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DETECTING EXOTIC SPHERES VIA FOLD MAPS

DOMINIK J. WRAZIDLO

Institute of Mathematics for Industry, Kyushu University

ABSTRACT. In this survey article, we present two subgroup filtrations of the group of
homotopy spheres whose definitions are both based on the existence of certain fold maps
subject to index constraints. Both filtrations have recently been introduced and studied
by the author in order to obtain new insights into global singularity theory of fold maps
from high dimensional manifolds into Euclidean spaces. We discuss fundamental relations
of our filtrations to other known filtrations of geometric topology. Moreover, we show
how our results can be applied to compute an invariant of Saeki for the Milnor 7‐sphere,
as well as the value of Banagl’s TFT‐type aggregate invariant on certain exotic spheres
including Kervaire spheres. Along the way, we raise some problems for future study.

1. INTRODUCTION

Developing powerful systematics for the classification of manifolds has always been a
central issue of differential topology [25]. Major achievements like smooth bordism theo‐
ries or the surgery program are usually governed by algebraic key invariants of manifold
theory such as characteristic classes and the signature. A look behind the scenes, how‐
ever, will often reveal a natural link to global singularity theory of differentiable maps.
For instance, the construction of characteristic classes à la Stiefel [26] is motivated by the
original observation that the set of points on a manifold where a given tuple of tangent
vector fields is linearly dependent determines a homology cycle. In this spirit, our objec‐
tive here is to present recent results of the author [31, 30, 32] concerning the study of
exotic smooth structures on spheres from the perspective of global singularity theory.

Historically speaking, the modern understanding of differentiable structures on mani‐
folds has its roots in the study of homotopy spheres, i.e., compact smooth manifolds having
the homotopy type of the sphere of the same dimension. While being homeomorphic to
spheres, homotopy spheres of dimension \geq 5 do often possess non‐standard  ("exotic”)
smooth structures— this was first realized by John Milnor in 1956 with his revolutionary
discovery of exotic 7‐spheres [17]. Homotopy spheres appear to be fascinating objects in
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their own right: despite of their simple topology, they exhibit a rich structural diversity.
Indeed, as shown by Kervaire and Milnor [12], oriented diffeomorphism classes of oriented
smooth structures on the topological  n‐sphere  (n\geq 5) form a finite abelian group  \Theta_{n}

with group law induced by oriented connected sum. In their proof, Kervaire and Milnor
reduce the study of smooth structures on spheres to questions of stable homotopy theory.
A central ingredient is Smale’s  h‐cobordism theorem (see [19]), whose proof is in turn
based essentially on singularity theory of Morse functions. The work of Kervaire‐Milnor
imitiated what is nowadays known as the surgery program, and which has been developed
through the work of many others to a significant tool of high dimensional manifold theory.

The main purpose of the present article is to discuss how exotic spheres can be de‐
tected by means of singularity theory of so‐called fold maps. Those can be thought of as
maps between smooth manifolds that look ıocally like a family of Morse functions (i.e.,
smooth functions with only non‐degenerate critical points). More precisely, a smooth map
 F:M^{n}arrow \mathbb{R}^{p} on a manifoıd  M^{n} of dimension  n\geq p\geq 1 is a fold map if for every singular
point  x\in S(F)= {  x\in M ; rank  d_{x}F<p} there exist local coordinates  (x_{1}, \ldots, x_{n}) and
(yı ,  y_{p} ) centered at  x and  F(x) , respectively, in which  F takes for suitable integer  i

the form

 (x_{1} . , x_{n})\mapsto  (x ı ,  x_{p-1},  -x_{p}^{2}-  -x_{p+i-{\imath}}^{2}+x_{p+i}^{2}+  +x_{n}^{2}) .

Consequently, the singular locus of a fold map (its “folds”) is a submanifold on which the
fold map restricts to a codimension one immersion. Using the notion of Morse index, one
can assign to every fold component an integer called (absolute) fold index. The index of a
fold point  x\in S(F) with the above normal form is explicitly given by   \max\{i, n-p+1-i\}.
In generalization of the notion of (in)definite Morse critical points, fold points of index
 n+p-1 are called definite, and indefinite otherwise.

There is a long tradition in studying the following global problems about fold maps
(see e.g. [24] for a current overview):

(a) In what ways do fold maps reflect the topology of a space, e.g., in terms of invari‐
ants such as characteristic classes

 l

? For instance, Levine [15] has characterized the
existence of a fold map from closed manifolds into the plane in terms of the Euler
characteristic of the source manifold.

(b) Construct fold maps with desired properties such as prescribed boundary conditions,
or fold index constraints. An essential tool for the construction of fold maps is Eliash‐

berg’s folding theorem [7]. Roughly speaking, this sort of a “homotopy principle”
(  h‐principle) produces up to homotopy from more algebraic data a fold map with
prescribed singular locus. However, the  h‐principle cannot be used for constructing
fold maps subject to constraints on the fold indices.
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In the context of these problems, fold maps having only folds of definite index (so‐called
special generic maps) seem to be of special importance. Indeed, as observed in Remark
3.6 of [22], global singularity theory of special generic maps is closely reıated to the
study of smooth structures on manifolds. More specifically, Saeki [21] has shown that the
smooth standard  n‐sphere can be characterized among all homotopy spheres  \Sigma^{n} in terms
of the existence of special generic maps of  \Sigma^{n} into Euclidean spaces of various target
dimensions (see Theorem 2.2). Furthermore, Saeki [22] has characterized the smooth
standard  n‐sphere in terms of bordism theory of special generic functions on  \Sigma^{n} , that is,
special generic maps  \Sigma^{n}arrow \mathbb{R} (see Theorem 2.4). Beyond these results, the objective of
this paper is to present cases in which fold maps subject to certain constraints on the
fold index allow to detect individual exotic smooth structures on spheres. An innovative
feature of our approach is that we use global singularity theory in a natural way to define
subgroup filtrations of  \Theta_{n} that capture information about homotopy spheres.

