})_{p}(\frac{\partial^{2}v}{\partial x^{2}})_{p}+6(
\frac{\partial v}{\partial x})_{p}^{2}(\frac{\partial v}{\partial y})_{p}

 +2( \frac{\partial v}{\partial x})_{p}(\frac{\partial^{2}u}{\partial x\partial 
y})_{p}+(\frac{\partial v}{\partial y})_{p}(\frac{\partial^{2}u}{\partial x^{2}}
)_{p}
 ( \frac{\partial^{3}F_{2}}{\partial x\partial y^{2}})_{p}=(\frac{\partial u}
{\partial x})_{p}(\frac{\partial^{2}v}{\partial y^{2}})_{p}+2(\frac{\partial u}{
\partial y})_{p}(\frac{\partial^{2}v}{\partial x\partial y})_{p}+
6(\frac{\partial v}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}^{2}

 +( \frac{\partial v}{\partial x})_{p}(\frac{\partial^{2}u}{\partial y^{2}})_{p}
+2(\frac{\partial v}{\partial y})_{p}(\frac{\partial^{2}u}{\partial x\partial y}
)_{p}
 ( \frac{\partial^{3}F_{2}}{\partial y^{3}})_{p}=3(\frac{\partial u}{\partial y}
)_{p}(\frac{\partial^{2}v}{\partial y^{2}})_{p}+6(\frac{\partial v}{\partial y})
_{p}^{3}+3(\frac{\partial v}{\partial y})_{p}(\frac{\partial^{2}u}{\partial 
y^{2}})_{p}

 ( \frac{\partial F_{1}}{\partial z})_{p}=(\frac{\partial F_{2}}{\partial z})
_{p}=(\frac{\partial^{2}F_{2}}{\partial x\partial z})_{p}=(\frac{\partial^{2}
F_{2}}{\partial y\partial z})_{p}=0.
We choose a pair of vector fields and calculate derivatives with respect to them as

follows. Let  \eta_{1} and  \eta_{2} be  C^{\infty} vector fields on  U as

  \eta_{1}=\frac{\partial u}{\partial y}\frac{\partial}{\partial x}-
\frac{\partial u}{\partial x}\frac{\partial}{\partial y},
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  \eta_{2}=\frac{\partial}{\partial z}.
Noting that the coefficients of  \eta_{1} are derived functions,

  \eta_{1}F_{2}=\frac{\partial u}{\partial y}\frac{\partial F_{2}}{\partial x}-
\frac{\partial u}{\partial x}\frac{\partial F_{2}}{\partial y},
  \frac{\partial}{\partial x}\eta_{1}F_{2}=\frac{\partial}{\partial x}
(\frac{\partial u}{\partial y}\frac{\partial F_{2}}{\partial x}-\frac{\partial 
u}{\partial x}\frac{\partial F_{2}}{\partial y})

 = \frac{\partial^{2}u}{\partial x\partial y}\frac{\partial F_{2}}{\partial x}+
\frac{\partial u}{\partial y}\frac{\partial^{2}F_{2}}{\partial x^{2}}-
\frac{\partial^{2}u}{\partial x^{2}}\frac{\partial F_{2}}{\partial y}-
\frac{\partial u}{\partial x}\frac{\partial^{2}F_{2}}{\partial x\partial y},
  \frac{\partial}{\partial y}\eta_{1}F_{2}=\frac{\partial}{\partial y}
(\frac{\partial u}{\partial y}\frac{\partial F_{2}}{\partial x}-\frac{\partial 
u}{\partial x}\frac{\partial F_{2}}{\partial y})

 = \frac{\partial^{2}u}{\partial y^{2}}\frac{\partial F_{2}}{\partial x}+
\frac{\partial u}{\partial y}\frac{\partial^{2}F_{2}}{\partial x\partial y}-
\frac{\partial^{2}u}{\partial x\partial y}\frac{\partial F_{2}}{\partial y}-
\frac{\partial u}{\partial x}\frac{\partial^{2}F_{2}}{\partial y^{2}},
  \eta_{1}\eta_{1}F_{2}=(\frac{\partial u}{\partial y}\frac{\partial}{\partial 
x}-\frac{\partial u}{\partial x}\frac{\partial}{\partial y})\eta_{1}F_{2}

