Brauer indecomposability of Scott modules and local subgroups

Hiroki Ishioka
Department of Mathematics,
Tokyo University of Science

1. INTRODUCTION

Let p be a prime number and k an algebraically closed field of characteristic p. For a p-subgroup Q of a finite group G and a kG-module M, the Brauer quotient $M(Q)$ of M with respect to Q is naturally a $kN_G(Q)$-module. A kG-module M is said to be Brauer indecomposable if $M(Q)$ is indecomposable or zero as a $kC_G(Q)$-module for any p-subgroup Q of G ([6]). Brauer indecomposability of p-permutation modules is important for constructing stable equivalences of Morita type between blocks of finite groups (see [2]).

There is a connection between Brauer indecomposability of p-permutation kG-modules and fusion systems, as shown in [6]. The main result in [6] is the following.

Theorem 1 ([6, Theorem 1.1]). Let P be a p-subgroup of G and M an indecomposable p-permutation kG-module with vertex P. If M is Brauer indecomposable, then $\mathcal{F}_P(G)$ is a saturated fusion system.

In the case that P is abelian and M is the Scott kG-module $S(G,P)$, it is known that the converse of the above theorem holds.

Theorem 2 ([6, Theorem 1.2]). Let P be an abelian p-subgroup of G. If $\mathcal{F}_P(G)$ is saturated, then $S(G,P)$ is Brauer indecomposable.

In general, the above theorem does not hold in the case that P is non-abelian. However, there are some cases in which the Scott kG-module $S(G,P)$ is Brauer indecomposable for non-abelian P (see [5, 7]). Moreover, it was shown that there are some relationships between Brauer indecomposability of Scott modules and fusion systems ([3, 5]). In particular, we proved the following theorem in [3].

Theorem 3 ([3, Theorem 1.3]). Let G be a finite group and P a p-subgroup of G. Suppose that $M = S(G,P)$ and that $\mathcal{F}_P(G)$ is saturated. Then the following are equivalent.

(i) M is Brauer indecomposable.

(ii) $\text{Res}^{N_G(Q)}_{Q}(S(N_G(Q),N_P(Q)))$ is indecomposable for each fully normalized subgroup Q of P.

If these conditions are satisfied, then $M(Q) \cong S(N_G(Q),N_P(Q))$ for each fully normalized subgroup $Q \leq P$.

The above theorem gives a criterion to determine whether the Scott module $S(G,P)$ is Brauer indecomposable.
We investigate the possibility of providing applications of the above theorem. In this paper, we will prove the following result.

Theorem 4. Let G be a finite group and P a p-subgroup of G. Suppose that $\mathcal{F} := \mathcal{F}_P(G)$ is a saturated fusion system. Consider the following two conditions:

(i) $S(N_G(Q), N_P(Q))$ is Brauer indecomposable for each fully \mathcal{F}-normalized subgroup $Q \leq P$.

(ii) $S(G, P)$ is Brauer indecomposable.

Then (i) implies (ii), and the converse holds if $\mathcal{F} = \mathcal{F}_P(N_G(P))$.

The above theorem shows that there exists some relationship between G and its local subgroups in terms of the Brauer indecomposability of Scott modules, and will be a useful tool for the study of the Brauer indecomposability of Scott modules.

2. **Preliminaries**

2.1. **Scott modules.** First, We recall the definition of Scott modules and some of its properties:

Definition 5. For a subgroup H of G, the Scott kG-module $S(G, H)$ with respect to H is the unique indecomposable summand M of $\text{Ind}_H^G k_H$ such that $k_G | M$.

If P is a Sylow p-subgroup of H, then $S(G, H)$ is isomorphic to $S(G, P)$. By definition, the Scott kG-module $S(G, P)$ is a p-permutation kG-module.

By Green's indecomposability criterion, the following result holds.

Lemma 6. Let H be a subgroup of G such that $|G : H| = p^a$ (for some $a \geq 0$). Then $\text{Ind}_H^G k_H$ is indecomposable. In particular, we have that $S(G, H) \cong \text{Ind}_H^G$.

The following theorem gives us information of restrictions of Scott modules.

