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概要

In this paper, we deveıop a stability theory of the zero solution for the continuous‐time homoge‐
neous semilinear dynamical system. For the discrete‐time homogeneous dynamical system, Thieme
and Jin [6, 7, 8] show that the cone spectral radius of a homogeneous operator gives the threshold
value for the stability of the zero solution. We apply this idea to the continuous‐time dynamical
system under appropriate conditions commonly used in population dynamics. Using this theory, we
investigate a tw sex structured population model to find the threshold value for population extinction
and persistence.

1 Introduction

In structured population dynamics, the basic system is usually formulated by the semilinear Cauchy
problem in a state space  X :

  \frac{du}{dt}=-Au+B(u) , (1)
where  -A is a linear operator (generator for the survival process) and  B is a nonlinear operator describing
the birth process of new individuals such that  B(0)=0 and it has the Fréchet derivative  B'[0] at the
origin. Then the linearized system  du/dt=(-A+B'[0])u describes the growth of a small population.

As is well known in epidemic models [1], we can define the next generation operator (NGO) to compute
the basic reproduction number  \mathcal{R}_{0} . Assume that  -A is quasi‐positive, it has positive inverse and  B'[0]
is a positive operator. Then the NGO, denoted by  K , is calculated as  K=B'[0]A^{-1} and the basic

reproduction number is calculated by the spectral radius of NGO:  \mathcal{R}_{0}=\rho(K)[5] . In fact, the dominant

exponential solution   e^{\lambda t}\phi of the linearized equation at the zero equilibrium satisfeis

 B'[0] \phi=B'[0]\int_{0}^{\infty}e^{-(\lambda+A)_{8}}B'[0]\phi ds,
where   B'[0]\phi denotes the density of newly produced individuals. Then we know that the spectral radius

of  B'[0] \int_{0}^{\infty}e^{-As}ds=B'[0]A^{-1} becomes the threshoıd value whether  \lambda is positive or negative. Based

on the principle of linearized stability, we know thet the zero solution of (1) is locally stable if  \mathcal{R}_{0}<1,

while it is unstable if  \mathcal{R}_{0}>1 . Since  r(B'[0]A^{-1})=r(A^{-1}B'[0]) , some authors use  K=A^{-1}B'[0] as the
next infection operator (NIO) in epidemic models. In the fohowing, for calculation purpose, we use the
NIO‐like operator.
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If  B has the homogeneous nonlinearity, it is not differentiable at the origin, so we can not define the

basic reproduction number and cannot use the linearized stability principle to examine the stability of

the zero solution. For example, let us consider the two‐sex model. The mating and reproduction can

be described by a homogeneous function of degree one [5]. This type of models with discrete time were
studied by Jin et al. [6, 7, 8] and Thieme [13, 14, 15, 16]. In those papers, the basic population dynamics
is described as  x_{n}=F(x_{n-1}),  n\in N,  x_{0}\in x_{+} , where the population structure is encoded in the cone  x_{+}

of ordered normed vector space  X . They assume that the function  F has the first order approximation
 B :  X_{+}arrow x_{+} at the zero vector and  B is homogeneous of degree one. Since the spectral radius of

the linearized operator does not work, they used the cone spectral radius to obtain a threshold value for

population persistence and extinction. This is seen as an extension of the linearized stability principle.

Here we appıy the above idea to equation 1. Different from the discrete‐time models,  B is not necessarily

positive in many applications. So we can not appıy the Jin and Thieme’s method for discrete time directly.

Instead we assume that there exists some  \epsilon>0 such that  I+\epsilon B is positive and order‐preserving, because

we can rewrite (1) as

  \frac{du}{dt}=-(\frac{1}{\epsilon}+A)u+\frac{1}{\epsilon}(u+\epsilon B(u)) . (2)

For this modeified system, the NIO‐like operator is calculated as

 ( \frac{1}{\epsilon}+A)^{-1}\frac{1}{\epsilon}(I+\epsilon B)=(I+\epsilon A)^{-
1}(I+\epsilon B) .

Then we can expect that its cone spectral radius  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B)) is a threshold vaıue for the

stability of the zero solution.

Here we introduce some basic definitions and propositions, although we skip their proofs. Let  X,  Y be

ordered vector spaces with cones  x_{+} and  Y_{+} , respectively.

Definition 1.  B:X_{+}arrow Y is called (positively) homogeneous (of degree one), if  B(\alpha x)=\alpha B(x) for all
 \alpha\in \mathbb{R}_{+},  x\in X_{+}.

