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Geometric Algebra and Singularities arising in
Differential Line Geometry

Junki Tanaka (Kobo Co, LTD) and Toru Ohmoto (Hokkaido Univ.)
HpHE (D LB, K& T (LEERPEGEEEIET)

This is a digest report of [12, 13]; we give an elementary characterization of local
diffeomorphic types of singular ruled/developable surfaces in R3 and their bifurca-
tions by using dual quaternions and A-classification theory of map-germs. Maps
and manifolds are of class C* throughout.

Fig. 1 Deforming Mond’s Hs-singularity via a family of ruled surfaces.

1  Geometric Algebra

Geometric Algebra is a new look at Clifford algebras; It provides very neat tools for
describing motions in Klein geometries in the context of a vast of applications to physics,
mechanics and computer vision etc (cf. e.g. [11]). First we present a quick introduction.

1.1 Clifford algebra

The Clifford algebra Ci(p,q,r) is the quotient of the non-commutative polynomial
ring of n indeterminates eq, - - - , e, with real coefficients (n = p+ q+7r), i.e., the tensor
algebra @5 V2" of V; = ., Re;, via the two-sided ideal corresponding to relations

=l {(lLigg), au=—1{lLicy =0 {lgigh
€;€; +ejei:0 (275_7)

It is graded: Cl(p,q,7) =R Vi @®---®V,, = Clt & Cl~ (een/odd parts), where we
put Vi, = ®i1<,__<ikRei1 ---e;,, called the space of k-blades.
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Example 1.1

C1(0,0,0) =R, Cl1(0,1,0)=C (e; =+/—1)
C1(0,0,1) = R[e]/(e?) = R ® eR =: D: Dual numbers a + be (¢2 = 0)
C1(0,2,0)=Hamilton’s quaternions (e; =i,e; = j,e5 = k)

H=RoImH={g=a+bi+cj+dk=a+v}, v=(bcdT
e (i%(0,3,1)= Dual quaternions:

H@RD:H@eHz{cj:qo-l-EmI(IO;lh EH}

I Hor D ~ Cl1t(0,3,1)
H 177:,.7.) k s ]-7 €2€3, €3€;, €1€3
eHl | g,1e,je, ke > —ejesezey, e€1e4, €ze4, €3€4

1.2 Clifford algebra C1(0,3,1)

1. Blades of CI(0,3, 1) express geometric elements of R3:

e 1-blade

T = nze; +nyey +n,e3+dey < Plane:n-xz=4d
e 2-blade

£ = (v¥eses + viese; +vieres) + (vieres + vYeses + viesey)

with |vg| =1, vg-v1 =0 +— Line: & = vy X v1 +tvg (t € R)
e 3-blade

D = ejese3 + zesezey + yeserey + zejesey +— Point: z = (z,y, 2)

2. Algebraic operations in C1(0, 3, 1) (up to real positive multiples) express geometric
manipulations:

e exterior product: £=m Ame, p=~LAT, p=m ATaATs
e.g., the intersection line ¢ of two planes 7 and 79 is expressed by the 2-blade
w1 A mo; the 2-blade is zero if and only if the two planes are parallel.

e Shuffle product: Z=p;Vpy, w=pVEL wm=pVpsVps
e.g., the product of two points pi,ps expresses the line ¢ passing through
both points.

e Contraction: 71 = 7|/
e.g., the 1-blade 7| £ expresses the plane which contains £ and is perpendicular
to m.

e Euclidean motions: Sp(1)xR?* C HeeH = CI1(0,3, 1) is a double cover of
the group of Euclidean motions SE(3) = SO(3) x R® so that -4 € Sp(1) x R®
defines an Euclidean motions

0(4) : R®* = R3 st 1+£0(§)(x) = §(1 + ex)d*
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3. Dual vectors D?® := {® = vg+ev; | vo,v1 € R? } is the Lie algebra of Sp( )xR3:

T.(Sp(1) x R¥) = T,8° @ e(ImH) = (ImH) @ e(Im H) =

e Inner product and exterior product (Lie bracket) on D3:

W-vi=—F(Wv+ovu)eD, ux:=
e Dual vectors = 2-blade /:

¥ =vg +ev; € D3 with |vg| =1, vo-v; =0 +— oriented line in R3
— a € R3 lies on Ly <= a X vg = vy;

— Ly, and Ly intersect perpendicularly <= 4 - v = 0.