 = \frac{\partial u}{\partial y}(\frac{\partial}{\partial x}\eta_{1}F_{2})-\frac
{\partial u}{\partial x}(\frac{\partial}{\partial y}\eta_{1}F_{2})
 = \frac{\partial u}{\partial y}(\frac{\partial^{2}u}{\partial x\partial y}\frac
{\partial F_{2}}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial^{2}
F_{2}}{\partial x^{2}}-\frac{\partial^{2}u}{\partial x^{2}}\frac{\partial F_{2}}
{\partial y}-\frac{\partial u}{\partial x}\frac{\partial^{2}F_{2}}{\partial 
x\partial y})

 - \frac{\partial u}{\partial x}(\frac{\partial^{2}u}{\partial y^{2}}
\frac{\partial F_{2}}{\partial x}+\frac{\partial u}{\partial y}
\frac{\partial^{2}F_{2}}{\partial x\partial y}-\frac{\partial^{2}u}{\partial 
x\partial y}\frac{\partial F_{2}}{\partial y}-\frac{\partial u}{\partial x}\frac
{\partial^{2}F_{2}}{\partial y^{2}})
 =( \frac{\partial u}{\partial y}\frac{\partial^{2}u}{\partial x\partial y}-
\frac{\partial u}{\partial x}\frac{\partial^{2}u}{\partial y^{2}})\frac{\partial
F_{2}}{\partial x}-(\frac{\partial u}{\partial y}\frac{\partial^{2}u}{\partial 
x^{2}}-\frac{\partial u}{\partial x}\frac{\partial^{2}u}{\partial x\partial y})
\frac{\partial F_{2}}{\partial y}

 +( \frac{\partial u}{\partial y})^{2}\frac{\partial^{2}F_{2}}{\partial x^{2}}+(
\frac{\partial u}{\partial x})^{2}\frac{\partial^{2}F_{2}}{\partial y^{2}}-
2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^{2}
F_{2}}{\partial x\partial y},

11



12

 \eta_{1}\eta_{1}\eta_{1}F_{2}

 =( \frac{\partial u}{\partial y}\frac{\partial}{\partial x}-\frac{\partial u}
{\partial x}\frac{\partial}{\partial y})((\frac{\partial u}{\backslash \partial 
y}\frac{\partial^{2}u}{\partial x\partial y}-\frac{\partial u}{\partial x}\frac{
\partial^{2}u}{\partial y^{2}})\frac{\partial F_{2}}{\partial x}-(\frac{\partial
u}{\partial y}\frac{\partial^{2}u}{\partial x^{2}}-\frac{\partial u}{\partial x}
\frac{\partial^{2}u}{\partial x\partial y})\frac{\partial F_{2}}{\partial y}
 +( \frac{\partial u}{\partial y})^{2}\frac{\partial^{2}F_{2}}{\partial x^{2}}+(
\frac{\partial u}{\partial x})^{2}\frac{\partial^{2}F_{2}}{\partial y^{2}}-
2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^{2}
F_{2}}{\partial x\partial y})

 =(( \frac{\partial u}{\partial x})^{2}\frac{\partial^{3}u}{\partial y^{3}}-
2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^{3}u}{
\partial x\partial y^{2}}+(\frac{\partial u}{\partial y})^{2}\frac{\partial^{3}
u}{\partial x^{2}\partial y}-\frac{\partial u}{\partial y}\frac{\partial^{2}u}
{\partial x^{2}}\frac{\partial^{2}u}{\partial y^{2}}+\frac{\partial u}{\partial 
y}(\frac{\partial^{2}u}{\partial x\partial y})^{2})\frac{\partial F_{2}}
{\partial x}
 -(( \frac{\partial u}{\partial x})^{2}\frac{\partial^{3}u}{\partial x\partial 
y^{2}}-2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}
\frac{\partial^{3}u}{\partial x^{2}\partial y}-\frac{\partial u}{\partial x}
\frac{\partial^{2}u}{\partial x^{2}}\frac{\partial^{2}u}{\partial y^{2}}+
\frac{\partial u}{\partial x}(\frac{\partial^{2}u}{\partial x\partial y})^{2}+
(\frac{\partial u}{\partial y})^{2}\frac{\partial^{3}u}{\partial x^{3}})
\frac{\partial F_{2}}{\partial y}
 +3(- \frac{\partial u}{\partial x}\frac{\partial u}{\partial y}
\frac{\partial^{2}u}{\partial y^{2}}+(\frac{\partial u}{\partial y})^{2}
\frac{\partial^{2}u}{\partial x\partial y})\frac{\partial^{2}F_{2}}{\partial 
x^{2}}+3(-(\frac{\partial u}{\partial x})^{2}\frac{\partial^{2}u}{\partial 
x\partial y}+\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}
\frac{\partial^{2}u}{\partial x^{2}})\frac{\partial^{2}F_{2}}{\partial y^{2}}
 +3(( \frac{\partial u}{\partial x})^{2}\frac{\partial^{2}u}{\partial y^{2}}-
(\frac{\partial u}{\partial y})^{2}\frac{\partial^{2}u}{\partial x^{2}})
\frac{\partial^{2}F_{2}}{\partial x\partial y}+(\frac{\partial u}{\partial y})
^{3}\frac{\partial^{3}F_{2}}{\partial x^{3}}-(\frac{\partial u}{\partial x})^{3}
\frac{\partial^{3}F_{2}}{\partial y^{3}}
 -3 \frac{\partial u}{\partial x}(\frac{\partial u}{\partial y})^{2}
\frac{\partial^{3}F_{2}}{\partial x^{2}\partial y}+3(\frac{\partial u}{\partial 
x})^{2}\frac{\partial u}{\partial y}\frac{\partial^{3}F_{2}}{\partial x\partial 
y^{2}}.

