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A note on capturing curvatures of surfaces by contours

Masaru Hasegawa, Yutaro Kabata and Kentaro Saji

Abstract

This is an announcement of the forthcoming paper “Capturing curvatures of
surfaces by contours” by the same authors. Given a surface in the Euclidean three
space, we give formula for its second and third order information of the surface from
curvatures of the three and four contours. The similar formula for space curves are

given.

1 Introduction

The Gaussian curvature of a surface is required by the informations of 2‐jet of the surface.
In [2, 3], Koenderink showed that one can obtain the Gaussian curvature of a surface as the
product of the curvature of the contour and the normal curvature along a given direction.
This fact suggests that we can obtain some informations of a surface from curvatures of
contours of the surface.

Let s\in R^{3} be a point and let oı,  0_{2}\in R^{3} be two other points. Assume that  s is
unknown and 01, 02 are known. Then one can obtain the coordinate of  s by the angles
between   \frac{}{o_{1}.\S},\vec{o_{1}o_{2}} and between   \frac{}{o_{2}\S},\vec{o_{2}o_{1}} . Then it is natural to ask that for a given
unknown surface  f :  (R^{2},0)arrow(R^{3},0) whether we can know the information from the
curvatures of contours of the orthogonal projections of  f . Without loss of generality, we
may assume that  f is given by

 f(u, v)=(u, v, h(u, v)) ,  h(u, v)= \frac{a_{20}}{2}u^{2}+\frac{a_{02}}{2}v^{2}+\sum_{\iota+j=3}^{k}
\frac{a_{ij}}{\dot{i}!j!}u^{i}v^{j}+O(k+1) , (1.1)

where  a_{ij}\in R(i,j=0,1,2, \ldots) , and  O(k+ ı  ) stands for the terms whose degrees
are greater than  k . We call  a_{20},  a_{02} (respectively,  a_{30},  a_{21},  a_{12},  a_{03} ) the second order (re‐
spectively, the third order) informations of  f at  0 . In this paper, we show that we can
obtain second order informations of  f from the curvatures of contours of three distinct
projections, and can obtain third order informations from the curvatures of contours of
four distinct projections. More precisely, let us consider a unit vector  \xi\in R^{3} and the
projection

 \pi_{\xi}(x)=x-\langle x, \xi\}\xi:R^{3}arrow\xi^{\perp}

We set  f_{\xi}=\pi_{\xi}(f) . We call the set  S(f_{\xi}) of singular points the contour generator,
and  f_{\xi}(S(f_{\xi})) the contour. We give formula for  a_{20},  a_{02} written by the curvatures of
the contours of three distinct directions, and formula for  a_{30},  a_{21},  a_{12},  a_{03} written by the
curvatures of the contours of four distinct directions.

More primitively, the similar things about space curves will be discussed.

2010 Mathematics Subject classification. Primary  53A05 ; Secondary  53A04.

Keywords and Phrases. Contour, Curvature, Koenderink, Projection.
Partly supported by the JSPS KAKENHI Grant Numbers  16J02200 and 26400087.

133



134

Throughout the paper, to represent the coefficients of a function, we use the following
notation. For a function  h :  (R, 0)arrow R , we set

 ( coef_{0}(h, t, k)=)coef(h, t, k)=(h(0), h'(0), \frac{h"(0)}{2}, \ldots , 
\frac{h^{(k)}(0)}{k!}) (\prime=\frac{d}{dt}) ,

namely, if  h=a_{0}+ \sum_{i=1}^{k}(a_{i}/i!)t^{i} , then coef  (h, t, k)=(a_{0}, a_{1}, \ldots, a_{k}) .

2 Space curves

Let  \gamma :  (R, 0)arrow(R^{3},0) be a  C^{\infty} curve, and let  \gamma_{\xi}=\pi_{\xi}(\gamma) for  \xi and  \pi given in
Introduction. We assume that the curvature of  \gamma does not vanish at  0 . Since we are

looking for a singular case, we consider the following two cases. The first case is the
projection curve  \gamma_{\xi} has an inflection point, namely, the vector  \xi lies in the osculating
plane. The second case is one of the projection curve  \gamma_{\xi} has a singular point, namely, the
vector  \xi is tangent to  \gamma at  0.

