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AROUND GENERIC LINEAR PERTURBATIONS

SHUNSUKE ICHIKI

1. INTRODUCTION

In this paper, P,  m and  n stand for positive integers. Throughout this paper,
unless otherwise stated, all manifolds and mappings belong to class  C^{\infty} and all
manifolds are without boundary. The purpose of this paper is to introduce some
results shown in [2, 3].

Let  \pi :  \mathbb{R}^{m}arrow \mathbb{R}^{p},  U and  F :  Uarrow \mathbb{R}^{\ell} be a linear mapping, an open subset of
 \mathbb{R}^{m} and a mapping, respectively.

Set

 F_{\pi}=F+\pi.

Here,  \pi in   F_{\pi}=F+\pi is restricted to the open set  U.

Let  \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell}) be the space consisting of all linear mappings of  \mathbb{R}^{7n} into  \mathbb{R}^{\ell} . No‐
tice that we have the natural identification  \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell})=(\mathbb{R}^{m})^{\ell} . An  n‐dimensional

manifold is denoted by  N.

In Section 2, two main theorems of [2] (Theorems 1 and 2) are introduced.
Theorem 1 is as follows. Let  f :  Narrow U (resp.,  F :  Uarrow \mathbb{R}^{\ell} ) be an immersion
(resp., a mapping). Generally, the composition  F\circ f does not necessarily yield a
mapping which is transverse to a given subfiber‐bundle of thejet bundle  J^{1}(N, \mathbb{R}^{e}) .
Nevertheless, Theorem 1 asserts that for any  \mathcal{A}^{1} ‐invariant fiber, a generic mapping
 F_{\pi}\circ f yields a mapping which is transverse to the subfiber‐bundle of  J^{{\imath}}(N, \mathbb{R}^{l})
with the given fiber. Theorem 2 is a specialized transversality result on crossings of
a generic mapping  F_{\pi}of , where  f :  Narrow U (resp.,  F :  Uarrow \mathbb{R}^{\ell} ) is a given injection
(resp., a given mapping).

In Section 3, some applications of Theorems 1 and 2 are introduced.
In Section 4, the main result of [3] (Theorem 4) is introduced. Theorem 4 is

as follows. In [4], John Mather proved that almost all linear projections from a
submanifold of a vector space into a subspace are transverse with respect to a given
modular submanifold. Theorem 4 is an improvement of the result. Namely, almost
all linear perturbations of a smooth mapping from a submanifold of  \mathbb{R}^{m} into  \mathbb{R}^{l}

yield a transverse mapping with respect to a given modular submanifold.

2. COMPOSING GENERIC LINEARLY PERTURBED MAPPINGS AND

IMMERSIONS/INJECTIONS

In the following, we denote manifolds by  N and  P.

Definition 1. Let  W be a submamifold of  P , and let  g:Narrow P be a mapping.
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(1) We say that  g:Narrow P is transverse to  W at  q if  g(q)\not\in W or in the case
of  g(q)\in W , the following holds:

 dg_{q}(T_{q}N)+T_{g(q)}W=T_{g(q)}P.

(2) We say that  g :  Narrow P is transverse to  W if for any  q\in N,  g is transverse
to  W at  q.

We say that  g :  Narrow P is  A‐equivalent to  h :  Narrow P if there exist two
diffeomorphisms  \Phi :  Narrow N and  \Psi :  Parrow P such that  g=\Psi oho\Phi^{-1}.

Let  J^{r}(N, P) denote the space of  r‐jets of mappings of  N into  P . For a given
mapping  g :  Narrow P , the mapping  j^{r}g :  Narrow J^{r}(N, P) is given by  q\mapsto j^{r}g(q) (for
details on  J^{r}(N, P) or  j^{T}g:Narrow J^{r}(N, P) , see for instance, [1]).

