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1 Introduction

A finite permutation group is called multiplicity-free if the permutation character is a sum
of distinct irreducible characters. A transitive permutation group is called regular if every
non-identity element is fixed point-free. For a transitive permutation group G on a finite set
Q, let Ag, Ay, ..., Ag be the orbits of G on Q x . Then (2, {A;},) is an association scheme
and the adjacency algebra A = (A, Ay, ..., Ag)c is isomorphic to Endg(C[Q]), where C[Q)]
is the permutation module of G on Q.

If G is multiplicity-free, then A is commutative and the permutation module C[$] de-
composes into d + 1 non-isomorphic irreducible G-modules: C[Q] = Vo ® Vi @ --- @ V. For
i=0,1,...,d, let E; be the orthogonal projection from C[Q] onto V;. Then E; are primitive
idempotents of A and {Ey, F1, ..., E;} is a basis of A. Since A is closed under the Hadamard
product o, there exist scalars qf,J such that

d
1
E; E-=—§: k Ey.
°H T ) &

These scalars are called Krein parameters. Let x; be the irreducible character corresponding
to the irreducible G-module V;. Scott’s Theorem reveals the following relations between
Krein parameters and inner products of characters: if qgf] # 0, then (x;xj,Xxx) # 0 (see
Theorem 3.3). The converse of this implication is not always true. As a counterexample, we
have the action of the symmetric group Sa4 on all d-element subsets of a 2d-element set (see
(2, Section 2.8]).

In this paper, we prove the converse of the implication for transitive permutation groups
of semidirect product type whose regular normal subgroup is abelian. If a permutation group
G has a regular abelian normal subgroup, then G is multiplicity-free. Under this condition,
we can describe all irreducible characters which appear in the permutation character. We
find that the inner products of characters and Krein parameters are similar in terms of their
components (see Theorem 5.4). In particular, the inner products and Krein parameters are
equal for some transitive permutation groups.



2 Commutative association schemes

Let X be a set with | X| =nand R, C X x X (:=0,1,...,d). For R, (i =0,1,...,d),
the i*"-adjacency matriz A; of X is the square matrix indexed by X such that (4,)z, = 1 if
(z,y) € Ry, (A;)zy = 0 otherwise.

Definition 2.1. The pair (X, {R,}2,) is called a commutative association scheme if follow-
ing hold:

(i) Ao = I,.
(i) Jo =20, As
(iii) For any i € {0, ...,d}, There exists ¢ € {0,1,...,d} such that AT = A,.
(iv) There exist pf; such that A;A, = S ph kA for all 4,5 € {0,...,d}.
(v) AA; = AjA; forall 4,5 € {0,...,d}.

Let X = (X,{R,}%,) be a commutative association scheme with |X| = n and A; (i =
., d) be the adjacency matrices of X. k; = pl  is called the valency of R,. The subalgebra
(AO, Ai, ..., Ag) of the matrix algebra M, ((C) is called the adjacency algebra of X. The
adjacency algebra A has d + 1 primitive idempotents Ey, F1, ..., FE4. The integers m; =
rank(E;) are called the multiplicities of X.
Since both of {Ag, A1, ..., As} and {Fy, Fx, ..., E4} are bases of A, let

A= pi(§)E;
j=0
1 d
= Z a:(5)4;
7=0

fori=0,1,...,d.
Since A is closed under the Hadamard product, we may define Krein parameters.

Definition 2.2. Let Ey, Fy, . .., E; be the primitive idempotents of the adjacency algebra .4
of X. Set

d
1
EiOEj: E E q:c’]Ek
k=0

for some ¢f; € C, where o denotes the Hadamard product. The coefficients gf; are called the
Krein parameters of X.