2.1 Projections in the osculating plane

In this section, we consider the case that  \xi lies in the osculating plane  \gamma at  0 . We give an
orientation of  \gamma . Then without loss of generality, we may assume that

  \gamma(t)=(t, \sum_{\iota=2}^{5}\frac{a_{i}}{i!}t^{i}, \sum_{i=3}^{5}
\frac{b_{i}}{i!}t^{i})+(O(6), O(6), O(6)) , (2.1)

where  a_{i},  b_{i}\in R  (i=2 , 5) , and  \xi(\theta_{1})=(\cos e_{1}, \sin\theta_{1},0) , where 0  <\theta ı  <\pi . We give
the orientation of  \xi^{\perp} as follows: We take a basis  \{X, Y\} of  \xi^{\perp} . We say that  \{X, Y\} is
a positive basis if  \{X, Y, \xi\} is a positive basis of  R^{3} . We set the orientation of  \pi_{\xi(\theta_{1})}(\gamma)
agreeing that of  \gamma . We set  \pi_{\xi(\theta_{1})}(\gamma)=\gamma_{\theta_{1}},  s the arc‐length of  \gamma_{\theta_{1}} , and set  \kappa_{\theta_{1}} the curvature
of  \gamma_{\theta_{1}}\subset\xi^{\perp} as in a curve in the positively oriented plane  \xi^{\perp} . Then by a direct calculation,
we have

coef  (\kappa_{\theta_{1}}, s, 3)=(0,  - \frac{b_{3}}{\sin^{3}\theta_{{\imath}}},  - \frac{b_{4}s\dot{m}\theta_{1}+6a_{2}b_{3}}{2\sin^{5}\theta_{1}}cos  \theta_{{\imath}} , (2.2)

 - \frac{45a_{2}^{2}b_{3}\cos\theta_{1}^{2}+b_{5}\sin^{2}\theta_{1}+10(a_{3}
b_{3}+a_{2}b_{4})s\dot{m}\theta_{1}\cos\theta_{{\imath}}}{6s\dot{{\imath}}n^{7}
\theta_{1}}) .

We take another direction  \theta2  =\theta ı  +\varphi  (0<\theta_{2}<\pi) , then we may consider  \kappa_{\theta_{1}},  \kappa_{\theta_{2}},  \varphi are
known. We assume that  (d\kappa_{\theta_{1}}/ds(0), d\kappa_{\theta_{2}}/ds(0))\neq(0,0) . Without loss of generality, we
assume  d\kappa_{\theta_{2}}/ds(0)\neq 0 . Since

  \frac{d\kappa_{\theta_{1}}/ds(0)}{d\kappa_{\theta_{2}}/ds(0)}=\frac{\sin^{3}
(\theta_{1}+\varphi)}{\sin^{3}\theta_{1}}
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can be solved as

  \theta_{1}=\cot^{-1}(\frac{(\frac{d\kappa_{\theta_{1}}/ds(0)}{d\kappa_{\theta_
{2}}/ds(0)})^{1/3}-\cos\varphi}{\sin\varphi})\in(0, \pi) ,

we obtain  \theta_{1} and  \theta_{2} . Furthermore, by (2.2), it holds that

  \sin\theta_{x}=-\frac{\tilde{b}}{\kappa_{\theta_{l}}^{\sim}} , (i=1, 2) (2.3)

where  \tilde{b}=b_{3}^{1/3} and  \tilde{\kappa}_{\theta_{l}}=(d\kappa_{\theta_{i}}/ds(0))^{1/3} . Substituting (2.3) into a trigonometric identity

 \cos^{2}(\theta_{1}-\theta_{2})+\sin^{2}\theta_{1}+\sin^{2}\theta_{2}-2\sin 
e_{1}\sin\theta_{2}\cos(\theta_{1}-\theta_{2})- ı  = 0,

we get

 (\tilde{\kappa}_{\theta_{1}}^{2}-2\cos\varphi\tilde{\kappa}_{\theta_{1}}\tilde{
\kappa}_{\theta_{2}}+\tilde{\kappa}_{\theta_{2}}^{2})\tilde{b}^{2}-\sin^{2}
\varphi\tilde{\kappa}_{\theta_{1}}^{2}\overline{\kappa}_{\theta_{2}}^{2}=0 . (2.4)