By definition for a homogeneous map  B,  B(0)=0 . For a positive homogeneous operator  B:X_{+}arrow X_{+},

we define the cone operator norm by  ||B||_{+}:= \sup\{||B(x)||;x\in x_{+}, ||x||\leq 1\} . If this supremum exists,

we call  B is bounded. It is easy to show that  ||B(x)||\leq||B||_{+}||x||,  x\in x_{+} . Let  H(X_{+}, Y)
denote the set of bounded homogeneous maps  B :  X_{+}arrow Y and  H(X+, Y)_{+} denote the set of bounded

homogeneous maps  B :  x_{+}arrow Y+ and  HM(X_{+}, Y_{+}) the set of those maps in  H(X_{+}, Y_{+}) that are also

order‐preserving. Then  H(X+, Y) is a reaı vector space and  ||\cdot||_{+} is a norm on  H(X_{+}, Y) . It follows
for  B\in H(X_{+}, Y_{+}) and  C\in H(Y_{+}, Z_{+}) that  CB\in H(X_{+}, Z_{+}) and  ||CB||_{+}\leq||C||_{+}||B||_{+} . For a

homogeneous operator  B :  X_{+}arrow X_{+} , define the cone spectral radius of  B by

  r_{+}(B) :=\inf_{n\in N}||B^{n}||_{+}^{1/n}=\lim_{narrow\infty}||B^{n}||_{+}
^{1/n} . (3)

Definition 2. Let  X be a normed real vector space and  X_{+} be an positive closed cone in X. Let  x,  y\in X

and denote  x\geq y when  x-y\in x_{+}.  X is called an ordered normed vector space.

Definition 3. Let  Y and  Z be ordered vector spaces with cones  Y+ and  z_{+} and  U\subset Y. A map  B:Uarrow Z

is called positive if  B(U\cap Y_{+})\subset Z_{+} and order‐preseruing if  B(x)\geq B(y) for all  x,  y\in U and  x\geq y.

Definition 4. Let  x\in Xand  u\in X_{+} . Then  x is called  u‐bounded if there exists some  c>0 such that
 - cu\leq x\leq cu . The set ofu‐bounded elements in  X is denoted by  X_{u},\dot{X}_{u}=X_{u}\backslash \{0\} and  X_{u+}=X_{u}\cap X_{+}.

Definition 5. Let  B:X_{+}arrow x_{+} and  u\in x_{+}.
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(1)  B is called pointwise  u‐bounded, if for any  x\in X_{+} , there exists some  n\in \mathbb{N} such that  B^{n}x\in X_{u}.

The point  u is called a pointwise order bound of B. If  B is pointwise  u ‐bounded for some  u\in X_{+},

then  B is also called pointwise order bounded.

(2)  B is called uniformly  u ‐bounded if there exists some  c>0 such that  B(x)\leq c||x||u for all  x\in x_{+}.

The element  u is called a uniform order bound  ofB . An operator  B is called uniformly order bounded

if  B is uniformly  u ‐bounded for some  u\in x_{+}.

Pointwise order boundedness implies uniformly order boundedness under some conditions. The follow‐

ing proposition is given in Thieme [16].

Proposition 1. Let  u\in x_{+} and  B:X+arrow x_{+} be order‐preserving and homogeneous. Assume that  x_{+}

is complete and  B is pointwise  u‐bounded and continuous, then some powers of  B is uniformly  u ‐bounded.

Corollary 1. Let  B :  X_{+}arrow X_{+} be a homogeneous and continuous operator. Assume that  X_{+} is solid

and  B is bounded. Then  B is uniformly  u ‐bounded for any interior point  u\in x_{+}.

Let  B:X+arrow x_{+} be a homogeneous and continuous operator.

Definition 6.  B is called pseudo‐compact if  r_{+}(B)>0 and the following holds: If  (x_{n}) is a sequence in

 X_{+}\cap X_{u} and  (\lambda_{n}) is a sequence in  [r_{+}(B), \infty) such that  (x_{n}) is bounded with respect to the  u ‐norm and
 \lambda_{n}arrow r_{+}(B) and  ||(\lambda_{n}-B)x_{n}||arrow 0 and  (\lambda_{n}-B)x_{n}\in x_{+} for all  n\in \mathbb{N} , then  (x_{n}) has a convergent

subsequence.

Under some conditions, Thieme shows the existence of eigenvector for pseudo‐compact operator [16].

Theorem 1. Assume that  X_{+} contains a normal point  u\neq 0 . Let  B :  x_{+}arrow X_{+} be a homogeneous

operator. If  B is order‐preserving, uniformly order bounded and pseudo‐compact, then there exists  v\in\dot{X}_{+}
such that  B(v)=r_{+}(B)v.

Let  X be an ordered Banach space with a positive cone  x_{+} . We introduce the measure of noncompact‐

ness in Kuratowski [9] and Nussbaum [10, 11]. For a bounded subset  S\subset X , define  d(S) as the diameter
of  S and  \alpha(S) as the measure of noncompactness of  S as

 d(S)  := \inf { d>0 : there exists  x\in X such that  S\subset U_{d}(x) },

 \alpha(S)  := \inf{ d>0 :  S= \bigcup_{i=1}^{れ}S_{i},   n<\infty and  d(S_{i})\leq d for  1\leq i\leq n}.

In this definition,  U_{d}(x) is an open ball centered at  x with diameter  d . Generally, we suppose that  \beta is

a map which assigns to each bounded subset  S of  X a nonnegative real number  \beta(S) . We will call  \beta a

generalized measure of noncompactness if  \beta satisfies the following properties:

(1)  \beta(S)=0 if and only if the closure of  S is compact.