The paper is organized as follows. In Section 2 we discuss several invariants of ho‐
motopy spheres, namely Milnor’s  \lambda‐invariant (see Section 2.1), Saeki’s invariant  S (see
Section 2.2), as well as Banagl’s aggregate invariant  \mathfrak{A} that has shown up recently in the
context of so‐called positive topological field theories (see Section 2.3). Roughly speaking,
Banagl’s aggregate invariant detects the minimal number of closed components (loops”)
that can occur in the (1‐dimensional) singular locus of fold maps from bordisms bounded
by homotopy spheres into the plane. In Section 3 we review several geometric‐topological
filtrations of  \Theta_{n} . Then, in Section 4, we introduce our singularity theoretic filtrations,
and present their relation to the filtrations of Section 3. Namely, the standard filtration,
which is introduced in terms of certain special generic maps in Section 4.1, turns out to be

related to the Gromoll filtration (see Section 3.1). Moreover, the index filtration (see Sec‐
tion 4.2), which is based on bordism theory of Morse functions that are subject to certain
index constraints, will be shown in Theorem 4.5 to be related to the connectivity filtration
(see Section 3.2). Throughout our discussion we also pose some problems that can be the
subject of future research. Finally, in Section 5, we discuss applications of our results to
the computation of the invariants presented in Section 2 for some concrete exotic spheres,
namely Milnor spheres (see Example 2.1) and Kervaire spheres (see Example 3.2).

All manifolds considered in this note will be differentiable of class  C^{\infty} . Let  S^{n} denote

the smooth standard sphere of dimension  n\geq 0.
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2. INVARIANTS

In what follows, let  \Sigma^{n} denote a homotopy sphere of dimension  n\geq 1 , i.e., a closed
smooth  n‐manifold which is homotopy equivalent to  S^{n} . We recall the following two
well‐known facts about homotopy spheres for later reference.

(1) From the perspective of Morse theory [19],  \Sigma^{n} admits for  n\neq 4 a Morse function
with exactly two critical points (see Figure 1), namely one minimum and one
maximum. (For  n=3 the claim is valid by Perelman’s solution to the smooth
Poincaré conjecture.) Recall from the introduction that such a Morse function is
called special generic function.

(2) From the viewpoint of bordism theory,  \Sigma^{n} is known to be oriented nullbordant
in the smooth oriented bordism group,  [\Sigma^{n}]=0\in\Omega_{n}^{SO} . (In fact, it suffices
to convince oneself that all Stiefel‐Whitney numbers and Pontrjagin numbers of
 \Sigma^{n} vanish.) In other words,  \Sigma^{n} can be realized as the boundary of an oriented
compact manifold  W^{n+1} (see Figure 1).

 \mathbb{R} W^{n+1}

 \Sigma  arrow^{f_{\Sigma}}  \ovalbox{\tt\small REJECT}  \Sigma^{n}

FIGURE 1. Left: A special generic function  f_{\Sigma}:\Sigma^{n}arrow \mathbb{R} symbolized by the
height function on the 2‐sphere. Right: An oriented nullbordism  W^{n+1} of
 \Sigma^{n}.

At first glance, the above facts do not help in distinguishing homotopy spheres. How‐
ever, using them as a tool, interesting invariants of homotopy spheres can be obtained
as explained in the following sections. Since we are concerned with high dimensional
phenomena, we will generally assume that  n\geq 5 in the following.

2.1. Milnor’s  \lambda‐invariant. A key role in the discovery of exotic 7‐spheres [17] is played
by Milnor’s celebrated  \lambda ‐invariant, which is defined on a homotopy 7‐sphere  \Sigma^{7} as follows.
Exploiting fact (2), we realize  \Sigma^{7} as the boundary of any compact oriented manifold  W^{8},
and consider the linear combination in  \mathbb{Z}/7 of the Pontrjagin number  p_{1}^{2}[W^{8}] and the
signature  \sigma(W^{8}) given by

 \lambda(\Sigma^{7})=2p_{1}^{2}[W^{8}]-\sigma(W^{8})mod 7.
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It is a consequence of Novikov additivity and the Hirzebruch signature theorem that the
above definition of  \lambda(\Sigma^{7}) is independent of the choice of  W^{8} , and is thus in fact an invariant
of  \Sigma^{7} . Note that  \lambda(S^{7})=0 because  S^{7} bounds the unit 8‐disc, which is contractible. In
order to prove the existence of exotic 7‐spheres, Milnor proceeds to construct explicit
homotopy 7‐spheres with non‐trivial  A‐invariant by studying total spaces of certain linear
3‐sphere bundles over  S^{4}.

While the  A‐invariant distinguishes certain exotic 7‐spheres from the standard sphere,
it is certainly not a complete invariant because it takes values in  \mathbb{Z}/7 , whereas  \Theta_{7}\cong

 \mathbb{Z}/28 (see [12]). Employing Hirzebruch’s Â‐genus, Eells‐Kuiper [5] introduced the  \mu-

invariant, which is a refinement of the  \lambda‐invariant that can be defined for certain closed
spin nuılbordant manifolds in dimensions of the form  n\equiv 3 mod4. Eells and Kuiper use
their  \mu‐invariant to decide which of the 27 exotic 7‐spheres can be realized as total spaces
of 3‐sphere bundles over  S^{4} as in Milnor’s construction.