In order to state Theorem 1, it is sufficient to consider the case of  r=1 and
 P=\mathbb{R}^{f} . Let  \{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda\in\Lambda} denote a coordinate neighborhood system of  N . Let  \Pi :
 J^{1}(N, \mathbb{R}^{p})arrow N\cross \mathbb{R}^{\ell} denote the natural projection defined by  \Pi(j^{1}g(q))=(q, g(q)) .
Let  \Phi_{\lambda} :  \Pi^{-1}(U_{\lambda}\cross \mathbb{R}^{\ell})arrow\varphi_{\lambda}(U_{\lambda}
)\cross \mathbb{R}^{p}\cross J^{1}(n, P) denote the homeomorphism given
by

 \Phi_{\lambda}(j^{1}g(q))=(\varphi_{\lambda}(q), g(q),j^{{\imath}}
(\psi_{\lambda}ogo\varphi_{\lambda}^{-1}\circ\overline{\varphi}_{\lambda})(0)) ,

where  J^{1}(n, \ell)=\{j^{1}g(0) g : (\mathbb{R}^{n}, 0)arrow(\mathbb{R}^{\ell}, 0)\} and  \overline{\varphi}_{\lambda} :  \mathbb{R}^{n}arrow \mathbb{R}^{n} (resp.,
 \psi_{\lambda} :  \mathbb{R}^{m}arrow \mathbb{R}^{m}) is the translation defined by  \overline{\varphi}_{\lambda}(0)=\varphi_{\lambda}(q) (resp.,  \psi_{\lambda}(g(q))=0 )  .t

Then,  \{(\Pi^{-1}(U_{\lambda}\cross \mathbb{R}^{\ell}),  \Phi_{\lambda})\}_{\lambda\in\Lambda} is a coordinate neighborhood system of  J^{1}(N, \mathbb{R}^{p}) .
We say that a subset  X\subset J^{1}(n,\ell) is  \mathcal{A}^{1} ‐invariant if for any  j^{1}g(0)\in X , and for any
two germs of diffeomorphisms  H :  (\mathbb{R}^{\ell}, 0)arrow(\mathbb{R}^{\ell}, 0) and  h :  (\mathbb{R}^{n}, 0)arrow(\mathbb{R}^{n}, 0) , we
get  j^{1}(Hogoh^{-1})(0)\in X . Let  X denote an  \mathcal{A}^{1} ‐invariant submanifold of  J^{1}(n, \ell) .
Set

 X(N,  \mathbb{R}^{\ell})=\bigcup_{\lambda\in\Lambda}\Phi_{\lambda}^{-1}
(\varphi_{\lambda}(U_{\lambda})\cross \mathbb{R}^{I}\cross X) .

Then,  X(N, \mathbb{R}^{p}) is a subfiber‐bundle of  J^{1}(N, \mathbb{R}^{\ell}) with the fiber  X satisfying

 co\dim X(N, \mathbb{R}^{\ell}) = \dim J^{1}(N, \mathbb{R}^{p})-\dim X(N, 
\mathbb{R}^{l})
 = \dim J^{1}(n, \ell)-\dim X
 = co\dim X.

Theorem 1 ([2]). Let  f be an immersion of  N into an open subset  U of  \mathbb{R}^{m},
where  N is a manifold of dimension  n . Let  F :  Uarrow \mathbb{R}^{\ell} be a mapping. If  X is
an  \mathcal{A}^{l} ‐invariant submanifold of  J^{1}(n, \ell) , then there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{p})
with Lebesgue measure zero such that for any  \pi\in \mathcal{L}(\mathbb{R}^{rn}, \mathbb{R}^{l})-\Sigma,  j^{1} (  F_{\pi} of) :   Narrow

 J^{1}(N, \mathbb{R}^{p}) is transverse to  X(N, \mathbb{R}^{\ell}) .

Now, for the statement of Theorem 2, we will prepare some definitions. Set
 N^{(s)}=\{(q_{1}, q_{2}, \ldots, q_{s})\in N^{S} q_{i}\neq q_{J}(i\neq j)\} . Note that  N^{(s)} is an open
submanifold of  N^{S} . For a given mapping  g :  Narrow P , let  g^{(s)} :  N^{(s)}arrow P^{S} be the
mapping defined by

 g^{(s)}(q_{1}, q_{2}, \ldots, q_{s})=(g(q_{1}), g(q_{2}), \ldots, g(q_{s})) .