(2)  \beta(\overline{co}(S))=\beta(S) for every bounded set  S in X, where  \overline{co}(S) denotes the convex full of  S.

(3)  \beta(S+T)\leq\beta(S)+\beta(T) for all bounded sets  S and  T, where  S+T=\{s+t;s\in S, t\in T\}.

(4)   \beta(S\cup T)=\max(\beta(S), \beta(T)) .

It is weh‐known that  \alpha satisfies these four properties.

If  D is a subset of  X,  \beta is the generalized measure of noncompactness, and  f :  Darrow X a continuous

map,  f is called k‐set‐contraction with respect to  \beta if  \beta(f(S))\leq k\beta(S) holds for every bounded subset
 S in  D . If  \beta=\alpha , we shall simply say that  f is a k‐set‐contraction.
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2 Existence of a positive eigenvector

Throughout this section,  A :  Xarrow X is a bounded linear operator and  B :  x_{+}arrow X be a bounded,

continuous and homogeneous operator. For a sufficiently small  \epsilon>0 , if the operator  I+\epsilon B is positive

and order‐preserving, we call the operator  B the semi order‐preserving operator. Although we skip the

proof, we have

Lemma 1. Let  B :  X_{+}arrow X_{+} be a bounded and homogeneous operator and  L :  Xarrow X be a bounded

linear operator. Assume that  B is compact and that  r=r_{+}(L+B)>0 and  r\in\rho(L) . Then  L+B is

pseudo‐compact.

Theorem 2. Let  X_{+} be solid. Assume that for any sufficiently small  \epsilon>0,  (I+\epsilon A)^{-1} is positive and  B

is semi order‐preserving and compact. Further assume that  r=r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))\in\rho((I+\epsilon A)^{-1}) .

Then for a small  \epsilon such that  I+\epsilon B is positive and order‐preserving, there exists  v\in x_{+} such that  v\neq 0
and  (I+\epsilon A)^{-1}(I+\epsilon B)(v)=rv.

Proof. It is sufficient to see that the assumptions in Theorem 1 are satisfied. Since  x_{+} is solid, by

Corollary 1,  I+\epsilon B is uniformly  u‐bounded for any interior point  u\in X_{+} . Since  (I+\epsilon A)^{-1} is positive,

 (I+\epsilon A)^{-1}(I+\epsilon B) is uniformly  (I+\epsilon A)^{-1}u‐bounded. This implies  (I+\epsilon A)^{-1}(I+\epsilon B) is uniformly

order‐bounded. Next let us show the pseudo‐compactness of  (I+\epsilon A)^{-1}(I+\epsilon B) . Observe that

 (I+\epsilon A)^{-1}(I+\epsilon B)=(I+\epsilon A)^{-1}+\epsilon(I+\epsilon A)^{-
1}B.

As  (I+\epsilon A)^{-1} is a bounded linear operator and  \epsilon(I+\epsilon A)^{-1}B is compact, it fohows from Lemma 1 that

 (I+\epsilon A)^{-{\imath}}(I+\epsilon B) is pseudo‐compact. Therefore the assumptions in Theorem 1 are all satisfied. 口

Let  x_{+} be solid. Assume that for any sufficiently smah  \epsilon>0,  (I+\epsilon A)^{-1} is positive and  r_{+}((l+
 \epsilon A)^{-1}(I+\epsilon B))\in\rho((I+\epsilon A)^{-1}) and that  B is semi order‐preserving. Choose small  \epsilon and  \tilde{\epsilon} such that
 I+\epsilon B and  I+\tilde{E}B are positive and order‐preserving. Let   0<\tilde{\epsilon}<\epsilon and define  r  :=r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))
and  \tilde{r}:=r_{+}((I+\tilde{\epsilon}A)^{-1}(I+\tilde{\epsilon}B)) . After long calculations, we can show the fohowings:

Lemma 2. It holds that  r\geq 1\Leftrightarrow\tilde{r}\geq 1 and  \tilde{r}>1\Rightarrow r\geq\tilde{r}>1.

Lemma 3. Let  D  := {  \epsilon>0;I+\epsilon B is positive and order‐preserving}. Assume that  \epsilon is not the supremum
of D. Then  r>1\Rightarrow\tilde{r}>1.

Remark 1. If  A is positive, then  r>1 always implies  \tilde{r}>1.

By Lemma 2 and Remark 1, the sign of  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))-1 is independent from the choice of
 \epsilon under some conditions.