Example 2.1 (Milnor spheres). A generator of  \Theta_{7}\cong \mathbb{Z}/28 is given by the Milnor 7‐sphere
 \Sigma_{M}^{7} , which is a concrete homotopy 7‐sphere that is uniquely determined by requiring that
it has an oriented nullbordism whose signature is equal to 8. The computations of Eells
and Kuiper in [5] imply that  \Sigma_{M}^{7} can be realized as the total spaces of a linear 3‐sphere
bundle over  S^{4}.

2.2. Saeki’s invariant  S . Inspired by fact (1), Osamu Saeki [21] has defined an invariant
 \mathcal{S} of homotopy spheres as follows.

Recall from the introduction that a smooth map  M^{n}arrow \mathbb{R}^{p} on a closed  n‐manifold  M^{n}

is called special generic map if all of its critical points are definite fold points, i.e. singular
points determined by the map germ

 (x_{1}, \ldots, x_{n})\mapsto(x_{1}, \ldots, x_{p-1}, x_{p+1}^{2}+ +x_{n}^{2}) .

Thus, special generic maps generalize Morse functions with only minima and maxima as
critical points in a natural way to maps with higher dimensional codomain.

Given a homotopy sphere  \Sigma^{n} , define  S(\Sigma^{n}) to be the set of all  p\in\{1, n\} for
which  \Sigma^{n} admits a special generic map into  \mathbb{R}^{p} . Note that  1\in S(\Sigma^{n}) holds for any
homotopy sphere  \Sigma^{n} by fact (1). The importance of the invariant  S (which is obviously
a diffeomorphism invariant) is iılustrated by the following

Theorem 2.2 (Saeki [21], 1993). A homotopy sphere  \Sigma^{n} of dimension  n\geq 5 is diffeo‐
morphic to the standard sphere  S^{n} if and only if  S(\Sigma^{n})=\{1, n\}.

To the author’s knowledge, the problem of computing the set  S(\Sigma^{n}) for a given exotic
sphere  \Sigma^{n} is in general widely open (compare [23, Problem 5.1, p. 198]). However, in
Section 5.1 we discuss the solution in the case that  \Sigma^{7} is the Milnor 7‐sphere.
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2.3. Banagl’s aggregate invariant  \mathfrak{A} . The axiomatic notion of topological field theory
(TFT) was coined in 1988 by Michael Atiyah in his seminal paper [1]. According to
Atiyah’s axioms, an  (n+1)‐dimensional TFT  Z assigns to every closed  n‐manifold  M^{n}a

state module  Z(M) (a module over some fixed base ring), and moreover to any  (n+1) ‐
dimensional bordism  W^{n+1} an element  Z_{W}\in Z(\partial W) called state sum (or partition
function). (Recall that a bordism is a compact manifold whose boundary components are
partitioned into an ingoing and an outgoing part.) The assignment  Z is required to satisfy
a list of axioms which can most efficiently be summarized by saying that  Z is a monoidal
functor from the bordism category (with monoidal structure given by disjoint union) into
the category of vector spaces (with monoidal structure given by the tensor product). Here,
we shall only recall the essentiaı gluing axiom, which can be stated explicitly as follows.
For any triple  (M, N, P) of closed  n‐manifolds the gluing axiom requires the existence of
a contraction product of the form

 \langle\cdot, \cdot\rangle:Z(M\sqcup N)\cross Z(N\sqcup P)arrow Z(M\sqcup P) ,

such that, whenever  W' is a bordism from  M to  N,  W" is a bordism from  N to  P , and
 W is the bordism from  M to  P obtained by gluing the bordisms  W' and  W^{\prime I} along  N,

the three state sums  Z_{W},  Z_{W'} , and  Z_{W'}/ are related by the formula  Z_{W}=\langle Z_{W'},  Z_{W"} }.
Thus, the gluing axiom guarantees that the state sum of a TFT is computable to a certain

extent by cutting bordisms into simpler pieces (locality of the state sum”’).
Recently, Markus Banagl [2] has proposed a new framework of positive TFT based

on semirings rather than on rings. Compared to a ring, elements of a semiring do not
necessarily possess additive inverses (i.e., “negative” elements). The Boolean semiring
 \mathbb{B}=\{0,1\} , whose semiring structure is uniquely determined by requiring that  1+1=1,

is a simple example of a semiring that is not a ring (in fact, 1 does not have an additive
inverse). Eilenberg completeness [6] is an important concept of semiring theory that is not
available for rings. Roughly speaking, a complete semiring is a semiring equipped with
a summation law that satisfies distributivity, and extends the addition law to arbitrary
families of elements (even for uncountable index sets). While the axiomatic system of
positive TFT deviates from Atiyah’s original axioms in some necessary aspects, Banagl
supplies a general framework which allows to construct positive TFTs of any dimension
from systems of fields and category‐valued actions by means of a mathematically rigorous
process called quantization. Inspiration is taken from the definition of Feynman’s path
integral of theoretical quantum physics, and Banagl exploits the concept of Eilenberg
completeness for semirings to avoid measure theoretic difficulties in the definition of the
state sum.

In Section 10 of [2], Banagl outlines the construction of an explicit positive TFT of any
dimension  n+1\geq 2 defined on smooth manifolds. Certain fold maps of bordisms into the
plane are employed as fields of the theory. The 1‐dimensional singular locus of such a fold
field consists of intervals and circles, and the action functional translates this “singular
pattern” into a morphism of the so‐called Brauer category. The Brauer category is a
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strict monoidal category constructed as categorification of the Brauer algebras classically
known from representation theory of the orthogonal group  O(n) .