Since  \tilde{\kappa}_{\theta_{1}}^{2}-2\cos\varphi\tilde{\kappa}_{\theta_{1}}
\tilde{\kappa}_{\theta_{2}}+\tilde{\kappa}_{\theta_{2}}^{2}=0 if and only if  \varphi=0,\tilde{\kappa}_{\theta_{1}}=\tilde{\kappa}_{\theta_{2}} or  \tilde{\kappa}_{\theta_{1}}=\tilde{\kappa}_{\theta_{2}}=0 , and
 \tilde{\kappa}_{\theta}  \tilde{\kappa}_{\theta}  \varphi are known, (2.4) implies that we obtain  b_{3} . Since1, 2,

  \frac{d^{2}\kappa_{\theta_{l}}}{ds^{2}}(0)=-\frac{b_{4}\sin e_{i}+6a_{2}b_{3}
\cos 0_{i}}{2s\dot{{\imath}}n^{5}\theta_{i}} (i=1,2)
is a linear system for  a_{2},  b_{4} , and  \theta_{1}\neq\theta_{2} , if  b_{3}\neq 0 , we obtain  a_{2} and  b_{4} by (2.2). By the
similar method, if  b_{3}\neq 0 , then we obtain  a_{3},  b_{5} . In particular, we obtain the information
of  \gamma up to 3‐order by two projections in the osculation plane.

2.2 Projections by tangential direction with another direction

In this section, we consider the case that  \xi is tangent to  \gamma at  0 . In this case,  \pi_{\xi}(\gamma) has a
singular point at  0 . To consider differential geometric invariants of the singular curve, we
state the cuspidal curvature of singular plane curves introduced in [5] (see also [6]). Let
 c:(R, 0)arrow(R^{2},0) be a plane curve, and  c'(0)=0 . The curve  c is called to be  A‐type if
 c"(0)\neq 0 . Let  c be a  A‐type germ. Then

  \mu=\frac{\det(c"(0),c"'(0))}{|c"(0)|^{5/2}}.
does not depend on the choice of the parameter, and called the cuspidal curvature.

Let  \gamma :  (R, 0)arrow(R^{3},0) be a  C^{\infty} curve with the non‐zero curvature at  0 . We assume

that  \pi_{\xi}(\gamma) has a singular point at  0 . Since the curvature of  \gamma does not vanish, by the
Bouquet theorem,  \pi_{\xi}(\gamma) is the  A‐type germ at  0 . We also assume that there exists an
integer  N such that  \det(\pi_{\xi}(\gamma)", \pi_{\xi}(\gamma)^{(2N+1)})(0)\neq 0 . We give the positively oriented xyz‐
coordinate system for  R^{3} , and yz‐coordinate system for  \xi^{\perp} as follows: We set the  y‐axis as
the direction of  \pi_{\xi}(\gamma)"(0) , and set the  x‐axis as the direction of  \xi . We give an orientation

 \pi_{\xi}(\gamma) so that  \det(\pi_{\xi}(\gamma)^{l/}, \pi_{\xi}(\gamma)^{(2N+{\imath})})(0)>0 , and also that of  \gamma agreeing with that of
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 \pi_{\xi}(\gamma) . Then we may assume that  \gamma is given by (2.1) with  a_{2}>0,  b_{3}\geq 0 , and we have  \mu=

 b_{3}/a_{2}^{3/2} On the other hand, we consider a unit vector  \xi=  (\sin\theta_{1}\cos\theta_{2}, \sin \theta{\imath} \sin\theta_{2}, 
\cos\theta_{1}) .
Since we take the above xyz‐coordinate,  \theta_{1},  \theta_{2} is known. Then the curvature  \kappa_{\xi} of the
plane curve  \pi_{\xi}(\gamma) satisfies

coef  ( \kappa_{\xi}, s, 1)=(\frac{a_{2}\cos\theta_{1}}{(\cos^{2}\theta_{1}\cos^{2}
\theta_{2}+s\dot{{\imath}}n^{2}\theta_{2})^{3/2}} , (2.5)