Proposition 2. Let  A be a positive bounded linear operator. Let  B be a semi order‐preserving bounded
homogeneous operator. Assume that  (I+\epsilon A)^{-1} is positive for all  \epsilon>0 and that  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))\in
 \rho((I+\epsilon A)^{-1}) . Then the one of these three properties holds:

(1)  r+((I+\epsilon A)^{-1}(I+\epsilon B))>1 for all  \epsilon\in D,

(2)  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))=1 for all  \epsilon\in D,

(3)  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))<1 for all  \epsilon\in D.
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3 Persistence and extinction

Let  X be an ordered Banach space with a positive solid cıosed cone  X_{+} . Let  T(t),  t\geq 0 be the semigroup
generated by  -A . Throughout this section, we assume that  T(t) is positive, i.e.  T(t)(X_{+})\subset X_{+} and

 ||T(t)||arrow 0 as   tarrow\infty . By introducing an equivalent norm, we can assume that there exists some  \theta>0

such that  ||T(t)||\leq e^{-\theta t}[2].
In the fohowing, we consider the semilinear model (1). For the uniqueness and the existence of solution,

we assume  B is Lipschitz continuous, bounded and nonlinear. By the same kind of arguments as in

Theorem 10.19 of Smith and Thieme [ı2], we can show that the following property holds:

Proposition 3. Assume that  B is positive and order‐preserving. Then the solution semiflow  \Phi is order‐
preserving: If  x,  y\in X_{+} satisfy  x\geq y , then  \Phi(t, x)\geq\Phi(t, y) .

Proof. Let  \epsilon>0 . Let  \tau>0 be determined after. Let  x,  y\in X_{+} satisfy  x\geq y . Define the map  w:\mathbb{R}_{+}arrow X

as  w(t)  :=\Phi(t, x)-\Phi(t, y) . We rewrite the solution as the mild solution satisfying

  \Phi(t, x)=T(t)x+\int_{0}^{t}T(t-s)B(\Phi(s, x))ds . (4)

We get

 w(t)  =   T(t)(x-y)+\int_{0}
オ

 T(t-s)(B(\Phi(s, x))-B(\Phi(s, y)))ds,

 =  T(t)(x-y)+\int_{0}^{t}T(t-s)(B(w(s)+\Phi(s, y))-B(\Phi(s, y)))ds.
Let  \tilde{G}(w)(t) denote the right‐hand side of this equation. Define the complete metric space  (K_{\tau}, ||\cdot||_{\infty}) ,
where  K_{\tau}  :=\{w\in C([0, \tau], X_{+}) : ||w(t)-(x-y)||\leq\epsilon, 0\leq t\leq\tau\} and  ||w||_{\infty}= \max||w(t)|| . Let  \Lambda>0

 t\in[0,\tau]
be the Lipschitz constant of  B and  w\in K_{\tau} . Then by the triangle inequality,

 ||\tilde{G}(w)(t)-(x-y)||\leq||T(t)(x-y)-(x-y)||

 + \int_{0}^{t}||T(t-s)||\cross||B(w(s)+\Phi(s, y))-B(\Phi(s, y))||ds . (5)

By the Lipschitz continuity of  B and the boundedness of  T(t) ,

 || \tilde{G}(w)(t)-(x-y)||\leq||T(t)(x-y)-(x-y)||+\int_{0} オオ  e^{-\theta(t-s)}\Lambda||w(s)||ds . (6)
The definition of  K_{\tau} implies  ||w(t)||\leq||x-y||+\epsilon . By using this inequality, we obtain the estimates:

 ||\tilde{G}(w)(t)-(x-y)||\leq||T(t)(x-y)-(x-y)||

 + \frac{1-e^{-\theta t}}{\theta}A(||x-y||+\epsilon) .

(7)

Since the right‐hand side of this inequality goes to  0 as  tarrow 0 , we can choose  \tau such that  ||\tilde{G}(w)(t)-
 (x-y)||\leq\epsilon for all  t\in[0, \tau] . Obviously,  \tilde{G} is a map from  K_{\tau} into  C([0, \tau], X_{+}) . Hence  \tilde{G} is a map from
 K_{\tau} into  K_{T} . Next we show that the map  \tilde{G} is a strict contraction on  K_{\tau} for sufficiently small  \tau. Let
 w_{1},  w_{2}\in K_{\tau} . For  t\in[0, \tau],

 ||\tilde{G}(w_{1})(t)-\tilde{G}(w_{2})(t)||

  \leq\int_{0} オ  ||T(t-s)||||B(w_{1}(s)+\Phi(s, y))-B(w_{2}(s)+\Phi(s, y))||ds , (8)
  \leq\int_{0}

オ

 e^{-\theta(t-s)}A||w_{1}(s)-w_{2}(s)||ds,
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Hence we get

 ||\tilde{G} (  wı)( t)—  G\tilde{}  (w_{2})(t)|| \leq\frac{1-e^{-\theta t}}{\theta}\Lambda\sup_{0\leq s\leq\tau}  || wı(s)—w2  (s)|| . (9)

We take the supremum over  t,

  \sup_{0\leq s\leq\tau}||\tilde{G}(w_{1})(s)-\tilde{G}(w_{2})(s)
||\leq\frac{{\imath}-e^{-\theta\tau}}{\theta}\Lambda\sup_{0\leq s\leq\tau}
||w_{1}(s)-w_{2}(s)|| . (10)

We can choose  \tau so small that  \tilde{G} becomes a strict contraction. Thus  \tilde{G} has a fixed point in  K_{\tau} . Since

the mild solution exists globally, this implies  \Phi(t, x)-\Phi(t, y)\geq 0  \square 