In general; the state sum of an  (n+1)‐dimensional positive TFT takes values in an
additive monoid  Q , which is a complete semiring with respect to two different multi‐
plications, and serves as the ground semiring of the theory. An innovative feature of a
positive TFT is the aggregate invariant  \mathfrak{A},  a (differential) topological invariant of closed
 n‐manifolds that is derived from the partition function of the theory, and takes values
in certain modules over the ground semiring  Q . This is in line with Atiyah’s original
intention to exploit the concept of TFT as a convenient source of powerful invariants for
manifolds. The aggregate invariant associated to Banagl’s concrete positive TFT above is
particularly interesting when evaluated on homotopy spheres, where it reduces to a map
 \mathfrak{A}:\Theta_{n}arrow Q with values in the ground semiring  Q . Banagl shows in Theorem 10.3 of [2]
that the aggregate invariant of his theory is able to distinguish exotic spheres from the
standard sphere in high dimensions.

Theorem 2.3 (Banagl [2], 2015). A homotopy sphere  \Sigma^{n} of dimension  n\geq 5 is diffeo‐
morphic to the standard sphere  S^{n} if and only if  \mathfrak{A}(\Sigma^{n})=\mathfrak{A}(S^{n}) in  Q.

Banagl’s proof of the above result is essentially based on the technique of Stein factor‐
ization [4], an important tool of global singularity theory. More specifically, in proving
Theorem 2.3, Banagl uses the following result of Saeki (see Lemma 3.3 in [22]) that char‐
acterizes the standard sphere among all homotopy spheres in terms of bordism theory of
special generic functions.

TIIn + ı

 \Sigma^{n}
 11

FIGURE 2. For a pair  (W^{n+1}, F) with the properties of Theorem 2.4,

the singular locus  S(F)\subset W (bold lines) is an embedded compact 1‐
dimensional submanifold consisting of a single interval component, and a
finite number of closed components (loops”). All components of  S(F) have
definite fold index. Note that  F restricts to an immersion  S(F)arrow \mathbb{R}^{2}.
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Theorem 2.4 (Saeki [22], 2002). A homotopy sphere  \Sigma^{n} of dimension  n\geq 5_{i}S diffeomor‐
phic to the standard sphere if and only if there exists a pair  (W^{n+1}, F) with the following
properties (see Figure 2):

 \bullet  W^{n+1} is a compact oriented  (n+1) ‐manifold with boundary  \Sigma^{n} (see fact (2)), and

 \bullet  F:W^{n+1}arrow \mathbb{R}^{2} is a smooth map with the following properties:

(i)  F is a special generic map, i. e., for every singular point  x\in S(F) there
exist local coordinates  (x_{1}, \ldots, x_{n+1}) and (yı,  y_{2} ) centered at  x and  F(x) ,
respectively, in which  F takes the form

 (x_{1}, . . . , x_{n+{\imath}})\mapsto(x_{1}, x_{2}^{2}+x_{3}^{2}+ \cdot \cdot 
+x_{n+{\imath}}^{2}) .

(ii) There exists a collar neighborhood  [0, \varepsilon )  \cross\Sigma^{n}\subset W^{n+{\imath}} of  \{0\}\cross\Sigma^{n}=\Sigma^{n}\subset
 W^{n+1} , and a special generic function  f_{\Sigma}:\Sigma^{n}arrow \mathbb{R} (compare fact (1)) such
that  F|_{[0,\varepsilon)\cross\Sigma n}=id_{[0,\varepsilon)}\cross f_{\Sigma}.

Recall that the fields of Banagl’s concrete positive TFT are certain fold maps   F:Warrow

 \mathbb{R}^{2} of bordisms into the plane. In order to satisfy the essential gluing axiom, Banagl
needs to impose a subtle technical condition on the fields (see Definition 10.1 in [2])
which involves the interaction of the immersion  F|:S(F)arrow \mathbb{R}^{2} with a certain smooth

map  Warrow[0,1] called time function. By eliminating this technical issue, the author
shows in Proposition 10.1.5 of [30, p. 244] that the informational content of Banagl’s
aggregate invariant  \mathfrak{A}:\Theta_{n}arrow Q is encoded in the aggregate filtration, namely a map

 \mathfrak{a}:\Theta_{n}arrow\{0,1,2, \ldots\}\cup\{\infty\}

which can be defined explicitly as follows. Given a homotopy sphere  \Sigma^{n} of dimensio. n

 n\geq 5 , consider pairs  (W^{n+1}, F) as in Theorem 2.4, but with the weaker requirement
that  F:W^{n+1}arrow \mathbb{R}^{2} is a fold map instead of a special generic map. In other words, we
drop the assumption that all fold points of  F are definite. As indicated in Figure 2, the
singular locus  S(F)\subset W is an embedded compact 1‐dimensional submanifold which is
transverse to  \partial W=\Sigma^{n} , and satisfies  S(F)\cap\partial W=\partial S(F) . Thus,  S(F) consists of a
single component diffeomorphic to the interval, and a finite number  a(W^{n+1}, F)\geq 0 of
closed components (loops”). Note that, in contrast to the pairs  (W^{n+1}, F) considered in
Theorem 2.4,  S(F) may now possibly have loops of indefinite fold index. Varying over all
pairs  (W^{n+1}, F) , we define the aggregate filtration  a(\Sigma^{n}) of  \Sigma^{n} to be the minimum of the
set of occuring integers  a(W^{n+1}, F) . (If no pair  (W^{n+1}, F) exists, then it is understood
that  \mathfrak{a}(\Sigma^{n})=\infty. )

Similarly to the proof of Theorem 2.3, we can use Theorem 2.4 to show the following

Corollary 2.5. A homotopy sphere  \Sigma^{n} of dimension  n\geq 5 is diffeomorphic to the stan‐
dard sphere  S^{n} if and only if  \mathfrak{a}(\Sigma^{n})=0.