  \frac{1}{(\cos^{2}\theta_{1}\cos^{2}\theta_{2}+\sin^{2}\theta_{2})^{3}}(-b_{3}
\cos^{2}\theta_{1}\cos^{2}\theta_{2}\sin\theta_{1}\sin\theta_{2}
 -b_{3}\sin\theta_{1}\sin^{3}\theta_{2}+\cos^{3}\theta_{1}\cos\theta_{2}(a_{3}
\cos\theta_{2}-3a_{2}^{2}\sin\theta_{2})

 +\cos  \theta ı  \sin\theta_{2}(3a_{2}^{2}\cos\theta_{2}+a_{3}\sin\theta_{2}))) .

Since we know  \mu=b_{3}/a_{2}^{3/2} and  \theta_{1},  \theta_{2} , if  \cos\theta_{1}\neq 0 , then we obtain  a_{2} and  b_{3} by the first
component of (2.5). Furthermore, we also obtain  a_{3} by the second component of (2.5)
under the assumption  \cos\theta_{1}\neq 0.

3 Surfaces

Let  f :  (R^{2},0)arrow(R^{3},0) be a  C^{\infty} surface, and  \xi a unit vector which is tangent to  f at
0. Then without loss of generality, we may assume  f is written in the form (1.ı) with
 a_{20}a_{02}\neq 0,  a_{20}>0 , and assume  \xi(\theta_{1})=(\cos \theta{\imath}, \sin \theta{\imath}, 0) , where   0<\theta_{1}<\pi . We set the
unit normal vector  \nu of  f satisfies  \nu(0,0)=(1,0,0) . Then the set of singular points  S of
the map  \pi_{\xi(\theta_{1})}of is

 \{(u, v)|\cos\theta_{1}h_{u}+\sin\theta_{1}h_{v}=0\} . (3.1)
We assume that  p(\theta_{1})\neq 0 where

 p(\theta_{1})=a_{20}\cos^{2}  \theta ı  + a02  \sin^{2}  \theta ı. (3.2)

This assumption implies that the direction  \xi(\theta_{1}) is not the asymptotic direction of  f . By
this assumption,

 ((\cos\theta_{1}h_{u}+\sin\theta_{1}h_{v})_{u}, (\cos \theta{\imath} h_{u}+\sin
\theta_{1}h_{v})_{v})(0,0)=(a_{20}\cos\theta_{1}, a_{02}\sin\theta_{1})\neq(0,0) ,

there exists a regular parametrization of  S . For the sake of taking this parametrization,
we set an orientation of  S as follows. First, we give an orientation of the normal plane
 \xi(\theta_{1})^{\perp} of  \xi(\theta_{1}) as

 X= (  -\sin\theta_{1} , cos  \theta ı, 0),  Y=(0,0,1)

is a positive basis. Next, put an orientation of  (\pi_{\xi(\theta_{{\imath}})}of)(S) as it is agreeing to the direction
of  X (Figure 1), and also put that of  S agreeing to  (\pi_{\xi(\theta_{1})}of)(S) . Since  a_{02}\sin\theta_{1}\neq 0,
we can take a parametrization  C(t)=(t, c(t)) . Then

 (\pi_{\xi(\theta_{1})}(f)\circ C)(t)=t  (\begin{array}{l}
ts\dot{{\imath}}n^{2}\theta_{l}-c(t)cos\theta_{1}sin\theta_{1}
c(t)-tcos\theta_{1}sin\theta_{1}-c(t)sin^{2}\theta_{1}
h(t,c(t))
\end{array}) ,
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and

 (\pi_{\xi(\theta_{1})}(f)\circ C)'(0)=t  (\begin{array}{l}
sin^{2}\theta_{1}-c'(t)cos\theta_{{\imath}}sin\theta_{{\imath}}
-cos\theta_{1}sin\theta_{l}-c(t),cos^{2}\theta_{1}
h(t,c(t))
\end{array}) (0)