Theorem 3. If  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))<1 , then for any solution  u(t) with initial data  u_{0}\in X_{+},

 ||u(t)||arrow 0 as   tarrow\infty

Proof. Suppose  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))<1 . Define  S as the semigroup generated by  -\epsilon^{-1}(I+\epsilon A)
and define  B':=\epsilon^{-1}(I+\epsilon B) . For  u_{0}\in X_{+} and an integer  n\in \mathbb{N} , define the homogeneous operator
 D_{n}:X_{+}arrow X_{+} as

 D_{n}u_{0} := S( \frac{{\imath}}{n})u_{0}+\int_{0}^{\frac{1}{n}}S(\frac{1}{n}-
s)B'(u(s))ds , (11)

 = T( \frac{1}{n}, u_{0})+\int_{0}^{\frac{1}{n}}T(\frac{1}{n}-s, B(u(s)))ds , (12)

where  u(s) is the mild solution with initial data  u_{0} . The first equation (11) shows the operator  D_{n} is
order‐preserving by Proposition 3 and the second equation (12) shows the pseudo‐compactness of the
operator  D_{n} . Denote  r_{n}  :=r_{+}(D_{n}) . To show by contradiction, we assume  r_{1}\geq 1 . Let  \Phi be the solution

semiflow. Let  u is an interior point of  X_{+} , there exists some  c>0 such that for any  x\in X_{+},  x\leq c||x||u.
Hence there exists some  c' such that  \Phi(t, x)\leq\Phi(t, c||x||w)\leq c'||x||w for any  x\in X_{+} . Thus  D_{n} is

uniformly  w‐bounded. Next we show that  D_{n} is pseudo‐compact. Let  \{x_{m}\} be a sequence in  X_{+}\cap X_{w}

such that  \{x_{m}\} is bounded with respect to  w‐norm and let  \{\lambda_{m}\} be a sequence in  [r_{n}, \infty) such that
 \lambda_{m}arrow r_{n} as   marrow\infty . Furthermore, assume  ||(\lambda_{m}-D_{n})x_{m}||arrow 0 and  (\lambda_{m}-D_{n})x_{m}\in X_{+} . Then

 x_{m} = ( \lambda_{m}-T(\frac{1}{n}))^{-1}((\lambda_{m}-D_{n})x_{m}+\int_{0}
^{\frac{1}{n}}T(\frac{1}{n}-s)B(\Phi(s, x_{m}))ds) ,

 := ( \lambda_{m}-T(\frac{1}{n}))^{-1}((\lambda_{m}-D_{n})x_{m}+E_{n}(x_{m})) . (13)

Since  E_{n} is a compact operator as shown by Smith and Thieme [12],  \{x_{m}\} has a convergent subsequence
and  D_{n} is pseudo‐compact. By Theorem 1, there exists some  v_{n}\in X_{+} such that  ||v_{n}||=1 and  D_{n}v_{n}=

 r_{n}v_{n} . We can easily know  r_{n}^{n}=r_{1} . Then  D_{1}v_{n}=D_{n}^{n}v_{n}=r_{n}^{n}v_{n}=r_{1}v_{n} . Since  D_{1} is pseudo‐compact,  \{v_{n}\}
and  \{r_{1}\} satisfies the condition for pseudo‐compact and thus  v_{n} has a convergent subsequence. Choose
a convergent subsequence of  \{v_{n}\} and define the limit as  v_{\infty} . Let  t=l_{k} \cross\frac{1}{k}+\epsilon k , where  t\in \mathbb{R}_{+},  l_{k}\in \mathbb{N}

and  \epsilon k satisfies  0 \leq\epsilon k<\frac{1}{k} . Then

  \Phi(t, v_{\infty})=\lim_{karrow\infty}\Phi(t, v_{k})=\lim_{karrow\infty}\Phi(
\epsilon k, \Phi(l_{k}\cross\frac{1}{k}, v_{k})) ,

 =k arrow\infty 1\dot{{\imath}}m\Phi(\epsilon k, r_{k}^{l_{k}}v_{k})=
\lim_{karrow\infty}r_{{\imath}^{t}}\cross r_{1}^{-\epsilon k}\Phi(\epsilon k, v_
{k})=r_{1}^{t}v_{\infty}.
Thus  v(t)  :=r_{1^{t}}v_{\infty} is the soıution with initial data  v(0)=v_{\infty} . It is easy to see that  v'(0)\geq 0 . Hence

 -(I+\epsilon A)v_{\infty}+(I+\epsilon B)v_{\infty}\geq 0 and we get  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))\geq 1 . This is a contradiction. Therefore
we can show  r_{1}<1 and  ||D_{1}^{m}||arrow 0 as   marrow\infty . Let  x\in X_{+} and  t>0 . Define  \delta  :=0 \leq\leq 1\max_{8}||\Phi(s, x)||.
Choose  m\in \mathbb{N} such that  0\leq t-m<1 . Then it follows that  ||\Phi(t, x)||=||\Phi(m+t-m, x)||\leq||D_{1}^{m}||\cross\deltaarrow
 0 as  tarrow\infty.  \square 
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Next we generalize the principle of linearized stability to the case that first order approximation at the

origin is not linear but only homogeneous. Let us consider the equation,

  \frac{du}{dt}=-Au+F(u) . (14)

 F :  X_{+}arrow X_{+} is nonlinear operator. We assume that the solution of the equation (14) with an initial
data in  X_{+} exists uniqueıy and globally. Then we can show the stability at zero point.