2 Classical line geometry

2.1 Dual Frenet formula

A ruled surface is described as a curve

0:1—=D3  9(s) =vg(s) + evi(s)
with |vg(s)] = 1 and vo(s) - vi(s) = 0 (I an open interval). It gives a canonical
parametrization

F:IxR—R3 F(s,t)=r(s)+te(s)

(r =wvo X v1, e =vg). That leads us to define the dual curvature by

1o
(6) = ra(s) + 2xa(s) = /7 () '(5) = o +e— |v ! ep,
0
provided ¥ is non-cylindrical, i.e., vj(s) # 0 (s € I). Here / means . Note that & is
invertible in D.

From now on, we assume that s is the arc-length of vg; ko(s) = |vg(s)| = 1. Put

1(s) = to(s) +et1(s) == 9(s) x n(s).
Then #(s), 12(s) and #(s) form a basis of D® (as a module over D) which satisfy

n(s) = no(s) +eny(s) == &1/ (s),

S
X
[ X3
Il

v,



Theorem 2.1 (cf. Guggenheimmer [1, §8.2], Hlavaty [2]) Assume that © = vg+ vy :
I — D? with the parameter s being the arc-length of vg, i.e., kg = 1.

(s)
(s) ]
(s)

2. (Completeness) Two possibly singular ruled surfaces in R® are transformed to
each other by some Fuclidean motion if and only if their dual curvatures and dual
torsions K, 7 coincide, i.e., k1,7, 71 are complete invariants of a non-cylindrical
ruled surface.

3. (Developable) Guassian curvature =0 if and only if k1 = 0 identically. In partic-
ular, 79, 71 are complete invariants of a non-cylindrical developable surface.

1. (Frenet formula) It holds that

D(s) 0 i(s) 0
i[%s)}:[%(s) 0 %(s)H

0 —7(s) O

oS¢ Q¢

2.2 Dual Bouquet formula

For every s € I, three lines in R? corresponding to unit dual vectors ¥(s), 72(s), £(s) are
mutually perpendicular and meet at one point, say o(s), which is known as a striction
point. So, in R3, direction vectors vq(s), mo(s),to(s) form a moving frame along the
striction curve o(s). By an Euclidean motion, we may assume that

9(0) = [1,0,0]7, 1(0) = [0,1,0], £(0) = [0,0,1]T € D3,

that is, {v(0),10(0),%5(0)} is the standard basis and o(0) = 0 (& v1(0) = n(0) =
to(0) = 0).
By iterating the Frenet formula, we obtain the Bouquet formula at s = 0;

1:2
r V(n)o 1—§I$S+---
é(s)zZLpsn+o(r)= Es+ 2k's+--- e D3.
o %Fm"s2+---
Convention : &, 7, &', 7/,--+ denote their values at s = 0, e.g. ¥’ = £’(0), unless specif-

ically mentioned.

Substitute £ = kg + k1 and 7 = 79 + €71, we get the Taylor expansion of the map
F(s,t) = vo(s) x v1(s) + tvp(s) at a point (0,%) lying on the ruling of s = 0. It turns
out that F is singular at (0,%) iff o = O (i.e. striction point) and k;(0) = 0. Then F
is expanded at (0,0) as

t— 1t + 24
9 ’ ’
ts_%sz__lo.fgl.ﬂSS_’_... (*)

7 K9
z = %32+%t82+1TT0T133+"‘
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3 Singularities of Ruled and Developable Surfaces

3.1 Equivalences

Let f,g:R™ 0 — R™ 0 be map-germs.

e f and g are A-equivalent if 3 (o,7) € A := Diff(R™,0) x Diff(R™,0) s.t. g =
Tofoo L

e Rigid equivalence (tentatively): up to (o, 7) € Diff(R™,0) x SO(n).

Of our interest is to classify the germs of parametrizations F' : R?,0 — R3,0 of ruled
surfaces up to .A-equivalence and rigid equivalence.