Lemma 2.3 ([2, Theorem 3.6 in Chapter II]). For any i, j,k € {0,1,...,d},

d T
Z—z (k).
— ki

k
% =
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3 Scott’s Theorem

Let G be a transitive permutation group on a finite set 2. We may assume the permutation
character 8 of G decomposes into the sum of distinct irreducible characters: 6 = xo + x1 +

-+ + xa, where x, are distinct irreducible characters of G for ¢ € {0,1,...,d}. Note that,
this condition is called multiplicity-free. Define the action of G on Q x Q by (z,y)? = (29, y9)
for 2,5 € Q and g € G. Then X = (2, {A;}%,) is a commutative association scheme, where
Ag, Ay, ..., Ay are the orbits of G on Q x Q and Ay = {(z,z) | z € Q} (see [2, Theorem 1.4
in Chapter II]).

Let H < G be the stabilizer of a point a € Q. Identifying H\G with Q, we regard
the action of H on § as that on H\G by multiplication of G. Then a € 2, which H
stabilizes, corresponds to H € H\G. Then the permutation character § decompose into
0=xo0+x1+- "+ Xa

Lemma 3.1 ([2, Corollary 11.7 in Chapter II]). Let P = (p;(2)) be the first eigenmatriz.
. 1
pi(j) = TH Z X; (%),
I ] x€Ha,H
where {ag, a1, . ..,aq} is the representatives of H\G/H.
Lemma 3.2 ([3, Section 3.4]). Let p be the permutation representation of G. Set

deg(xl)
Bi= = geza xi(9)p(9)

for every i = 0,1,...,d. Then each E; is the orthogonal projection onto the irreducible G-
module corresponding to x,. In other words, Eo, E1, ..., E4 are all primitive idempotents of
the adjacency algebra A of the commutative association scheme X .

Theorem 3.3 (Scott’s Theorem, [2, Theorem 8.1 in Chapter II], [5, Theorem 3]). Let G
be a transitive permutation group on a finite set Q and X = (Q,{A,}%,) be the association
scheme defined by the action of G on Q x Q, where A; are the orbits of G on Q x Q). Assume
the permutation character 0 is multiplicity-free: 6 = xo + x1 + - - + X4, where x; are irre-
ducible characters of G and xo = 1g. Then, for any i,j,k € {0,1,...,d}, if qf’j # 0, then
(XiX4 xx) # 0.

The detailed proof of this theorem is written in the references. In this paper, we mention
a sketch of the proof. To prove this theorem, for 4 j, k € {0,1,...,d}, we construct O’ S
Home(V; ® V;, Vi) such that ai’» = 0 if and only if ¢¥ s =0, Where V) is an 1rreduc1b1e G-
module with its irreducible character x; for i € {0,1,...,d}. If ¢ i # 0, then of ; # 0and, by
Schur’s lemma, it implies that V; ® V; contains the irredumble G-module whlch is isomorphic
to V.

To investigate the converse of Theorem 3.3, we suppose ¢F *; = 0. Then, we obtain a =0
by a = 0 if and only if q ;= 0. This does not always imply (x:x;,xx) = 0. Indeed the
symmetrlc group Spy on the ’Johnson Scheme J (2d,d) is an example (see [2, Section 2.8]).



4 Transitive permutation groups of semidirect product
type

Let G be a transitive permutation group on a finite set 2. We assume that G = H x N,
where H is the stabilizer of a point x € Q, N is a regular abelian permutation group and x
denotes the semidirect product. IL.e.

e {1} X N is a normal subgroup of G, where 1 € H is the identity element of H,
e For any g € G, there exist unique h € H and unique n € N such that g = (h,n),
e The multiplication of G is defined as (h1,7;)(hg,ng) = (h1hg, n2? + ny).

In this case, we may identify N with , where the identity element 0 € N corresponds to
the fixed point z € Q.

When we regard N as a normal subgroup of G, we should write {1} x N instead of N.
However we will identify {1} x N with N for brevity. Similarly, we will identify H x {0}
with H.

By the definition of the semidirect product, it is clear that H\G = {H(1,n) | n € N}.