Given an exotic sphere  \Sigma^{n} of dimension  n\geq 5 , the number  \mathfrak{a}(\Sigma^{n}) is in general very
hard to compute. The results discussed in Section 4.2 will shed some light on the nature
of the aggregate filtration  \mathfrak{a}.
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3. FILTRATIONS OF  \Theta_{n}

Information about homotopy spheres is sometimes organized in terms of natural filtra‐
tions of  \Theta_{n} . In this section we discuss two filtrations that arise naturally in the study of
exotic spheres. Let  n\geq 5 be an integer.

3.1. Gromoll filtration. The first filtration we shall discuss is the Gromoll filtration‐
a subgroup filtration of  \Theta_{n} of the form

 0=\Gamma_{n-{\imath}}^{n}\subset \subset\Gamma_{{\imath}}^{n}=\Theta_{n}.

It has been introduced by Detlev Gromoll in the  1960 ’s [9] with the purpose to sharpen the
classical sphere theorem of Rauch [20], Berger [3] and Klingenberg [13] from Riemannian
geometry.

Let us recall the definition of the Gromoll filtration of  \Theta_{n} , which uses the perspec‐

tive of twisted spheres. By fact (1) any homotopy sphere  \Sigma^{n} admits a Morse function
with exactly two critical points, and one can therefore think of  \Sigma^{n} as being obtained by
gluing two copies of the unit  n‐disc along their boundaries by means of an orientation
preserving automorphism  \gamma of  S^{n-1} . Furthermore, one can up to isotopy achieve that
the diffeomorphism  \gamma has support in some chart of  S^{n-1} . Then,  \gamma can be considered as
a diffeomorphism  g:\mathbb{R}^{n-1}arrow \mathbb{R}^{n-1} with compact support. We say that  [\Sigma^{n}]\in\Theta_{n} has
Gromoll filtration strictly greater than  p (or lies in  \Gamma_{p+{\imath}}^{n} ) if  g can be chosen in such a
way that  \pi_{p}^{n-1}\circ g=\pi_{p}^{n-1} , where  \pi_{p}^{n-1}:\mathbb{R}^{n-1}arrow \mathbb{R}^{p} denotes the projection to the last  p

coordinates.

In general, the Gromoll filtration is far from being compıetely understood, and its
computation is expected to be very hard. One partial result is the following

Theorem 3.1 (Weiss [29], 1993). If  \Sigma^{n} is a homotopy sphere of dimension  n\geq 7 , then

(Gromoll filtration of  \Sigma^{n} )  -1\leq Morse perfection of  \Sigma^{n}.

Here, the Morse perfection of  \Sigma^{n} is by definition the greatest integer  k\geq 0 for which
there exists a family  \eta:\Sigma^{n}\cross S^{k}arrow \mathbb{R} of special generic functions  \eta_{s}=\eta(\cdot, s):\Sigma^{n}arrow \mathbb{R}
smoothly parametrized by  s\in S^{k} such that the additional symmetry condition  \eta-s=-\eta_{s}

is satisfied for all  s\in S^{k} . Note that the Morse perfection of a homotopy sphere is always
 \geq 0 by fact (1).

3.2. Connectivity filtration. Another natural filtration of  \Theta_{n} is the connectivity filtra‐
tion ‐ a subgroup filtration of  \Theta_{n} of the form

 C_{\lfloor n/2\rfloor}^{n}\subset \subset C_{1}^{n}\subset(C_{0}^{n}=)
\Theta_{n}.

This filtration is obtained by considering the maximal connectivity of bordisms bounded
by  \Sigma^{n} . Explicitly,  \Sigma^{n} is said to have connectivity filtration  \geq k (or lies in  C_{k}^{n} ) if it can
be realized as the boundary of an oriented compact manifold  W^{n+1} (see fact (2)) such
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that  W^{n+1} is  k‐connected. For instance, the smooth standard  n‐sphere has connectivity

filtration  \geq k for any  k since it bounds a contractible bordism (namely, the  (n+1)‐disc).
On the other hand, results by Stolz [27] imply that the connectivity filtration is non‐
trivial in general as we shall explain next. Let  bP_{n+1}\subset\Theta_{n} denote the subgroup.of those
homotopy  n‐spheres that can be realized as the boundary of a compact manifold which
is parallelizable, i.e., has trivial tangent bundle (see [12, p. 510]). For instance, we have
 bP_{n+1}=0 whenever  n is even by [12, Theorem 5.1, p. 512].

Example 3.2 (Kervaire spheres). Kervaire spheres are a concrete family of homotopy
spheres that can be obtained from a plumbing construction as follows (see [14, p. 162]).
The unique Kervaire sphere  \Sigma_{K}^{n} of dimension  n=4m+1 can be defined as the bound‐
ary of the parallelizable  (4m+2) ‐manifold given by plumbing together two copies of the
tangent disc bundle of  S^{2m+1} It follows from the construction that  [\Sigma_{K}^{n}]\in bP_{n+1} , and
the classification theorem of homotopy spheres (see Theorem 6.1 in [16, pp.  123f]) im‐
plies that  bP_{n+1}=\{[S^{n}], [\Sigma_{K}^{n}]\} . Moreover, it is known that  bP_{n+1}\cong \mathbb{Z}/2 whenever

 n+3\not\in\{2^{{\imath}}, 2^{2},2^{3}, . . . \} , whereas  bP_{n+1}=0 for  n\in\{5,13,29,61\}.