By the results of the previous paragraph,

 ( \eta_{1}F_{2})_{q}=(\frac{\partial u}{\partial y})_{q}(\frac{\partial F_{2}}{
\partial x})_{q}-(\frac{\partial u}{\partial x})_{q}(\frac{\partial F_{2}}
{\partial y})_{q}
 =( \frac{\partial u}{\partial y})_{q}v_{q}(\frac{\partial u}{\partial x})_{q}-(
\frac{\partial u}{\partial x})_{q}v_{q}(\frac{\partial u}{\partial y})_{q}=0,

 ( \frac{\partial}{\partial x}\eta_{1}F_{2})_{p}=(\frac{\partial^{2}u}{\partial 
x\partial y})_{p}(\frac{\partial F_{2}}{\partial x})_{p}+(\frac{\partial u}
{\partial y})_{p}(\frac{\partial^{2}F_{2}}{\partial x^{2}})_{p}
 -( \frac{\partial^{2}u}{\partial x^{2}})_{p}(\frac{\partial F_{2}}{\partial y})
_{p}-(\frac{\partial u}{\partial x})_{p}(\frac{\partial^{2}F_{2}}{\partial 
x\partial y})_{p}

 =2( \frac{\partial u}{\partial y})_{p}(\frac{\partial u}{\partial x})_{p}(\frac
{\partial v}{\partial x})_{p}-(\frac{\partial u}{\partial x})_{p}
((\frac{\partial u}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}+
(\frac{\partial u}{\partial y})_{p}(\frac{\partial v}{\partial x})_{p})
 =-( \frac{\partial u}{\partial x})_{p}((\frac{\partial u}{\partial x})_{p}
(\frac{\partial v}{\partial y})_{p}-(\frac{\partial u}{\partial y})_{p}
(\frac{\partial v}{\partial x})_{p}) ,
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 ( \eta_{1}\eta_{1}F_{2})_{p}=((\frac{\partial u}{\partial y})_{p}
(\frac{\partial^{2}u}{\partial x\partial_{i}y})_{p}-(\frac{\partial u}{\partial 
x})_{p}(\frac{\partial^{2}u}{\partial y^{2}})_{p})(\frac{\partial F_{2}}
{\partial x})_{p}
 -(( \frac{\partial u}{\partial y})_{p}(\frac{\partial^{2}u}{\partial x^{2}})
_{p}-(\frac{\partial u}{\partial x})_{p}(\frac{\partial^{2}u}{\partial x\partial
y})_{p})(\frac{\partial F_{2}}{\partial y})_{p}
 +( \frac{\partial u}{\partial y})_{p}^{2}(\frac{\partial^{2}F_{2}}{\partial 
x^{2}})_{p}-2(\frac{\partial u}{\partial x})_{p}(\frac{\partial u}{\partial y})_
{p}(\frac{\partial^{2}F_{2}}{\partial x\partial y})_{p}+(\frac{\partial u}
{\partial x})_{p}^{2}(\frac{\partial^{2}F_{2}}{\partial y^{2}})_{p}

 =2( \frac{\partial u}{\partial y})_{p}^{2}(\frac{\partial u}{\partial x})_{p}
(\frac{\partial v}{\partial x})_{p}+2(\frac{\partial u}{\partial x})_{p}^{2}
(\frac{\partial u}{\partial y})_{p}(\frac{\partial v}{\partial y})_{p}
 -2( \frac{\partial u}{\partial x})_{p}(\frac{\partial u}{\partial y})_{p}
((\frac{\partial u}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}+
(\frac{\partial u}{\partial y})_{p}(\frac{\partial v}{\partial x})_{p})