Set  \triangle_{s}=\{(y, \ldots, y)\in P^{S}|y\in P\} . It is not hard to see that  \triangle_{s} is a submanifold

of  P^{S} satisfying

 co\dim\triangle_{s}=\dim P^{S}-\dim\Delta_{s}=(s-1)\dim P.
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Definition 2. We say that  g :  Narrow P is a mapping with normal  cro\mathcal{S}Sings if for
any positive integer  s(s\geq 2),  g^{(s)} :  N^{(s)}arrow P^{S} is transverse to  \Delta_{s}.

For any injection  f:Narrow \mathbb{R}^{m} , set

 s_{f}= \max\{s \forall (q_{1}, q_{2}, \ldots , q_{s})\in N^{(s)}, \dim\sum_{i=
2}^{s} s-1\}.
Since the mapping  f is injective, it follows that  2\leq s_{f} . Since  f(q_{1}),  f(q_{2}) ,  f(q_{s_{f}})
are points of  \mathbb{R}^{m} , we have  s_{f}\leq m+1 . Hence, we get

 2\leq s_{f}\leq m+1.

Moreover, in the following, for a set  X , we denote the number of its elements (or
its cardinality) by  |X|.

Theorem 2 ([2]). Let  f be an injection of  N into an open subset  U of  \mathbb{R}^{m} , where
 N is a manifold of dîmenszon  n . Let  F :  Uarrow \mathbb{R}^{\ell} be a mapping. Then, there
exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell}) with Lebesgue measure zero such that for any  \pi\in

 \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell})-\Sigma , and for any  s(2\leq s\leq s_{f}),  (F_{\pi}\circ f)^{(s)} :  N^{(s)}arrow(\mathbb{R}^{p})^{s} is transverse
to  \triangle_{s} . Furthermore, if the mapping  F_{\pi} satisfies that  |F_{\pi}^{-1}(y)|\leq s_{f} for any  y\in \mathbb{R}^{\ell},
then  F_{\pi}\circ f :  Narrow \mathbb{R}^{\ell} is a mapping with normal crossings.

3. APPLICATIONS OF THEOREMS 1 AND 2

In Subsection 3.ı (resp., Subsection 3.2), applications of Theorem 1 (resp., The‐
orem 2) are stated.

3.1. Applications of Theorem 1. Set

 \Sigma^{k}= {  j^{1}g(0)\in J^{1}(n, \ell)| corank  Jg(0)=k },
where corank  Jg(0)= \min\{n, P\}- rank  Jg(0) and  k= ı, 2,   \min\{n, \ell\} . Then,
 \Sigma^{k} is an  \mathcal{A}^{1} ‐invariant submanifold of  J^{1}(n, P) . Set

  \Sigma^{k}(N, \mathbb{R}^{\ell})=\bigcup_{\lambda\in\Lambda}\Phi_{\lambda}^{-
1}(\varphi_{\lambda}(U_{\lambda})\cross \mathbb{R}^{p}\cross\Sigma^{k}) ,

where  \Phi_{\lambda} and  \varphi_{\lambda} are as defined in Section 2. Then, the set  \Sigma^{k}(N, \mathbb{R}^{l}) is a subfiber‐
bundle of  J^{1}(N, \mathbb{R}^{p}) with the fiber  \Sigma^{k} satisfying

 co\dim\Sigma^{k}(N, \mathbb{R}^{p}) = \dim J^{1}(N, \mathbb{R}^{\ell})-
\dim\Sigma^{k}(N, \mathbb{R}^{\ell})
 = (n-v+k)(\ell-v+k) ,

where  v= \min\{n, P\} . (For details on  \Sigma^{k} and  \Sigma^{k}(N, \mathbb{R}^{e}) , see for instance [1], pp. 60‐
61).

As applications of Theorem 1, we get the following Proposition 1, Corollaries 1,
2, 3 and 4.