Theorem 7 ([4, Theorem 1.7]). Let P be a p-subgroup of G. Let Q be a maximal element of $P \cap G = \{^gP \cap H \mid g \in G\}$. Then $S(H, Q)$ is a direct summand of $\text{Res}_H^G S(G, P)$.

2.2. **Brauer quotients.** Let M be a kG-module and H a subgroup of G. We denote by M^H the set of H-fixed elements in M. For subgroups L of H, we denote by Tr_L^H the trace map $\text{Tr}_L^H : M^L \to M^H$. Brauer quotients are defined as follows.

Definition 8. Let M be a kG-module. For a p-subgroup Q of G, the Brauer quotient of M with respect to Q is the k-vector space $M(Q) := M^Q / (\sum_{R<Q} \text{Tr}_R^Q(M^R))$.

This k-vector space has a natural structure of $kN_G(Q)$-module.

Brauer quotients have the following well-known properties.

Proposition 9. Let P be a p-subgroup of G and $M = S(G, P)$. Then $M(P) \cong S(N_G(P), P)$.

Proposition 10. Let M be an indecomposable p-permutation kG-module with vertex P. Let Q be a p-subgroup of G. Then $Q \leq_G P$ if and only if $M(Q) \neq 0$.

2.3. Fusion systems. For subgroups Q, R of G, we denote by $\text{Hom}_G(Q,R)$ the set of all group homomorphisms from Q to R which are induced by conjugation in G. For a p-subgroup P of G, the fusion system $\mathcal{F}_P(G)$ of G over P is the category whose objects are the subgroups of P and whose morphism set from Q to R is $\text{Hom}_G(Q,R)$. We refer the reader to [1] for background involving fusion systems.

Definition 11. Let P be a p-subgroup of G

(i) A subgroup Q of P is said to be fully normalized in $\mathcal{F}_P(G)$ if $|N_P(\gamma Q)| \leq |N_P(Q)|$ for all $x \in G$ such that $xQ \leq P$.

(ii) A subgroup Q of P is said to be fully automated in $\mathcal{F}_P(G)$ if $p \nmid |N_G(Q) : N_P(Q)C_G(Q)|$.

(iii) A subgroup Q of P is said to be receptive in $\mathcal{F}_P(G)$ if it has the following property: for each $R \leq P$ and $\varphi \in \text{Iso}_{\mathcal{F}_P(G)}(R, Q)$, if we set

$$N_\varphi := \{g \in N_P(Q) | \exists h \in N_P(R), c_g \circ \varphi = \varphi \circ c_h\},$$

then there is $\overline{\varphi} \in \text{Hom}_{\mathcal{F}_P(G)}(N_\varphi, P)$ such that $\overline{\varphi}|_R = \varphi$.

Saturated fusion systems are defined as follows.

Definition 12. Let P be a p-subgroup of G. The fusion system $\mathcal{F}_P(G)$ is saturated if the following two conditions are satisfied:

(i) P is fully normalized in $\mathcal{F}_P(G)$.

(ii) For each subgroup Q of P, if Q is fully normalized in $\mathcal{F}_P(G)$, then Q is receptive in $\mathcal{F}_P(G)$.

For example, if P is a Sylow p-subgroup of G, then $\mathcal{F}_P(G)$ is saturated.

3. PROOF OF THEOREM 4

In this section, we give a proof of Theorem 4.

For a saturated fusion system \mathcal{F} over p-group P and a subgroup Q of P, the normalizer fusion system $N_\mathcal{F}(Q)$ of Q is defined and is a fusion system over $N_P(Q)$ (see [1, II, §2]). We note that if $\mathcal{F} = \mathcal{F}_P(G)$, then $N_\mathcal{F}(Q) = N_\mathcal{F}_P(N_G(Q))$.

Proof of Theorem 4. Suppose that (i) holds. Let Q be a fully \mathcal{F}-normalized subgroup of P. Then $S(N_G(Q), N_P(Q))(Q)$ is indecomposable, and we have that

$$S(N_G(Q), N_P(Q))(Q) \cong S(N_G(Q), N_P(Q))(Q).$$

Therefore, $S(G, P)$ is Brauer indecomposable by Theorem 3.