 =t (\begin{array}{l}
sin^{2}\theta_{1}-c'(0)cos\theta_{1}sin\theta_{1}
-cos\theta_{1}sin\theta_{1}-c(0),cos^{2}\theta_{l}
0
\end{array})=(-\sin\theta_{1}+c'(0)\cos\theta_{1})X.
By (3.1), it holds that

coef  (c(t), 2, t)=(0,  - \frac{a_{20}\cos\theta_{1}}{a_{02}s\dot{m}\theta_{1}},   \frac{1}{a_{02}^{3}s\dot{{\imath}}n^{3}\theta_{1}}(-a_{12}a_{20}^{2}\cos^{3}
\theta_{1}-a_{03}a_{20}^{2}\cos^{2}\theta_{1}\sin\theta_{1}
 +2a_{02}a_{20}a_{21}\cos^{2}\theta_{1}\sin  \theta ı  + 2a02a12  a_{20}\cos 0_{1}\sin^{2}\theta_{1}

 -a_{02}^{2}a_{30}\cos\theta_{1}\sin^{2}\theta_{1}-a_{02}^{2}a_{21}\sin^{3}
\theta_{1})) .

Then we see that

 ( \pi_{\xi(\theta_{1})}ofoC)'(0)=\frac{-l}{a_{02}\sin\theta_{{\imath}}}
p(\theta_{1}) . (3.3)

Let  s be the arc‐length parameter of  \pi_{\xi(\theta_{{\imath}})}(S) where the orientation is given by the above
manner. Thus we remark that by (3.3), if  a_{02}\sin\theta_{1}p(\theta_{1}) . is negative,  s is the opposite
direction with the above parameter  t . The curvature  k_{\theta_{1}} of the contour satisfies

coef  (k_{\theta_{1}},1, s)=( \frac{a_{20}a_{02}}{p(\theta_{1})},\frac{q(\theta_{1})}
{p(\theta_{1})^{3}}) , (3.4)

where

q(  \theta ı)  =a_{03}a_{20}^{3}\cos^{3}\theta_{1}-3a_{02}a_{12}a_{20}^{2}\cos^{2}\theta_{1}
\sin\theta_{1}+3a_{02}^{2}a_{20}a_{21}\cos\theta_{1}\sin^{2}\theta_{{\imath}}-a_
{02}^{3}a_{30}\sin^{3}\theta_{1}.
(3.5)

 (\pi_{\xi}

Figure 1: orientations of  \xi^{\perp} and contour.

Remark that if  a_{20}a_{02}\neq 0 and p(  \theta ı)  \neq 0 then q(  \theta ı)  =0 if and only if the contour has
a vertex at  (\pi_{\xi(\theta_{1})}ofoC)(0) , and that  \xi(\theta_{1})=(\cos\theta_{1}, \sin \theta{\imath}, 0) is called the cylindrical
direction of  f at the origin (see [1] for details).
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3.1 Obtaining third order jet of surfaces

Let us consider how many directions we need to obtain third order jet of surfaces. We
take another direction  \theta_{2} which satisfies  p(\theta_{2})\neq 0 . By (3.4) we get

  \cos 2\theta_{i}=\frac{-2a_{20}a_{02}+(a_{20}+a_{02})k_{\theta_{l}}}{(a_{02}-
a_{20})k_{\theta_{l}}} (i=1,2) .

Substituting these formulas into a trigonometric identity

 \cos^{2}2(\theta_{i}-\theta_{j})+\cos^{2}2\theta_{i}+\cos^{2}2\theta_{j}-2\cos 
2(\theta_{\iota}-\theta_{j})\cos 2\theta_{i}\cos 2\theta_{j}-1=0,

we get  P_{ij}(G, M)=0 where

 P_{ij}(G, M) := (M_{ij}^{2}-G_{ij}\cos^{2}(\theta_{i}-\theta_{j}))G^{2}-2G_{ij}
M_{ij}\sin^{2}(\theta_{i}-\theta_{j})GM
 +G_{ij}^{2}\sin^{4}(\theta_{i}-\theta_{j})M^{2}+G_{ij}^{2}\cos^{2}(\theta_{x}-
\theta_{j})\sin^{2}(\theta_{i}-\theta_{j})G