Proposition 1 ([2]). Let  f be an lmmersion of  N into an open subset  U of  \mathbb{R}^{m},
where  N is a manifold of dimension  n . Let  F :  Uarrow \mathbb{R}^{1} be a mapping. Then,
there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell}) with Lebesgue measure zero such that for
any  \pi\in \mathcal{L}(\mathbb{R}^{7n},\mathbb{R}^{\ell})-\Sigma , the mapping  j^{1}(F_{\pi}\circ f) :  Narrow J^{1}(N, \mathbb{R}^{\ell}) is transverse
to  \Sigma^{k}(N, \mathbb{R}^{l}) for any positive integer  k satisfying  1\leq k\leq v . Especially, in the
case of  \ell\geq 2 , we get  k_{0}+1\leq v and it follows that  j^{1}(F_{\pi}\circ f) satisfies that

  j^{1}(F_{\pi}\circ f)(N)\cap\Sigma^{k}(N, \mathbb{R}^{\ell})=\emptyset for any positive integer  k(k_{0}+1\leq k\leq v) , where
 k_{0} is the maximum integer satisfying  (n-v+k_{0})(P-v+k_{0}) \leq n(v=\min\{n,\ell\}) .
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Remark 1. (1) In Proposition 1, by  (n-v+k_{0})(\ell-v+k_{0})\leq n , it is not hard
to see that  k_{0}\geq 0.

(2) In Proposition 1, in the case of  P=1 , we get  k_{0}+1>v . Indeed, in the
case, by  v=1 , we have  (n-1+k_{0})k_{0}\leq n . Thus, it follows that  k_{0}=1.

A mapping  g :  Narrow \mathbb{R} is called a Morse function if all of the singularities of  g

are nondegenerate (for details on Morse functions, see for instance, [1], p. 63). In
the case of  (n, \ell)=(n, 1) , we get the following.

Corollary 1 ([2]). Let  f be an immersion of  N into an open subset  U of  \mathbb{R}^{m},
where  N is a manifold of dimension  n . Let  F :  Uarrow \mathbb{R} be a mapping. Then,
there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}) with Lebesgue measure zero such that for any
 \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R})-\Sigma , the mapping  F_{\pi}\circ f :  Narrow \mathbb{R} is a Morse function.

For a given mapping  g :  Narrow \mathbb{R}^{2n-{\imath}}  (n\geq 2) , a singular point  q\in N is
called a singular point of Whitney umbrella if there exist two germs of diffeo‐
morphisms  H :  (\mathbb{R}^{2n-1}, g(q))arrow(\mathbb{R}^{2n-1},0) and  h :  (N, q)arrow(\mathbb{R}^{n}, 0) satisfying
 Hogoh^{-1}(x_{1}, x_{2}, \ldots, x_{n})=(x_{1}^{2}, x_{1}x_{2}, \ldots, x_{1}x_
{n}, x_{2}, \ldots, x_{n}) , where  (x_{1}, x_{2}, \ldots, x_{n})
is a local coordinate around the point  h(q)=0\in \mathbb{R}^{n} . In the case of  (n,P)=
(  n , 2n—ı)  (n\geq 2) , we get the following.

Corollary 2 ([2]). Let  f be an immersion of  N into an open subset  Uof\mathbb{R}^{m_{J}} where
 N is a manifold of dimension  n(n\geq 2) . Let  F:Uarrow \mathbb{R}^{2n-{\imath}} be a mapping. Then,
there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{2n-1}) with Lebesgue measure zero such that for
any  \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{2n-1})-\Sigma , any singular point of the mapping  F_{\pi}\circ f :  Narrow \mathbb{R}^{2n-1}

is a singular point of Whltney umbrella.