For odd  n we observe that  bP_{n+1}\subset C_{\lfloor n/2\rfloor}^{n} holds because by Theorem 3 of [18,  p.

49] any parallelizable compact smooth manifold  W^{n+1} can be made  \lfloor n/2\rfloor ‐connected by
a finite sequence of surgeries without changing  \partial W . Hence, in dimensions of the form
 n\equiv 1mod 4 , Theorem  B(ii) of [27,  p . XIX] implies the following

Theorem 3.3 (Stolz [27], 1985). Suppose that  n\geq 225 and  n\equiv 1 mod4. Then,

 C_{\lfloor n/2\rfloor}^{n}=bP_{n+1}.

Moreover, as shown in Remark 6.3 of [32], we have  bP_{n+{\imath}}\neq\Theta_{n} for infinitely many
dimensions  n\equiv 13 mod16. Namely, this is true whenever  n=2(p+1)(p-1)-3 for an
odd prime  p . Note that in this case we also have  bP_{n+1}\cong \mathbb{Z}/2 provided  p\neq 3.

4. RESULTS

In this section we discuss two theorems of the author (see Theorem 4.1 and Theo‐
rem 4.5), which are both motivated by the invariants of Section 2 and the filtrations of
Section 3. Beyond results of [21, 22] these theorems both demonstrate the important role
of fold maps for the detection of exotic spheres. Both theorems involve new subgroup
filtrations of  \Theta_{n} which are defined by means of global singularity theory of fold maps. In
Section 5 we show how our results contribute to the computation of Saeki’s invariant  S

(see Section 5.1) as well as Banagl’s aggregate invariant  \mathfrak{A} (see Section 5.2).

4.1. Standard filtration. In preparation of our first result, we explain the definition of
the standard filtration (see [31, Remark 3.12, p. 355]), which is a subgroup filtration of
 \Theta_{n} of the form

 0=F_{n-1}^{n}\subset\cdots\subset F_{1}^{n}\subset\Theta_{n}.
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By definition,  \Sigma^{n} has standard filtration  \geq p (or lies in  F_{p}^{n} ) if it admits a special generic
map  F:\Sigma^{n}arrow \mathbb{R}^{p} with image  F(\Sigma^{n})=D^{p} the unit  p‐disc, and such that all fibers  F^{-{\imath}}(y) ,
 y\in D^{p} , are connected.

In refinement of Theorem 3.1, we have the following

Theorem 4.1 ([31]). Let  \Sigma^{n} be a homotopy sphere of dimension  n\geq 7 . Then, the
standard filtration is related to the Gromoll filtration of  \Sigma^{n} by

Gromoll filtration of  \Sigma^{n}\leq standard filtration of  \Sigma^{n}\leq (Morse perfection of  \Sigma^{n} )  +1.

In Section 5.1 we will discuss an application of our result to Milnor spheres.

Problem 4.2. Do the Gromoll filtration  \Gamma_{p}^{n} and the standard filtration  F_{p}^{n} coincid  e^{}

4.2. Index filtration. In Section 2.3 we discussed Banagl’s construction of an explicit
positive TFT based on certain fold maps of bordisms into the plane. Recall from Theo‐
rem 2.3 that the aggregate invariant associated to the partition function of this theory is
powerful enough to distinguish exotic smooth spheres from the smooth standard sphere.
Hence, the problem of whether the aggregate invariant can also distinguish between indi‐
vidual exotic spheres arises.

Problem 4.3. Find two exotic spheres  \Sigma_{1}^{n} and  \Sigma_{2}^{n} for which Banagl’s aggregate invariant
 \mathfrak{A} discussed in Section 2.3 satisfies  \mathfrak{A}(\Sigma_{{\imath}}^{n})\neq \mathfrak{A}(\Sigma_{2}^{n}) in  Q.

No such example is known, but in the following we present fundamental insights that
allow to estimate the aggregate invariant (see Theorem 4.8), and imply its computation
in some special cases. For example, in contrast to Milnor’s  \lambda‐invariant (see Section 2.1),
it wiıl turn out that the aggregate invariant takes the same value on all exotic 7‐spheres
(see Corollary 4.10).

As explained in Section 2.3, the author has reduced the study of the aggregate invariant
to the study of the aggregate filtration  A^{l}. :  = a‐ı  (\{0, \ldots, l\}) ,

 A_{n}^{0}\subset \subset A_{n}^{l}\subset \subset\Theta_{n}.

Explicitly, the aggregate filtration of a homotopy  n‐sphere  \Sigma^{n} is the minimal number
 a(\Sigma^{n})\in\{0,1,2, \ldots\}\cup\{\infty\} of loops that can occur in the singular locus of fold map
extensions of special generic functions on  \Sigma^{n} to oriented nullbordisms of  \Sigma^{n}.