Let Irr(N) be the set of all irreducible characters of N. Since N is abelian, irreducible
characters of N are also irreducible representations of N. Define an action of H on Irr(N)
by

¢"(n) = p(n*")
for h € H, ¢ € Irr(N) and n € N. Let
H,={he H|¢" =y}

for ¢ € Irr(N). This means that H, is the stabilizer of ¢ € Irr(N) and H, < H. The
extension of ¢ € Irr(N) to H, x N, denoted by ex(y), is defined as

ex(¢)(h,n) = ¢(n)
for h € H, and n € N (see [6, Chapter 17]).
Lemma 4.1. For each ¢ € Irr(N), ex(p) is an irreducible representation of H, x N.
Proof. Since
ex(p)((h, n)(W, ")) = ex(i)(hh,n" + ')
= p(n" +n)
= 6" ()e(n)

= o(n)p(n)
= ex(p)(h, n)ex(p) (W', )

for h,h' € H, and n,n’ € N, ex(p) is a representation of H, x N. By the definition of the
extension, deg(ex(p)) = deg(y), and ex(¢y) is irreducible. O
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Lemma 4.2. For ¢ € Irr(N),h € H andn € N,

Indf,, vex(p) (h,n) = ) 9(n).
=

Proof. For h€e Hn € N,

Ind§ , vex(g)(h,n) = Y ex(p)(I'hlnl) = Y o) =D ¢(n).
l€eH/H, leH/H, pepH
1-1hleH, ph=y

Since there is a bijection from H/H, to G/(H, x N) defined by lH, — (I,0)H, x N, we can
choose | € H/H,, instead of G/(H, x N). O

Lemma 4.3.

(i) Induced characters Indg‘a[>< ~ex(yp) are irreducible characters of G for all ¢ € Irr(N).

i1) For ¢,¢’ € Irr(N), Ind$ xN€X(p) = Ind§ «nex(¢') if and only if there exists h € H
Hyx N HyxN
such that " = ¢'.

Proof. By Lemma 4.2,

(10, cwex(). e = T SO | 30 wim) | | 3 F)

heH neN 11{6(,0” ¢'E<p'H
r¢;h=¢ ¢Ih=¢1
1 1 P
o 5 X el (3 w7
IZJGL,OH ¢IG‘P1H neN
1
=T > > [Hy N Hyl(w,¢)w
L
1
= ﬁ'ﬂé‘p}{’wm Z |H¢ N H¢/|(5¢,,¢/
Y epH
= Jka,lle' D

Remark that Lemma 4.3(i) is also given in [4, (6.11)Theorem)].
Let o, @1, - - -, a be representatives of the orbit partition of H on Irr(N), where @o = 1y.
In other words,

d
Irr(N) = H oH.

=0
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Lemma 4.4. Let 1§, be the permutation character of G. Then

d
Indf1y =) Indf . vex(p).

=0

Proof. Tt suffices to prove (Ind%1 H,Indg%x vex(pi))e = 1 and Z?:o deg(Indf,wK vex(pi)) =
|G/H|. Since N is abelian, deg(¢) = 1 for any ¢ € Irr(N). By Lemma 4.2 and Frobenius
reciprocity theorem (see [1, Theorem 2 in Section 6.16]),

(Ind,G_,1H,Ind nex(e))e = (lH,ResHIndH D<Nex(goz))H

IHIZ Z $(0) = — |H| > |Hyldeg(y) = 1.

heH 1/)6 ¢€<p1
Yh=y

Moreover,
d d
|H]

d
Zdeg(lndg%KNex(goi)) = Z 1; deg(ex(;)) Z Z || = |N]. O
s

=0 =0 = Hel 5

5 The converse of Scott’s Theorem

In this section, we assume that a transitive permutation group G = H x N on {2 is same as
that of the previous section. By Lemma 4.4, 1§ is multiplicity-free: 1% = xo+ X1+ -+ Xa,
where x, = ex(;)¢. Then we can construct the association scheme X = (Q, {A;}& ), where
A, are orbits of G on Q x Q and Ay = {(z,z) | z € Q}. Let {ng,n1,...,nq} be a set of
representatives of H\G/H. We can assume n; € N for all ¢ € {0,1,...,d} and ng =0, i.e.

H\G/H =[] H x nf.