Next, suppose that (ii) and $\mathcal{F} = \mathcal{F}_P(N_G(P))$ hold. Then any subgroup Q of P is fully \mathcal{F}-normalized. Let Q be any subgroup of P. Then $\mathcal{F}_{N_p(Q)}(N_G(Q)) = N_\mathcal{F}(Q)$ is saturated by [1, II, Theorem 2.1]. Let R be a fully $\mathcal{F}_P(N_G(Q))$-normalized subgroup of $N_P(Q)$. It is sufficient to show that $S(N_{N_G(Q)}(R), N_{N_P(Q)}(R))$ is indecomposable as $kC_{N_G(Q)}(R)$-module by Theorem 3.

Since QR is fully \mathcal{F}-normalized, $S(N_G(QR), N_P(QR))$ is indecomposable as $kC_{N_G(QR)}$-module, and hence is also indecomposable as $kC_{N_G(Q)}(R)$-module. Therefore, it is sufficient to show that

$$\text{Res}_{N_{N_G(Q)}(R)}^{N_G(QR)} S(N_G(QR), N_P(QR)) \cong S(N_{N_G(Q)}(R), N_{N_P(Q)}(R)),$$
and if we show that $N_{N_{P}(Q)}(R)$ is a maximal element of $N_{P}(QR) \cap_{N_{G}(QR)} N_{N_{G}(Q)}(R)$, then the isomorphism holds by Theorem 7 and the indecomposability of $S(N_{G}(QR), N_{P}(QR))$ as a $N_{N_{G}(Q)}(R)$-module.

Let g be an element of $N_{G}(QR)$ such that $N_{N_{P}(Q)}(R) \leq N_{P}(QR) \cap_{N_{G}(QR)} N_{N_{G}(Q)}(R)$. Then we have $Q^{g} \leq (QR)^{g} = QR \leq P$ and hence there is $h \in N_{G}(P)$ such that $gh^{-1} \in C_{G}(Q)$ since $\mathcal{F} = \mathcal{F}_{P}(N_{G}(P))$. We have that

\[
|N_{N_{P}(Q)}(R)| \leq |N_{P}(QR) \cap N_{N_{G}(Q)}(R)|
= |N_{P} \cap N_{G}(QR) \cap N_{G}(Q) \cap N_{G}(R)|
= |P \cap N_{G}(Q) \cap N_{G}(R)|
= |N_{N_{P}(Q)}(R)|
= |N_{N_{P}(QR)}(R)|
= |N_{N_{P}(QR)}(R)|
= |N_{N_{P}(QR)}(R)|
= |N_{N_{P}(QR)}(R)|
= |N_{N_{P}(QR)}(R)|
= |N_{N_{P}(QR)}(R)|
= |N_{N_{P}(QR)}(R)|.
\]

On the other hand, since

\[
R^{gh^{-1}} \leq N_{N_{P}(Q)}(R)^{gh^{-1}}
\leq (N_{P}(QR) \cap N_{N_{G}(Q)}(R))^{gh^{-1}}
\leq (P \cap N_{G}(Q))^{gh^{-1}}
= P^{h^{-1}} \cap N_{G}(Q^{gh^{-1}})
= P \cap N_{G}(Q)
= N_{P}(Q)
\]

and $gh^{-1} \in C_{G}(Q) \leq N_{G}(Q)$, the conjugation map $(\cdot)^{gh^{-1}} : R \to R^{gh^{-1}}$ is an isomorphism in $N_{F}(Q)$. Since R is fully $N_{F}(Q)$-normalized, we have that $|N_{N_{P}(Q)}(R)^{gh^{-1}}| \leq |N_{N_{P}(Q)}(R)|$. Therefore, $N_{N_{P}(Q)}(R) = N_{P}(QR) \cap N_{N_{G}(Q)}(R)$, and $N_{N_{P}(Q)}(R)$ is maximal in $N_{P}(QR) \cap_{N_{G}(QR)} N_{N_{G}(Q)}(R)$, as desired. \(\square\)

REFERENCES

DEPARTMENT OF MATHEMATICS
TOKYO UNIVERSITY OF SCIENCE
1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601
JAPAN

E-mail address: 114701@ed.tus.ac.jp