Theorem 4. Let  F,  B :  X_{+}arrow X,  F(0)=0 and let  B be a homogeneous compact uniformly  u ‐bounded

operator. Assume that we can choose  \epsilon>0 such that  I+\epsilon B is positive order‐preserving map and
 r  :=r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))<1 . Further assume that for any  \eta>0 there exists some  \delta>0 such that

 (I+\epsilon F)(x)\leq (ı  +\eta)(I  +\epsilonB)(x) for all  x\in X_{+} with  ||x||<\delta. Then the zero point is locally asymptotically
stable.

Proof. Define  D_{1}:X_{+}arrow X_{+} as

 D_{t}(x)  :=T(t)x+ \int_{0}オ  T(t-s)(1+\eta)B(u(s))ds (15)

where  T is the semigroup induced by  -q\epsilon-A and  u(s) is the mild solution of  u'=-\epsilon^{-1}(\eta I+\epsilon A)u+
 (1+\eta)B(u) with initial data  u(0)=x . We can show  r_{+}(D_{1})< ı by the same proof as Theorem 3.

Hence there exists some  N\in \mathbb{N} such that  ||D_{N}||=||D_{1}^{N}||<1 and  D=0 \leq s\leq N\max||D_{s}|| . Let  x\in X_{+} satisfy

 ||x|| \leq\min\{1, D^{-1}\}\delta  :=\tilde{\delta} and ıet  u(t) be the mild solution of  u'=-\epsilon^{-1}(\eta+\epsilon A)u+(1+\eta)B(u) with

initial data  u(0)=x . Since  ||u(t)||\leq\delta for any   t\in  [0, N],  ||D_{N}(x)||\leq\tilde{\delta} , we get  u(t)arrow 0 as  tarrow\infty.  \square 

Theorem 5. Let  \rho :  X_{+}arrow \mathbb{R} be a continuous function. Assume that  X_{+} is normal and that there exists

some homogeneous semi order‐preserving operator  B such that for some small  \epsilon>0 and any  \alpha\in(0,1) ,

there exists some  \delta>0 such that (ı—  \alpha)  (I+\epsilon B)(x)\leq(I+\epsilon F)(x) for all  x\in X_{+} with  ||x||\leq\delta. Further
assume that

1. If  \rho(x)>0 , then  \rho(\Phi(t, x))>0 for all  t>0 , where  \Phi is the solution semiflow.

2. There exists some  r>1 and  v\in\dot{X}_{+} such that  (I+\epsilon A)^{-1}(I+\epsilon B)(v)\geq rv.

3. For any  x\in X_{+} with  \rho(x)>0 , there exists some  t>0 and  \xi>0 such that  \Phi(t, x)\geq\xi v.

Then there exists some  \eta>0 such that   1 \dot{{\imath}}m\sup_{tarrow\infty}||\Phi(t, x)||\geq\eta for any  x\in X_{+} with  \rho(x)>0.

Proof. Choose  \alpha>0 such that  (1-\alpha)r>1 . Suppose the assertion does not hoıd. There exists some

 x\in X_{+} such that  \rho(x)>0 and   \lim_{tarrow}\sup_{\infty}||\Phi(t, x)||<\frac{\delta}{2} , where  \Phi is the solution semiflow of  u'=-Au+F(u) .

Then by the shift of time, we can assume that  ||\Phi(t, x)||\leq\delta for all  t\geq 0 and there exists some  \xi>0
such that  x\geq\xi v . Define  \Psi as the solution semiflow of  u'=-\epsilon^{-1}(I+\epsilon A)u+\epsilon^{-1}(1-\alpha)(I+\epsilon B)(u) .

Then  \Phi(t, x)\geq\Psi(t, x)\geq\Psi(t, \xi v)\geq\exp(((1-\alpha)r-1)t)v . Since  X_{+} is normal, there exists some  \tilde{M}>0

such that  ||x||\leq\tilde{M}1y|| for all  x\in X,  y\in X_{+} with  -y\leq x\leq y , and it fohows that

 \tilde{M}||\Phi(t, x)||\geq\exp(((1-\alpha)r-1)t)||v||arrow\infty as  tarrow\infty,

which is a contradiction. 口
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4 Application to two‐sex population dynamics

As a demographic example, let us consider the fohowing two‐sex age‐structured population modell:

 \{\begin{array}{l}
\frac{dm}{dt}=-(\mu_{m}+\eta_{m}(x))m_{1}+\beta(x)\gamma_{m}\phi(m_{2}, f_{2}) ,
\underline{d}mdtarrow=-\mu_{m}m_{2}+\eta_{m}(x)m_{1},
fdd^{\frac{1}{t}}=-(\mu_{f}+\eta_{f}(x))f_{1}+\beta(x)\gamma_{f}\phi(m_{2}, 
f_{2}) ,
\perp_{=-\mu_{f}f_{2}+\eta_{f}(x)f_{1}}d_{2}dt.
\end{array} (16)