 = (G, M)Q_{ij}t(G, M)+G_{xj}^{2}\cos^{2}(\theta_{i}-\theta_{j})\sin^{2}(\theta_
{i}-\theta_{j})G
and

 M= \frac{a_{20}+a_{02}}{2}, G=a_{20}a_{02}, M_{xj}=\frac{k_{\theta_{i}}+
k_{\theta_{J}}}{2}, G_{\dot{\iota}j}=k_{\theta_{t}}k_{\theta_{j}} , (3.6)

 Q_{ij}= (\begin{array}{ll}
M_{ij}^{2}-G_{\iota j}\cos^{2}(\theta_{i}-\theta_{j})   -G_{ij}M_{ij}\sin^{2}
(\theta_{i}-\theta_{j})
-G_{ij}M_{ij}\sin^{2}(\theta_{i}-\theta_{j})   G_{\iota j}^{2}s\dot{{\imath}}
n^{4}(\theta_{i}-\theta_{j})
\end{array})
Since  P_{ij}(G, M)=0 is a quadratic curve, generally the values of  G and  M should be

determined by the curvatures of the apparent contours from distinct three directions. In
fact, we get the following formula with respect to  G,  M,  G_{12},  G_{23},  G_{31},  \theta_{1},  \theta_{2},  \theta_{3}.

First, a system of equations as below holds:

 W (\begin{array}{l}
G^{2}
GM
M^{2}
\end{array})=Gb
where  W=(w_{1}, w_{2}, w_{3}) with

wı  =  (\begin{array}{lll}
M_{12}^{2}   -G_{12}   cos^{2}(\theta_{1}-\theta_{2})
M_{23}^{2}   -G_{23}   cos^{2}(\theta_{2}-\theta_{3})
M_{31}^{2}   -G_{3l}   cos^{2}(\theta_{3}-\theta_{1})
\end{array}), (3.7)

 w_{2}=-(\begin{array}{l}
2G_{12}M_{12}sin^{2}(\theta_{1}-\theta_{2})
2G_{23}M_{23}sin^{2}(\theta_{2}-\theta_{3})
2G_{31}M_{31}sin^{2}(\theta_{3}-\theta_{1})
\end{array}), (3.8)

 w_{3}=(\begin{array}{l}
G_{12}^{2}sin^{4}(\theta_{1}-\theta_{2})
G_{23}^{2}s\dot{m}^{4}(\theta_{2}-\theta_{3})
G_{3l}^{2}sin^{4}(\theta_{3}-\theta_{1})
\end{array}), (3.9)

and

 b=(\begin{array}{ll}
G_{{\imath} 2}^{2}   cos^{2}(\theta_{{\imath}}-\theta_{2})s\dot{{\imath}}n^{2}
(\theta_{1}-\theta_{2})
G_{23}^{2}   cos^{2}(\theta_{2}-\theta_{3})s\dot{{\imath}}n^{2}(\theta_{2}-
\theta_{3})
G_{31}^{2}   cos^{2}(\theta_{3}-\theta_{1})sin^{2}(\theta_{3}-\theta_{1})
\end{array}). (3.10)
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Assume  \theta_{\iota}\neq\theta_{j} and  G_{ij}\neq 0 for  i\neq j , then the determinant of  W is expressed as

 \det W=-2G_{12}^{2}G_{23}^{2}G_{31}^{2}\sin^{2} (  \theta ı—  \theta2)  \sin^{2}(\theta_{2}-\theta_{3})\sin^{2}(\theta_{3}-\theta_{1})\det V

with

 V=(_{\frac{}{}}^{\frac{M_{12}^{2}-G_{12}\cos^{2}(\theta_{1}-\theta_{2})}{M_{31}
^{2}-G_{31}\cos^{2}(\theta_{3}-\theta_{1})M_{23}^{2}-G_{23}\cos^{2}(\theta_{2}-
\theta_{3})G_{31}^{2}\sin(\theta_{3}-\theta_{{\imath}})G_{23}^{2}\sin(\theta_{2}
-\theta_{3})G_{12}^{2}\sin(\theta_{1}-\theta_{2})}} \frac{}{}\frac{}{}\frac{}{}
\frac{M_{12}}{M_{31}M_{23},G_{31}G_{23}G_{{\imath} 2}}\sin^{2}(\theta_{3}-
\theta_{1})ssi\dot{{\imath}}n^{2}n^{2}((\theta_{1}\theta_{2}--\theta_{3}
\theta_{2}))) .