3.2 A-recognition of ruled surfaces

Crosscap Sp : (z, 7y, y?) is 2-A-determined. Hence, by the above expansion (*) of F,

we see that
F ~A Sy <— Iil(O) =0, Iill(O) 75 0

In case of k1(0) = x}(0) = 0, j2F(0) ~4 (z,4%0) or (z,zy,0) according to whether
71(0) # 0 or = 0. Then, applying Mond’s A-recognition tree [10], we obtain

Theorem 3.1 [13] For a non-cylindrical ruled surface (kg = 1),

1. there is a unique singular point on the ruling Ly iff k1(s0) = 0;

2. A-classification of singularities of F' arising in generic at most 3-parameter
families of non-cylindrical ruled surfaces is given in Table 1;

3. For each A-type, k1,70, 71 with the condition gives a normal form of the ruled
surface-germ in rigid classification by solving the Frenet ODE; its jet is given

by (*).

Remark 3.2

1. The generic case (i.e. crosscap Sg) was firstly proved in Izumiya-Takeuchi [6]
in a rigorous way. Martins and Nuno-Ballesteros [9] showed that any .A-simple
map-germ is equivalent to a germ of non-cylindrical ruled surface.

2. From our theorem, all A-types of codim < 5 are realized by ruled surface-
germs. Indeed, there is an A-type of codim 6 which is not realized, e.g.,
the 3-jet (z,v%,2%y) and the 5-jet (z,y?, z%y) is not equivalent to jets of any
(cylindrical /non-cylindrical) ruled surfaces.

3. For each type, A.-versal deformation is realized via deforming 1, 79, 71 properly.
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Inormal form IZ | cond. at s = sp
So | (z, 9% zy) 2[m =0, w, £0
ST | (z,9%,v° £ 47 3 = 0, 0, —2 >0
1 Y5y E3Ty) k1i=r1 =0, 11 #0, k{(kY —270m1) 2
52i (z,9%,° + z°y) 4] k=r=r{ =0, kVrom £0
B2 (x7y2?z2y:ty5) K'l:’i]l:o: K'Ill:27—07—1#07 b220
Hy | (z,2y +1°,9°) ki=kl=11=0, k¥ #0, ha #0
ST | (=, 97, y° + zy) 5 k== =62 =0, kP7r0m 20
C’g: (z, yQ,xy3:l:a:3y) Ki=ri=kK{=70=0, 1 #0, n§3)(fi§3)—27'671)20
Bf (,y,:cyiy) k1 =k, =0, kY =27011 #0, bo =0, b3 =0
H x,xy + k1i=ki=11=0, K #0, ha =0, ha #0
P3 (z,zy yy) 1= == _1# 12 3 F# L
s | (@ 2y + 97, 29° + pay®) k1=k1 =k =71 =0, 011 #0, ps #0,1, 5, 5.

Table 1 Characterization of germs of ruled surfaces. There are certain polynomials

ba, b3, ha, hs, ps4 in derivatives of k1,719, 71 [13]. £ is A-codimension of the germ.

3.3 A-recognition of developable surfaces

Theorem 3.3 [13] For a non-cylindrical developable surface (kg = 1,51 = 0),

1. Tt is the tangent developable of the striction curve given by o(s) := F'(s, —r'(s) -
€' (s)) (r=wvg Xvi,e=0vg);

2. A-classification of singularities of F' arising in generic at most 2-parameter
families of non-cylindrical developable surfaces is given in Table 2;

3. For each A-type, 79, 71 with the condition gives a normal form of the developable
surface-germ in rigid classification by solving the Frenet ODE; its jet is given

by (*).

Remark 3.4 (i) Izumiya-Takeuchi [6] classified generic singularities of developable
surfaces rigorously, and Kurokawa [8] treated 1-parameter families of developables. Our

result generalizes those.

(ii) Some A-types of frontal-germs are not realized by non-cylindrical developables.

- Sy (2,97, 9% (2® — y?)) and ¢Cy :

: (2,92, 93 (2% — 29%)) never appear.

- nn#0and 7p = 75 = 7 = 0iff j°F ~4 (2,92,0). Thus, ¢S : (z,9% > (¥* +
h(z,y*))) and ¢B : (z,y?,y3(2? + h(z,y?))) with h(z,y?) = o(2) never appear.
-1 = 0 iff 2°F ~4 (z,29,0).
purse/pyramid types Dy mnever appear (indeed, their 2-jets are equivalent

to (x,0,0) and (22 + 32, zy, 0) respectively).