Then the association scheme X has valencies k; = |H|/|Stabg(n,)| and multiplicities m; =

Lemma 5.1. For any 1, j,k € {0,1,...,d},

o _ Ha IR,
q‘l,,J |H| b

where

RE; = {(¥1,%2,93) € off x o x off | h1efy =45} .
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Proof. By Lemma 3.1 and Lemma 4.2,

; 1 G
ps’(z) ='_£fi Z IndH%rxNeX((pl)(g)

gEHxnH
1 1
~ TH] [Stabg(n,)] Ind, , vex(ii)(h1, n
|H| IStabH(ns)IhgeH N X (1) (h1, 757)
bl 2. 2o Ye?)
|H||StabH ns bk H pegh
Yhi=y

|H||StabH(ns I Z ¥(no)

IStabH(ns)[ Z $(ne)-

Remark that |H,,| = |Hy| holds for all ¥ € ¢fl.
Since k, = |H|/|Staby(n;)| and m; =

m,m,

¢ = ] Zkzps(l)ps 3)ps (k)

s=0 %

— |I{|2 |StabH ’ns
1A, ”NIZ |H[? <|StabH(n ] Z 1/’1("5))

|H, |
('Stabamsl 2, v S)> ('Stab ol 2 %(ns)
DY DI R s
|V IStabH(nl 1(n) Yo (ns) Y (ns

p1€pf! Yaepl Paepf!

_|H||kl|z oYY Y wina)e(n)es(n)

s=0 leH/Stabg(ns) 1[;15% 1»026#;7] ¢3€<pk

:lgffvlfz DD SIS DD DR TG AP I

5=0 leH/Stabm (ns) yrepH p2€pt Yaepf

-y v Z( > datada(n )

Y160 Yaepl! Ysepf! nEN
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_ |H‘Pk| k
e
O
Lemma 5.2. For any i,j,k € {0,1,...,d},
1
(XiXj» Xk)G = Ta] Z | Hyy N Hyy N Hyg|.
(%1,32,93)ERE ;
Proof. By Lemma 4.2,
(XiXy: X)a = (IndgwaeX(sol)Indgwj «nex(;), Indg , vex(vr))a
1 __
= @ZZ Z P1(n) Z ia(n) Z Ps3(n)
heH neN ¢le¢{1 1/12€Lp]H 1/)3E<PkH
¢1h=wl ¢2h=¢2 '¢’3h=’¢3
1 _
=1 D> > Hy N Hy, 0 Hy| Y tithatis(n)
Y1EpH PaepH Yacpf! neN
1 1 —
o 5,5, 5 (i o) it 10
V1€pH YoepH Yaepll neN
1
= l—fﬂ Z |H¢1OH¢20H¢3|-
(1,92,93)€RE
O

Lemma 5.3 ([4, (6.32)Theorem]). Let G be a group and H be a group which acts on Irr(G)
and the set of conjugacy classes of G, where Irr(G) is the set of irreducible characters of G.
If x*(g") = x(9) for all g € G,h € H,x € Irr(G), then the number of irreducible characters
which h fizes is equal to the number of conjugacy classes which h fizes for any h € H.

Theorem 5.4. Let G = H X N be a transitive permutation group on 2, H be the stabilizer
of a point x € 2 and N be an abelian normal subgroup. Then the permutation character is

multiplicity-free: Ind$ 1y = X0+ X1 + - - - + X4, where Xo is the identity character. Moreover,
the following hold.

(Z) For any i)ja ke {Oa 17 $es 7d}7 Zf (Xin7Xk)G 7é 0’ then qf] # 0.
(it) If any g € G (g # 1g) fizes less than 3 points in S, then

‘Lk,j = |Hy, |(XiXj> X#)a
for distinct ¢, j,k € {0,1,...,d}.
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Proof. (i) By Lemma 5.1, if ¢f, = 0, then Rf; = (). By Lemma 5.2,
1
(XiX4» Xk)G = T D |Hy NHy N Hy| =0.
(b1,92,33)ERE |

This means that we proved the contrapositive of the assertion.
(ii) By Lemma 5.3, if any g € G (g # 1) fixes less than 3 points in 2, then |Hy, N Hy, N
Hy,| =1 for distinct 91,12, %3 € Irr(N). Thus we obtain the result. O
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