With Cramer’s rule, we get

 G= \frac{\det W_{1}}{\det W} , M=\frac{\det W_{2}}{\det W} , (3.11)

where  W_{1}=(b, w_{2}, w_{3}),  W_{2}=(w_{1}, b, w_{3}) .

Especially,  \det Wı is expressed as

 -2G_{12}^{2}G_{23}^{2}G_{31}^{2}\sin^{2}(\theta_{1}-\theta_{2})\sin^{2}(\theta_
{2}-\theta_{3})\sin^{2}(\theta_{3}-\theta_{1})\det L

with

 L=(_{\cos^{2}(\theta_{3}-\theta_{1})}^{\cos^{2}(\theta_{1}-\theta_{2})} 
\cos^{2}(\theta_{2}-\theta_{3})\frac{}{}\frac{}{}\frac{M_{12}}{M_{31}^{23}M_{23}
^{12},G_{3{\imath}}GG}s\dot{{\imath}}n^{2}(\theta_{3}-\theta_{1})ssiin^{2}n^{2}(
(\theta_{1}\theta_{2}--\theta_{2}\theta_{3})))
and the numerator of  M is

 2G_{12}^{2}G_{23}^{2}G_{3{\imath}}^{2}\sin^{2}(\theta_{1}-\theta_{2})\sin^{2}
(\theta_{2}-\theta_{3})\sin^{2}(\theta_{3}-\theta_{1})\det P

with

 P=(_{\frac{}{}}^{\frac{M_{12}^{2}-G_{12}\cos^{2}(\theta_{1}-\theta_{2})}{M_{31}
^{2}-G_{3{\imath}}\cos^{2}(\theta_{3}-\theta_{1})M_{23}^{2}-G_{23}\cos^{2}
(\theta_{2}-\theta_{3})G_{31}^{2}\sin(\theta_{3}-\theta_{1})G_{23}^{2}\sin^{2}
(\theta_{2}-\theta_{3})G_{12}^{2}\sin(\theta_{1}-\theta_{2})}} \frac{}{}\cos^{2}
(\theta_{3}-\theta_{1})\cos^{2}(\theta_{2}-\theta_{3})\cos^{2}(\theta_{1}-
\theta_{2})s\sin^{2}(\theta_{3}-\theta_{{\imath}})si\dot{m}^{2}n^{2}((\theta_{2}
\theta_{1}--\theta_{3}\theta_{2}))) .

Since we may regard  \theta ı—  \theta2,  \theta_{1}-\theta_{3},  k_{\theta_{1}},  k_{\theta_{2}},  k_{\theta_{3}} are known, we obtain  \theta_{1} , and this
implies we obtain  \theta_{2},  \theta_{3} . This also implies that we obtain  G_{ij}  (ij=12,23,31) and  w_{1},  w_{2},

 w_{3},  b (see (3.6), (3.7), (3.8), (3.9), (3.10)). Furthermore, we obtain  G and  M by (3.11).
Since  G=a_{20}a_{02} and  M=(a_{20}+a_{02})/2 , we obtain  a_{20} and  a_{02}.

Next let us consider the third order terms of the surface. Let us take four distinct

directions

 \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}.