Here the state space is  X_{+}  :=\mathbb{R}_{+}^{4} and  x=  (m_{1},  m_{2} , fı,  f_{2})^{T} (where  T denotes the transpose of the
vector).  \eta_{m},  \eta_{f},  \beta :  X_{+}arrow \mathbb{R}_{+} are functions of  x\in X_{+} . The numbers  m_{1} and fı denote the population
size of male and female children, respectively. The numbers  m_{2} and  f_{2} denote the population size of

male and female adults, respectively. Male and female individuals die at per capita rate  \mu_{m} and  \mu_{f},

respectively. Male [female] children grow up to adult per capita rate  \eta_{m}(x)[\eta_{f}(x)] . The function  \beta(x)
is the density‐dependent birth rate. The numbers  \gamma_{m},  \gamma_{f} denote the sex ratio at birth, so  \gamma_{m}+\gamma_{f}= ı.

Finally the function  \phi :  X_{+}\cross X_{+}arrow \mathbb{R}_{+} is a mating or pair formation function. We assume that  \phi has

the following properties; (1)  \phi is order‐preserving; (2)  \phi is homogeneous; (3)  \phi(m, 0)=\phi(0, f)=0 . We
assume that  \phi,  \eta_{m},  \eta_{f},  \beta are positive Lipschitz continuous functions. Under this assumption, the solution

of the equation (16) with initial data in  X_{+} exists uniquely and globally. Define the operator  A and  F

by

 A:=  (\begin{array}{llll}
\mu_{m}   0   0   0
0   \mu_{m}   0   0
0   0   \mu_{f}   0
0   0   0   \mu_{f}
\end{array}) ,  F(x):=  (\begin{array}{l}
-\eta_{m}(x)m_{1}+\beta(x)\gamma_{m}\phi(m_{2},f_{2})
\eta_{m}(x)m_{1}
-\eta_{f}(x)f_{1}+\beta(x)\gamma_{f}\phi(m_{2},f_{2})
\eta_{f}(x)f_{1}
\end{array}) , (17)

where  x=(m_{1}, m_{2}, f_{1}, f_{2})^{T}.
Define a homogeneous operator  B by the map  F with  \eta_{m}(x),  \eta_{f}(x) being replaced by  \eta_{m}(0),  \eta_{f}(0) .

Then  -A is resolvent positive and  A is positive. Further,  I+\epsilon B is positive and order‐preserving for any
 \epsilon with   \epsilon\leq\max\{\eta_{m}(0)^{-1}, \eta_{f}(0)^{-1}\} . Hence by Proposition 2, the sign of  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))-1 is
definite for all such  \epsilon.

Let us find conditions under which  r  :=r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))>1 . Suppose  r>1 . Then by Theorem
2, there exists some  v  :=\dot{X}_{+} such that

 (I+\epsilon A)^{-1}(I+\epsilon B)v=rv.

Let  v=(m_{1}, m_{2}, f_{1}, f_{2})^{T} . Then the components satisfy the following equations:

 m_{2}= \frac{\epsilon\eta_{m}m_{1}}{r(1+\epsilon\mu_{m})-1}, f_{2}=
\frac{\epsilon\eta_{f}f_{1}}{r(1+\epsilon\mu_{f})-1} . (18)

Hence we get

 (1+ \epsilon\mu_{m})^{-1}(m_{1}-\epsilon\eta_{m}m_{1}+\epsilon^{2}
\beta\gamma_{m}\phi(\frac{\eta_{m}}{r(1+\epsilon\mu_{m})-1}, \frac{\eta_{f}}{r(1
+\epsilon\mu_{f})-1}))=rm_{1}>m_{1} . (19)

Since  \phi is order‐preserving, the left‐hand side of inequality (19) is decreasing function of  r . Thus the
left‐hand side with  r replaced by 1 is greater than  m_{1} . Then we obtain

 (1+ \epsilon\mu_{m})^{-1}(m_{1}-\epsilon\eta_{m}m_{1}+\epsilon^{2}
\beta\gamma_{m}\phi(\frac{m}{1\cross(1+\epsilon\mu_{m})-1}, \frac{\eta f}
{1\cross(1+\epsilon\mu f)-1}))>m_{1} . (20)

 (m_{1}- \epsilon\eta_{m}m_{1}+\epsilon^{2}\beta\gamma_{m}\phi(\frac{\eta_{m}}
{\epsilon\mu_{m}}, \overline{\epsilon}\eta\mu_{f}\perp))>(1+\epsilon\mu_{m})
m_{1} . (21)

  \phi(\frac{\eta_{m}m_{1}}{\mu_{m}},\eta\hat{\mu f}f_{1})>\frac{(\mu_{n}+
\eta_{n})m_{1}}{\beta\gamma_{m}} . (22)

lFor demographic two‐sex problems, the reader may refer to [3], [4] and [5].
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By the same way, we can get