In analogy with Morse homology, it seems natural to approach the study of the ag‐
gregate filtration by taking fold indices of loops into consideration. In fact, according to
the Morse inequalities for Morse functions, the number of Morse critical points of pre‐
scribed index is bounded below by the corresponding Betti number of the source manifold.
Hence, one can expect that the aggregate filtration, which minimizes the number of sin‐
gular loops of certain fold maps, should be roughly connected to topological obstructions
of nullbordisms of a given homotopy sphere. Indeed, by Lemma 2.3 of [12, p. 506] the
standard sphere is the unique homotopy sphere that can be realized as the boundary of
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a contractible bordism (namely, the unit disc). Note that  A_{n}^{0}=\{[S^{n}]\} by Corollary 2.5,
which is a consequence of Saeki’s characterization of the standard sphere in the context

of bordism theory of special generic functions (Theorem 2.4). This leads to the following

Problem 4.4. Study bordism theory of Morse functions on closed manifolds which are
subject to prescribed constraints on the indefinite Morse index.

For instance, Ikegami [11] has entirely computed the bordism groups of Morse functions
(without imposing any index constraints). Furthermore, in [32] the author has studied the
above problem systematically for the folıowing specific type of index constraints. Given
an integer  k\geq 1 , we call a Morse function on a closed  n‐manifold  k ‐constrained if all
indefinite Morse indices of its critical points are contained in the intervaı  \{k, n-k\}.
Note that the notion of a  k‐constrained Morse function interpolates between ordinary
Morse functions  (k=1) and special generic functions  (k>n/2) . In the present article
we restrict ourselves to discussing the consequences of the results in [32] for the index
filtration (see [32, Remark 6.4]), which is a subgroup filtration of  \Theta_{n} of the form

 G_{\lfloor n/2\rfloor}^{n}\subset \subset G_{1}^{n}\subset\Theta_{n}
defined as follows. A homotopy sphere  \Sigma^{n} of dimension  n\geq 5 has index filtration  \geq k

(or lies in  G_{k}^{n} ) if there exists a pair  (W^{n+1}, F) , where

 \bullet  W^{n+1} is a compact oriented  (n+1)‐manifold with boundary  \partial W^{n+1}=\Sigma^{n} , and

 \bullet  F:W^{n+1}arrow \mathbb{R}^{2} is a smooth map with the following properties:

(i) every singular point  x\in S(F) is either a fold point of  F whose fold index
is contained in the set  \{\lceil n/2\rceil, n-k\}\cup\{n\} , or a cusp, which means
by definition that there exist local coordinates  (x_{1} , x_{n+{\imath}}) and  (y_{1}, y_{2})
centered at  x and  F(x) , respectively, in which  F takes the form

(  x ı ,  x_{n+1} )  \mapsto(x_{{\imath}}, x{\imath} x2+x_{2}^{3}\pm x_{3}^{2}\pm \pm x_{n+{\imath}}
^{2}) .

(ii) There exists a collar neighborhood  [0, \varepsilon )  \cross\Sigma^{n}\subset W^{n+1} of  \{0\}\cross\Sigma^{n}=
 \Sigma^{n}\subset W^{n+{\imath}} , and a  k‐constrained Morse function  f_{\Sigma}:\Sigma^{n}arrow \mathbb{R} such that

 F|_{[0,\varepsilon)\cross\Sigma n}=id_{[0,\varepsilon)}\cross f_{\Sigma}.

From the perspective of Morse theory [19] we observe that a closed manifold of dimen‐
sion  n\neq 4 admits a  k‐constrained Morse function if and only if it is  (k-1)‐connected
(where the case  n=3 is based on Perelman’s solution to the smooth Poincaré conjec‐
ture). This observation suggests that the index filtration should be related strongly to
the connectivity filtration (see Section 3.2). Indeed, we have the following

Theorem 4.5 (Remark 6.4 of [32]). For  n\geq 5 , the index filtration is related to the
connectivity filtration for all   1\leq k\leq\lfloor n/2\rfloor by

 C_{k}^{n}\subset G_{k}^{n}\subset C_{k-1}^{n}.
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The proof of Theorem 4.5 uses a palette of techniques of geometric topology. Among
these are the two‐index theorem of Hatcher and Wagoner [10], a handle extension theorem
for constrained Morse functions that has recently been established by Gay and Kirby [8]
in the context of symplectic geometry, and Stein factorization [4] for generic maps into
the plane which are subject to certain constraints on the fold index.

Problem 4.6. Do the connectivity filtration  C_{k}^{n} and the index filtration  G_{k}^{n} coincide
 l

?

It is shown in Proposition 10.2.2(iii) of [30, p. 246] that  C_{k}^{n}=C_{k-1}^{n} (and, in particular,
 G_{k}^{n}=C_{k}^{n} by Theorem 4.5) for all   1\leq k\leq\lfloor n/2\rfloor satisfying  k\equiv 3,5,6,7 mod8. (Indeed,
the proof of the nontrivial inclusion  C_{k-1}^{n}\subset C_{k}^{n} is an application of Theorem 3 of [18]
using Bott periodicity as formulated in the proof of Theorem 3.1 in [12, p. 508].) Thus,
Theorem 3.3 implies that  G_{\lfloor n/2\rfloor}^{n}=bP_{n+{\imath}} for all  n\geq 237 satisfying  n\equiv 13mod 16 . Based

on this result, Theorem 6.2 of [32] gives a characterization of Kervaire spheres in terms
of bordism groups of constrained Morse functions. This can be considered as a natural
continuation of Theorem 2.4!