In the case of  \ell\geq 2n , the immersion property of a given mapping  f :  Narrow U is
preserved by composing generic linearly perturbed mappings as follows:

Corollary 3 ([2]). Let  f be an immersion of  N into an open subset  U of  \mathbb{R}^{m},
where  NiS a manifold of dimension  n . Let  F :  Uarrow \mathbb{R}^{\ell} be a mapping  (\ell\geq 2n) .
Then, there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{l}) with Lebesgue measure zero such that
for any  \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell})-\Sigma , the mapping  F_{\pi}\circ f :  Narrow \mathbb{R}^{p} is an immersion.

A mapping  g:Narrow \mathbb{R}^{p} has corank at most  k singular points if

  \sup {corank  dg_{q}|q\in N}  \leq k,

where corank  dg_{q}= \min\{n, \ell\}- rank  dg_{q} . From Proposition 1, we have the follow‐
ing.

Corollary 4 ([2]). Let  f be an immersion of  N into an open subset  U of  \mathbb{R}^{m},
where  N is a manifold of dimension  n . Let  F:Uarrow \mathbb{R}^{p} be a mapping. Let  k_{0} be
the maximum integer satisfying  (n-v+k_{0})( \ell-v+k_{0})\leq n(v=\min\{n, P\}) . Then,
there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell}) with Lebesgue measure zero such that for any
 \pi\in \mathcal{L}(\mathbb{R}^{m},\mathbb{R}^{\ell})-\Sigma , the mapping  F_{\pi}\circ f :  Narrow \mathbb{R}^{\ell} has corank at most  k_{0} singular
points.

3.2. Applications of Theorem 2.

Proposition 2 ([2]). Let  f be an injection of  N into an open subset  Uof\mathbb{R}^{m} , where
 N is a manifold of dimension  n . Let  F:Uarrow \mathbb{R}^{\ell} be a mapping. If  (s_{f}-1)P>ns_{f},
then there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{1}) with Lebesgue measure zero such that for
any  \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell})-\Sigma , the mapping  F_{\pi}\circ f :  Narrow \mathbb{R}^{\ell} is a mapping with normal
crossings satisfyzng  (F_{\pi}of)^{(s_{f})}(N^{(s_{f})})\cap\Delta_{s_{f}}=\emptyset.
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In the case of  \ell>2n , the injection property of a given mapping  f :  Narrow U is
preserved by composing generic linearly perturbed mappings as follows:

Corollary 5 ([2]). Let  f be an injection of  N into an open subset  U of  \mathbb{R}^{m} , where
 N is a manifold of dimension  n . Let  F :  Uarrow \mathbb{R}^{\ell} be a mapping. If  P>2n , then
there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell}) with Lebesgue measure zero such that for any
  7r\in \mathcal{L}(\mathbb{R}^{rn}, \mathbb{R}^{p})-\Sigma , the mapping  F_{\pi}\circ f :  Narrow \mathbb{R}^{p}1S injective.

By combining Corollaries 3 and 5, we get the following.

Corollary 6 ([2]). Let  f be an injective immersion of  N into an open subset  U

of  \mathbb{R}^{m} , where  N is a manifold of dimension  n . Let  F:Uarrow \mathbb{R}^{l} be a mapping. If
 \ell>2n_{f} then there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell}) with Lebesgue measure zero such
that for any  \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell})-\Sigma,  F_{\pi}\circ f:Narrow \mathbb{R}^{\ell} is an injective immerslon.

In Corollary 6, suppose that the mapping  F_{\pi}\circ f :  Narrow \mathbb{R}^{\ell} is proper. Then, an
injective immersion  F_{\pi}\circ f is necessarily an embedding (see [1],  p . ıl). Hence, we
have the following.

Corollary 7 ([2]). Let  f be an embedding of  N into an open subset  U of  \mathbb{R}^{m} , where
 N is a compact manifold of dimension  n . Let  F :  Uarrow \mathbb{R}^{\ell} be a mapping. If  \ell>2n,
then there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{p}) with Lebesgue measure zero such that for
any  \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{p})-\Sigma , the mapping  F_{\pi}\circ f:Narrow \mathbb{R}^{\ell} is an embedding.