  \phi(\frac{\eta_{m}m_{1}}{\mu_{m}}, \frac{\eta_{f}f_{1}}{\mu_{f}})>\frac{(\mu_
{f}+\eta_{f})f_{1}}{\beta\gamma_{f}} . (23)

Hence if  r>1 , then there exists some  m_{1},  f_{1}>0 such that

  \phi(\frac{\eta_{m}m_{1}}{\mu_{m}}, \frac{\eta_{f}f_{1}}{\mu_{f}})>\max\{\frac
{(\mu_{m}+\eta_{m})m_{1}}{\beta\gamma_{m}}, (\mu_{m}+\eta_{f})f_{1}
\beta\gamma_{f}\} . (24)

Conversely,  m_{1} , and  f_{1} exist such that they satisfy the inequality (24). Define  m_{2},  f_{2}>0 by the equation
(18). Then there exists some  r>1 such that  (I+\epsilon A)^{-1}(l+\epsilon B)v\geq rv . It implies  r_{+}((I+\epsilon A)^{-1}(I+\epsilon B))>
 1 . Similarly, we can know that  r\geq 1 holds if and only if there exists some  m_{1},  f_{1}>0 such that

  \phi(\frac{\eta_{m}m_{1}}{\mu_{m}}, \frac{\eta_{f}f_{1}}{\mu_{f}})
\geq\max\{\frac{(\mu_{m}+\eta_{m})m_{1}}{6\gamma_{m}}, \frac{(\mu_{m}+\eta_{f})
f_{1}}{\beta\gamma_{f}}\}.
Theorem 6. Assume that for any  m_{1},  f{\imath}>0 , it holds that

  \phi(\frac{\eta_{m}m_{1}}{\mu_{m}}, \frac{\eta_{f}f_{1}}{\mu_{f}})<m \{\frac{(
\mu_{m}+\eta_{m})m_{1}}{\beta\gamma_{m}}, \frac{(\mu_{f}+\eta_{f})f_{1}}
{\beta\gamma_{f}}\}.
Then the zero point is asymptotically stable.

Theorem 7. Assume that there exist some  m_{1},  f{\imath}>0 such that

  \phi(\frac{\eta_{m}m_{1}}{\mu_{m}}, \frac{\eta_{f}f_{1}}{\mu_{f}})>\max\{\frac
{(\mu_{m}+\eta_{m})m_{1}}{\beta\gamma_{m}}, (\mu_{f}+\eta_{f})f_{1}
\beta\gamma_{f}\}\cdot
Thus the population weakly persists. More precisely, there exists some  \delta>0 such that for any initial data
 x with  m_{1}+m_{2}>0 and  f_{1}+f_{2}>0 , the solution  u(t) satisfies   \lim_{tarrow}\sup_{\infty}||u(t)||\geq\delta.
Proof. For  x=(m_{1}, m_{2}, f_{1}, f_{2})^{T} , define the function  \rho as  \rho(x)  := \min\{m_{1}+m_{2}, f_{1}+f_{2}\} . It is sufficient

to show that the condition 3 in Theorem 5 holds. Assume  \rho(x)>0 . Then  \Phi(t, x) is an interior point in

 \mathbb{R}_{+}^{4} for any  t>0 , where  \Phi is the solution semiflow. As the condition 2 is satisfied by the above argument,
the condition 3 fohows.  \square 

We can define an index like as the basic reproduction number by the same way in Thieme [15]. Define
the reproduction number for two‐sex population by

  \mathcal{R}_{0}:=\phi(\frac{\beta\eta_{m}\gamma_{m}}{\mu_{m}(\mu_{m}+\eta_{m})
}, \frac{\beta\eta_{f\^{i} f}}{\mu_{f}(\mu_{f}+\eta_{f})}) . (25)

Theorem 8. The sign rdation  sign(r-1)=sign(\mathcal{R}_{0}-1) holds.

If we assume that  \beta is a decreasing function and that there exists some  \alpha>0 such that  \phi(m_{2}, f_{2})\geq
  \alpha\min\{m_{2}, f_{2}\} for any  m_{2},  f_{2}\geq 0 , point‐dissipativeness and eventually boundedness on every bounded

sets hold. Thus the solution semiflow has a compact attractor of neighborhoods of compact sets in  X_{+}.
Then a positive equilibrium exists if  r>1.

Theorem 9. Assume that  \beta is decreasing function and  \beta(x)arrow 0 as   xarrow\infty and that there exists

some  \alpha>0 such that   \phi(m_{2}, f_{2})\geq\alpha\min\{m_{2}, f_{2}\} . Then the solution semiflow has a compact attractor of
neighborhood of compact sets in  X_{+}.

By Theorem 6.2. in Thieme [12], we can prove that positive equilibrium exists.

Theorem 10. Assume that  r>1,  \beta is decreasing function,  \beta(x)arrow 0 as   xarrow\infty , and there exists some
 \alpha>0 such that   \phi(m_{2}, f_{2})\geq\alpha\min\{m_{2}, f_{2}\} . Then there exists equilibrium  x\in X_{+} with  ||x||>0.
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