How is the index filtration related to the aggregate filtration? For technical reasons
we have to introduce modified versions  \overline{C}_{k}^{n} and  \overline{G}_{k}^{n} of the connectivity filtration and the
index filtration, respectively, as folıows. The homotopy sphere  \Sigma^{n} lies in  \overline{C}_{k}^{n} if there
exists an oriented compact manifold  W^{n+1} with boundary  \partial W^{n+1}=\Sigma^{n} such that  W^{n+1}

is  k‐connected, and has odd Euler characteristic. Furthermore, the homotopy sphere.  \Sigma^{n}

lies in  \overline{G}_{k}^{n} if there exists a pair  (W^{n+{\imath}}, F) with properties as in the definition of  G_{k}^{n} , but
where it is in addition required that  W^{n+1} has odd Euler characteristic, and the Morse

function  f_{\Sigma}:\Sigma^{n}arrow \mathbb{R} in property (ii) of  F is required to be a special generic function.
Then, the proof of the following theorem is almost identical to the proof of Theorem 4.5.

Theorem 4.7. For  n\geq 5 and   1\leq k\leq\lfloor n/2\rfloor , we have

 \overline{C}_{k}^{n}\subset\overline{G}_{k}^{n}\subset\overline{C}_{k-1}^{n}.

The following result relates  \overline{G}_{k}^{n} to the aggregate filtration  A_{n}^{l} (see [30, Proposition
10.1.5(b)(iii), p. 244]).

Theorem 4.8. For  n\geq 5 and   1\leq k\leq\lfloor n/2\rfloor , we have

 \overline{G}_{k}^{n}\subset A_{n}^{\lfloor n/2\rfloor+{\imath}-k}

The proof of Theorem 4.8 combines Levine’s cusp elimination technique [15] with the
complementary process of creating a pair of cusps on a fold line by means of a swallowtail
homotopy. Given a pair  (W^{n+1}, F) with the properties listed in the definition of  \overline{G}_{k}^{n},
the combination of these techniques allows us (see Proposition 6.1.3 of [30, p.  154f] ) to
eliminate all cusps of  F in pairs in such a way that the resulting fold map  G:W^{n+1}arrow \mathbb{R}^{2}

has the following properties.  G agrees with  F near the boundary of  W , every loop of  G

has fold index contained in the set  \{\lceil n/2\rceil, n-k\} , and no two loops of  G have the
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same fold index. Note that the assumption on the Euler characteristic imposed in the
definition of  \overline{G}_{k}^{n} ensures that the total number of cusps of  F is even.

We finish this section with some corollaries to Theorem 4.8.

Corollary 4.9. Let  n\geq 5 . It follows from  \overline{G}_{1}^{n}=\Theta_{n} that  A_{n}^{\lfloor n/2\rfloor}=\Theta_{n} . In other words,

 \mathfrak{a}(\Sigma^{n})\in\{0,1, \lfloor n/2\rfloor\} for any homotopy  n‐sphere  \Sigma^{n}.

Let  bP_{n+1}\subset\Theta_{n} denote the subgroup of those homotopy  n‐spheres that can be realized
as the boundary of a parallelizable compact  (n+1) ‐manifold. Recall from Section 3.2 that

 bP_{n+{\imath}}\subset C_{\lfloor n/2\rfloor}^{n} . (Note that  bP_{n+1}=\{[S^{n}]\} when  n is even.) Moreover, it is shown in

Proposition 10.2.2(i) of [30, p. 246] that  C_{\lfloor n/2\rfloor}^{n}=\overline{C}_{\lfloor n/2\rfloor}^{n} for  n\geq 5,  n\neq 15 . (Indeed, the

nontrivial inclusion  C_{\lfloor n/2\rfloor}^{n}\subset\overline{C}_{\lfloor n/2\rfloor}^{n} is for  n\not\equiv 3 mod4 an easy consequence of Poincaré

duality, and follows for  n\equiv 3 mod4 from Wall’s work [28] on smooth highly connected
almost closed manifolds of even dimension.) All in all, by means of Theorem 4.7 we
concıude with the following

Corollary 4.10. For all  n\geq 5,  n\neq 15 , we have

 bP_{n+1}\subset C_{\lfloor n/2\rfloor}^{n}=\overline{C}_{\lfloor n/2\rfloor}
^{n}\subset\overline{G}_{\lfloor n/2\rfloor}^{n}\subset A_{n}^{1}.
In particular,  a(\Sigma^{n})=1 for every exotic sphere  \Sigma^{n} contained in  bP_{n+1} . For instance,
it follows from  bP_{8}=\Theta_{7}[12] that the aggregate invariant cannot distinguish individual
exotic 7‐spheres (compare Problem 4.3).

5. APPLICATIONS

5.1.  S‐invariant of Milnor spheres. Recall that the Milnor  n ‐sphere  \Sigma_{M}^{n} of dimension
 n\equiv 3mod 4 is the unique homotopy sphere in  \Theta_{n} which can be realized as the boundary
of a parallelizable bordism of signature 8 (see Example 2.1). A theorem of Weiss [29]
(whose proof uses tools from algebraic  K‐theory) states for dimensions  n\geq 7 of the form
 n\equiv 3mod 4 that

Gromoll filtration of  \Sigma_{M}^{n}=2= (Morse perfection of  \Sigma_{M}^{n} )  +1.

Hence, Theorem 4.1 implies that the standard filtration of  \Sigma_{M}^{n} is equal to 2. This result
has an important consequence for the computation of Saeki’s invariant  S for the Milnor
7‐sphere. In fact, invoking the classical Poincaré conjecture in dimension 3 as proven by
Perelman, we obtain  S(\Sigma_{M}^{n})=\{1,2,7\} (see Corollary 5.4 of [31]).

5.2. Aggregate invariant of Kervaire spheres. It follows immediately from Exam‐
ple 3.2 and Corollary 4.10 that  a(\Sigma_{K}^{n})=1 whenever the Kervaire sphere  \Sigma_{K}^{n} of dimension
 n=4m+1,  m=1,2 , , is exotic.
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