4. COMPOSING GENERIC LINEARLY PERTURBED MAPPINGS AND EMBEDDINGS

Let  C^{\infty}(N, P) be the set consisting of all  C^{\infty} mappings of  N into  P , and the
topology on  C^{\infty}(N, P) is the Whitney  C^{\infty} topology (for the definition of Whitney
 C^{\infty} topology, see for instance [1]). Then, we say that  g is stable if the  \mathcal{A}‐equivalence
class of  g is open in  C^{\infty}(N, P) .

 Let_{s}J^{r}(N, P) be the space consisting of elements  (j^{r}g(q_{1}), \ldots,j^{r}g(q_{s}))\in J^{r}(N, P)^{S}
satisfying  (q_{1}, \ldots, q_{s})\in N^{(s)} , where  \mathcal{S} is a positive integer. Since  N^{(s)} is an
open submanifold of  N^{s} , the space  sJ^{r}(N, P) is also an open submanifold of
 J^{r}(N, P)^{S} . For a given mapping  g:Narrow P,  sj^{r}g:N^{(s)}arrow sJ^{r}(N, P) is defined by
 (q_{1}, \ldots, q_{s})\mapsto(j^{r}g(q_{1}), \ldots,\dot{j}^{r}g(q_{s})) .

Let  W be a submanifold of  sJ^{r}(N, P) . We say that a mapping  g :  Narrow P is
transverse with respect to  W if  sj^{r}g:N^{(s)}arrow sJ^{r}(N, P) is transverse to  W.

Following Mather ([4]), we can partition  P^{S} as follows. For any partition  \pi of
 \{ 1, .  \mathcal{S}\} , let  P^{\pi} be the set of  s‐tuples  (y_{1}, \ldots, y_{s})\in P^{s} such that  y_{i}=y_{j} if and
only if two positive integers  i and  j are in the same member of the partition  \pi.

Let Diff  N be the group of diffeomorphisms of  N . We have a natural action of
Diff   N\cross Diff  P on  sJ^{r}(N, P) such that for a mapping  g :  Narrow P , the equality
 (h, H)  Sj^{r}g(q)=sj^{r}(Hogoh^{-1})(q') holds, where  q=(q_{1}, \ldots, q_{s}) and  q'=
(h(qı)  h(q_{s}) ). We say that a subset  W\subset sJ^{r}(N, P) is invariant if it is invariant
under this action.

We recall the following identification  (*) from [4]. Let  q=(q_{1} , q_{s})\in N^{(s)} , let
 g:Uarrow P be a mapping defined in a neighborhood  U of  \{q_{1}, q_{s}\} in  N , and let
 z=sj^{r}g(q),  q'=(g(q_{1}) , g(q_{s})) . Let  sJ^{r}(N, P)_{q} and  \mathcal{S}J^{r}(N, P)_{q,q'} be the fibers

of  sJ^{r}(N, P) over  q and over  (q, q') respectively. Let  J^{r}(N)_{q} be the  R‐algebra of
 r‐jets at  q of functions on  N . Namely, we have

 J^{r}(N)_{q}=_{s}J^{r}(N, \mathbb{R})_{q}.
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Set  g^{*}TP= \bigcup_{\overline{q}\in U}T_{g(\overline{q})}P , where  TP is the tangent bundle of  P . Let  J^{r}(g^{*}TP)_{q}
denote the  J^{r}(N)_{q}‐module of  r‐jets at  q of sections of the bundle  g^{*}TP . Let  \mathfrak{m}_{q}
be the ideal in  J^{r}(N)_{q} consisting of jets of functions which vanish at the point  q.

Namely, we have

 m_{q}=\{_{s}j^{r}h(q)\in sJ^{r}(N, \mathbb{R})_{q}|h(q_{1})= =h(q_{s})=0\}.
Let  m_{q}J^{r}(g^{*}TP)_{q} denote the set consisting of finite sums of products of an eıement
of  \mathfrak{m}_{q} and an element of  J^{r}(g^{*}TP)_{q} . Namely, we have

 \mathfrak{m}_{q}J^{r}(g^{*}TP)_{q}=J^{r}(g^{*}TP)_{q}\cap\{_{s}j^{r}\xi(q)\in 
SJ^{r}(N, TP)_{q}|\xi(q_{1})=  =\xi(q_{s})=0\}.