 =0,

and similarly,

 ( \frac{\partial}{\partial y}\eta_{1}F_{2})_{p}=-(\frac{\partial u}{\partial y}
)_{p}((\frac{\partial u}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}-
(\frac{\partial u}{\partial y})_{p}(\frac{\partial v}{\partial x})_{p}) ,

 ( \eta_{1}\eta_{1}\eta_{1}F_{2})_{p}=-6((\frac{\partial u}{\partial x})_{p}
(\frac{\partial v}{\partial y})_{p}-(\frac{\partial u}{\partial y})_{p}
(\frac{\partial v}{\partial x})_{p})^{3}\neq 0.
Similarly, we can obtain that  (\eta_{1}F_{1})_{q}=(\eta_{2}F_{1})_{p}=(\eta_{2}F_{2})_{p}=(\eta_{1}\eta_{2}F_
{2})_{p}=(\eta_{2}\eta_{1}F_{2})_{p}=0
and

 ( \eta_{2}\eta_{2}F_{2})_{p}=(\frac{\partial^{2}F_{2}}{\partial z^{2}})_{p}=
2(\frac{\partial w}{\partial z})_{p}>0.
We are now ready to complete the proof. By the above,  (dF_{{\imath}})_{p}\neq(0,0,0) and  (dF_{2})_{p}=

 (0,0,0) . Since  (\eta_{1})_{p} and  (\eta_{2})_{p} are linearly independent, and  (\eta_{{\imath}}F_{1})_{p}=(\eta_{2}F_{1})_{p}=(\eta_{1}F_{2})_{p}=
 (\eta_{2}F_{2})_{p}=0 , we obtain the condition that  ker(dF)_{p}=\langle(\eta_{1})_{p},  (\eta_{2})_{p}\rangle . Since  (\eta_{1}F_{1})_{q}=
 (\eta_{1}F_{2})_{q}=0 , we obtain the condition that  (\eta_{1})_{q}\in ker(dF)_{q} for  q\in S(F)\cap U . The matrix

 (\begin{array}{ll}
(\eta_{1}\eta_{1}F_{2})_{p}   (\eta_{1}\eta_{2}F_{2})_{p}
(\eta_{2}\eta_{l}F_{2})_{p}   (\eta_{2}\eta_{2}F_{2})_{p}
\end{array}) ,

denoted by  (H_{\eta_{1},\eta_{2}}F_{2})_{p} , is equal to

 (_{0}^{0} 2( \frac{\partial w0}{\partial z})_{p}) ,

which shows that  ker(H_{\eta_{1},\eta_{2}}F_{2})_{p}=\langle(\eta_{{\imath}})_{p}\rangle . Since

 (( \frac{\partial}{\partial x}\eta_{1}F_{2})_{p}, (\frac{\partial}{\partial y}
\eta_{1}F_{2})_{p})
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 =-(( \frac{\partial u}{\partial x})_{p}(\frac{\partial v}{\partial y})_{p}-
(\frac{\partial u}{\partial y})_{p}(\frac{\partial v}{\partial x})_{p})
((\frac{\partial u}{\partial x})_{p}, (\frac{\partial u}{\partial y})_{p})
\neq(0,0) ,

we obtain the condition that  (d(\eta_{1}F_{2}))_{p}\neq(0,0,0) , as well as  (\eta_{1}\eta_{1}\eta_{1}F_{2})_{p}\neq 0 . By
Theorem 3, the point  p is a cusp point of  F.

3.4  \Sigma_{1,0}^{2,0} case

The last assertion of the proposition can be proved by a simple observation as follows.
Suppose that  p is a  \Sigma_{1,0}^{2,0} point of  f . Let  S(f) and  S(F) denote the singular sets of

 f and  F , respectively,  S(f|_{\partial \mathbb{R}_{\geq 0}^{3}}) denote the boundary singular set of  f , and  U be a

sufficiently small neighborhood of  p in  \mathbb{R}^{3} . Recall that  (S(f)\cup S(f|_{\partial R_{\geq 0}^{3}}))\cap U is a

figure  \perp consisting only of fold points, boundary fold points and the  \Sigma_{1,0}^{2,0} point  p . By the
results of the previous subsections,  S(F)\cap U is a figure  + where the crossing point is  p.

This shows that  p^{\vee}is neither a regular point, a fold point nor a cusp point of  F.
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