Then by (3.4) and (3.5), we see that

 A (\begin{array}{l}
a_{30}
a_{21}
a_{12}
a_{03}
\end{array})=v,
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where  A=(a_{1}, a_{2}, a_{3}, a_{4}) and

 a_{1}=-a_{0}^{3_{2}^{t}} (\sin^{3}\theta_{1}, \sin^{3}\theta_{2}, \sin^{3}
\theta_{3}, \sin^{3}\theta_{4}) ,

 a_{2}=3a_{20}a_{02^{t}}^{2} (\sin^{2}\theta_{1}\cos \theta{\imath}, \sin^{2}
\theta_{2}\cos\theta_{2}, \sin^{2}\theta_{3}\cos\theta_{3}, \sin^{2}\theta_{4}
\cos\theta_{4}) ,

 a_{3}=-3a_{20}^{2}a_{02^{t}} (\sin\theta_{1}\cos^{2}\theta_{1}, \sin\theta_{2}
\cos^{2}\theta_{2}, \sin\theta_{3}\cos^{2}\theta_{3}, \sin\theta_{4}\cos^{2}
\theta_{4}) ,

 a_{4}=a_{20^{t}}^{3} (\cos^{3}\theta_{1}, \cos^{3}\theta_{2}, \cos^{3}
\theta_{3}, \cos^{3}\theta_{4}) ,

 v=t(p( \theta_{{\imath}})^{3}\frac{d\kappa_{\theta_{1}}}{ds}(0), p(\theta_{2})^
{3}\frac{d\kappa_{\theta_{2}}}{d_{\mathcal{S}}}(0), p(\theta_{3})^{3}
\frac{d\kappa_{\theta_{3}}}{ds}(0), p(\theta_{4})^{3}\frac{d\kappa_{\theta_{4}}}
{d_{\mathcal{S}}}(0)) ,

where  t( ) stands for the matrix transportation. Since   \det A=9a_{20}^{6}a_{02}^{6}\prod_{i\triangleleft}\sin(\theta_{i}-\theta_{j}) ,
and  \theta_{1},  \theta_{4} are distinct,  a_{20}a_{02}\neq 0 , it holds that  \det A\neq 0 . By Cramer’s rule, we get

 a_{30}= \frac{\det A_{1}}{\det A},  a_{21}= \frac{\det A_{2}}{\det A} , aı2  = \frac{\det A_{3}}{\det A},  a_{03}= \frac{\det A_{4}}{\det A},
where  A_{1}=(v, a_{2}, a_{3}, a_{4}) ,  A_{2}=(a_{1}, v, a_{3}, a_{4}) ,  A_{3}=(a_{1}, a_{2}, v, a_{4}) ,  A_{4}=(a_{1}, a_{2}, a_{3}, v) .
This implies that we obtain  a_{30},  a_{21},  a_{12},  a_{03} by  k_{\theta_{\iota}}(i=1,2,3,4) .

3.2 Obtaining Gaussian curvature

According to Section 3.1, we can obtain all of the the second order information of the
surface by the contour of projections from distinct three directions. In particular we can
obtain the Gaussian curvature. In this section, we discuss existence of two directions such
that the product of the curvatures of the contours along these directions is the Gaussian
curvature  K=a_{20}a_{02}.

By (3.4), we have

  k_{\theta_{1}}k_{\theta_{2}}=\overline{(a_{20}\cos^{2}}\thetaı  + a02  \sin^{2}\theta_{1})(a_{20}\cos^{2}\theta_{2}+a_{02}\sin^{2}\theta_{2})a_{20}
^{2}a_{02}^{2}.
Hence if

  \frac{a_{20}a_{02}}{(a_{20}\cos^{2}\theta_{1}+a_{02}\sin^{2}\theta_{1})(a_{20}
\cos^{2}\theta_{2}+a_{02}\sin^{2}\theta_{2})}=1 , (3.12)

then  K=k_{\theta_{1}}k_{\theta_{2}} . If  \theta_{1},  \theta_{2} satisfies (3.12), then we say that  \xi_{\theta_{1}},  \xi_{\theta_{2}} are contour‐conjugate
each other. Now we consider the existence of the contour‐conjugate. Since (3.12) is
equivalent to

 ( \frac{\cos\theta_{2}}{s\dot{{\imath}}n\theta_{2}})^{2}=\frac{a_{02}\sin^{2}
\theta_{1}}{a_{20}\cos^{2}\theta_{1}},
it holds that if  K>0 then any direction has two contour‐conjugate, and if  K<0 there
are no contour‐conjugate for any direction.
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