Then, the following canonical identification of  \mathbb{R} vector spaces  (*) holds.

 (*)  T(_{s}J^{r}(N, P)_{q,q'})_{z}=m_{q}J^{r}(g^{*}TP)_{q}.

Now, let  W be a non‐empty submanifold  of_{s}J^{r}(N, P) . Choose   q=(q_{1}, \ldots, q_{s})\in
 N^{(s)} and  g :  Narrow P , and ıet  z=sj^{r}g(q) and  q'=(g(q_{1}), \ldots, g(q_{s})) . Suppose
that  z\in W . Set  W_{q,q'}=\overline{\pi}^{-1}(q, q') , where  \overline{\pi} :  Warrow N^{(s)}\cross P^{s} is defined by
 \overline{\pi}(_{s}j^{r}\overline{g}(q\gamma)=(\overline{q}, (\overline{g}
(\overline{q}_{1}), \ldots,\overline{g}(\overline{q}_{s}))) and  \overline{q}=(\overline{q}_{1}, \ldots,\overline{q}_{s})\in N^{(s)} . Suppose that  W_{q,q'}
is a submanifold of  sJ^{r}(N, P) . Then, from  (*) , the tangent space  T(W_{q,q'})_{z} can be
identified with a vector subspace of  m_{q}J^{r}(g^{*}TP)_{q} . By  E(g, q, W) , we denote this
vector subspace.

Definition 3. A submanifold  W of  sJ^{r}(N, P) is said to be modular if conditions

 (\alpha) and (  \beta ) below are satisfied:
 (\alpha) The set  W is an invariant submanifold of  sJ^{r}(N, P) , and lies over  P^{\pi} for

some partition  7T of  \{ 1,  \mathcal{S}\}.
(  \beta ) For any  q\in N^{(s)} and any mapping  g:Narrow P satisfying  sj^{r}g(q)\in W , the

subspace  E(g, q, W) is a  J^{r}(N)_{q}‐submodule.

Now, suppose that  P=\mathbb{R}^{\ell} . The main theorem of [4] is the following.

Theorem 3 ([4]). Let  f be an embedding of  N into  \mathbb{R}^{m} , where  N is a manifold
of dimension  n . If  W is a modular submanifold  of_{s}J^{r}(N, \mathbb{R}^{l}) and  m>P , then
there exists a subset  \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell}) with Lebesgue measure zero such that for any
 \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{l})-\Sigma,  \pi\circ f:Narrow \mathbb{R}^{\ell} is transverse with respect to  W.

Theorem 4 ([3]). Let  f be an embedding of  N into an open subset  U of  \mathbb{R}^{m} , where
 N is a manifold of dimension  n . Let  F:Uarrow \mathbb{R}^{\ell} be a mapping. If  W is a modular
submanifold of  sJ^{r}(N, \mathbb{R}^{l}) , then there exists a subset  \Sigma with Lebesgue measure zero
of  \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{f}) such that for any  \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell})-\Sigma , the mapping  F_{\pi}\circ f :  Narrow \mathbb{R}^{\ell}

is transverse with respect to  W.

By the same way as in the proof of Theorem 3 of [4], we get the following as a
corollary of Theorem 4.

Corollary 8 ([3]). Let  f be an embedding of  N into an open subset  U of  \mathbb{R}_{f}^{m}
where  N is a compact manifold of dimension  n . Let  F :  Uarrow \mathbb{R}^{\ell} be a mapping.
If a dimension pair  (n, \ell) is in the nice dimensions, then there exists a subset
 \Sigma\subset \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell}) with Lebesgue measure zero such that for any  \pi\in \mathcal{L}(\mathbb{R}^{m}, \mathbb{R}^{\ell})-\Sigma,
the composition  F_{\pi}\circ f :  Narrow \mathbb{R}^{l} is stable.
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