Thus cuspidal beaks/lips type ASjE and
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lnormal form If I cond. at s = sg
cE | (z,y? y) 1|10#0, n#0
cSo | (z,v% 2y°) 2|1 #0, =0, 7,#0
eS| (z, 2 (x +y)) 3|7 #0, 7‘0:7’6—0 T8 #0
cCi | (, 2 y3 (23 —i—xy %) 411 #0, m=1y=1 =0, 10/ #0
Sw | (z, xy+2y zy? +3y?) [2|10#0, m=0, 7f #0
cAy | (z, $y+2y4,xy2+4y5) 3| 70#0, 7'1=7'{:0 ' #£0
cAs | (z, xy+3y 2y +55)1 |4 |10 #0, m=7{=7/=0, 7{"#0
T (z,zy +y3,0) + o(3) 3|lmg=71=0, T{#O
( 4

Ty x, 2y, )+0(3) =71=1=0

Table 2 Characterization of germs of developable surfaces. t: topological A-equivalence.

A space curve-germ is called to be of type (m, m + £,m + £ + r) if it is A-equivalent
to the germ

z=s"+o(m), y=s"+om+4L), z=s"T ro(m+L+7)

Theorem 3.5 (G. Ishikawa [4]) Topological type of the tangent developable of
a space curve is uniquely determined by type (m,m + £,m + £+ r) of the curve, unless
both £, r are even.

Theorem 3.6 (Topological classification [13])  For a non-cylindrical developable
surface, the germ of its striction curve o(s) at s = sg has the type (m, m+1, m+1+r),
if the orders at s = s¢ are: 71(s) = o(m — 2) and 79(s) = o(r — 2). In particular, the
topological type of F at a singular point is uniquely determined by vanishing orders
of the dual torsion 7 = 19 + 71.

This generalizes a known result that the A-type of the tangent developable of a non-
singular space curve o with non-zero curvature is uniquely determined by the vanishing
order of its torsion function (Ishikawa [4]); that is the case of (1,2,2+7r) (i.e., 71(s0) # 0)
and then the order of 7y is equal to the order of torsion of o.

4 Further discussion

4.1 Line congruence and line complex

Consider a 2-parameter family of lines ¥ : U — D3, 9(p) = vo(p) + ev1(p), with
|vg] = 1 and vy - v; = 0, U C R? an open subset, which defines a line congruence. It
is parameterized by the map F': U x R — R3, F(p,t) = vo(p) X v1(p) + tvo(p). The
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Frenet formula for the Dorboux frame in D3 is available: Jw; € QY(U) s.t.
o(p) 0 wi(p)  wa(p) (p)

dl n(p) | =| —wip) 0 ws(p) (p) }

t(p) —wa(p) —ws(p) O (p

(cf. Guggenheimmer [1, §10]). This kind of Frenet formula is also available for a family
of lines with 3 or more parameters, called a line complex. We can obtain A-classification
of singularities of line congruences and line complexes by using

I &«

~~

- A-classification of R3,0 — R?,0 (Bruce, Marar-Tari, Hawes)
- A-classification of R* 0 — R3 0 (A. C. Nabarro)

4.2  Other Clifford Algebra

- Higher dimensional case C1*(0,n,1) = Ruled objects in R™.

- Conformal Geometric Algebra ~ Cl(4,1,0) = envelopes of circles, shperes,
etc. e.g. Sing. of families of horospheres, etc. (Izumiya-Saji-Takahashi [5])

- Projectivized Clifford Algebra = projective differential geometry (Wilczynski,
Kabata [7])

4.3 Curves and surfaces in D?

A curve of dual vectors, I — D3, is called a framed curve, which describes a 1-
parameter family of Euclidean motions of R3. There is also a Frenet-type formula
and various aspects of singular objects associated to framed curves have been studied
by Honda-Takahashi [3]. It would be interesting to reformulate the theory of frontal
surfaces in R? as surface theory in D3.

4.4  Hybrid approach with discrete differential geometry

How to discretize ruled/developable surfaces around singular points ? As seen above,
we have obtained rigid classification of singularities of ruled/developable surfaces; the
curve-germs in D3 is determined by jets of %, 7. Therefore, we may first discretize the
curves in D3 with respect to the parameter s and then discretize rulings with respect
to the parameter ¢t. Semi-algebraic (e.g. Bézier) versions can also be considered. This
approach might be interesting for singularity analysis in several applications from pure
math. to applied math. ; (classical) integrable systems, architectural geometry, data
analysis (surface fittings), computer visions, robotics and so on.
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